D-MATH
HS 2021
Prof. E. Kowalski

Exercise sheet 2

Commutative Algebra

(1) Let p be a prime number and let R be the local ring $\mathbb{Z}_{p \mathbb{Z}}$. Let k be the residue field of R. Construct an isomorphism $\mathbb{Z} / p \mathbb{Z} \rightarrow k$.
(2) Let R be a ring and $S \subset R$ a multiplicative subset.
(a) If $S \subset R^{\times}$, show that the canonical morphism

$$
\varphi_{S}: R \rightarrow S^{-1} R
$$

is an isomorphism.
(b) Conversely, if φ_{S} is an isomorphism, show that $S \subset R^{\times}$.
(3) Let R be a ring and $S \subset R$ a multiplicative subset. Let A be the polynomial ring $A=R\left[\left(X_{s}\right)_{s \in S}\right]$ with one variable for each element of S. Let I be the ideal of A generated by all the elements $Y_{s}=$ $1-s X_{s} \in A$ for $s \in S$. Let $B=A / I$ be the quotient ring. Let $\psi: R \rightarrow B$ be the canonical morphism (composition of $R \rightarrow A \rightarrow A / I$) that makes B into an R-algebra.
(a) Show that for any R-algebra T and any R-algebra morphism $f: B \rightarrow T$, the composition $f \circ \psi: R \rightarrow T$ satisfies $(f \circ \psi)(S) \subset$ T^{\times}.
(b) Conversely, if $g: R \rightarrow T$ is a morphism of R-algebras, and $g(S) \subset$ T^{\times}, show that there exists a morphism $f: B \rightarrow T$ of R-algebras such that $g=f \circ \psi$.

Hint: either construct f "by hand", or use the characteristic properties of morphisms from polynomial rings and from quotient rings.
(c) Show that the map $f \mapsto f \circ \psi$ gives a bijection

$$
\operatorname{Hom}_{R-\operatorname{alg}}(B, T) \longrightarrow\left\{g: R \rightarrow T \mid g(S) \subset T^{\times}\right\}
$$

(d) Deduce that B is isomorphic to $S^{-1} R$, and write an explicit isomorphism $B \rightarrow S^{-1} R$.
(4) Let K be a field and let $A=K[[X]]$ be the ring of formal power series with coefficients in K, i.e., of formal expressions

$$
a=\sum_{n \geq 0} a_{n} X^{n}
$$

with the usual rules for sums and products, e.g.

$$
\left(\sum_{n \geq 0} a_{n} X^{n}\right) \cdot\left(\sum_{n \geq 0} b_{n} X^{n}\right)=\sum_{n \geq 0} c_{n} X^{n},
$$

where

$$
c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n} b_{0} .
$$

(a) Show that A is a local ring with maximal ideal

$$
m_{A}=\left\{\sum_{n=0}^{+\infty} a_{n} X^{n} \mid a_{0}=0\right\} .
$$

What is the residue field $k=A / m_{A}$?
(b) Show that A is principal, in fact that any non-zero ideal I in A is of the form $I=\left(X^{n}\right)$ for some integer $n \geq 0$.

Hint: given a non-zero ideal I, consider an element $a \in I$ with smallest number of coefficients a_{0}, a_{1}, \ldots, equal to 0 .
(c) What is the inverse in A of $1+X$?
(5) Let A be a ring and consider the polynomial ring $A[X]$. Let $f=$ $\sum_{i=0}^{n} a_{i} X^{i} \in A[X]$ be a polynomial. Prove that:
(a) f is a unit in $A[X]$ if and only if a_{0} is a unit in A and a_{1}, \ldots, a_{n} are nilpotent;
(b) f is nilpotent if and only if a_{0}, \ldots, a_{n} are nilpotent;
(c) f is a zero-divisor if and only if there exists $a \neq 0$ in A such that $a f=0$.

Furthermore, prove that in the ring $A[X]$, the Jacobson radical is equal to the nilradical.
(6) Let A be a ring and let S be a multiplicative subset of A. Prove that S is a multiplicative subset of $A[X]$, and construct an isomorphism of rings

$$
S^{-1}(A[X]) \longrightarrow\left(S^{-1} A\right)[X] .
$$

