D-MATH HS 2021 Prof. E. Kowalski

Exercise sheet 2

Commutative Algebra

- (1) Let p be a prime number and let R be the local ring $\mathbb{Z}_{p\mathbb{Z}}$. Let k be the residue field of R. Construct an isomorphism $\mathbb{Z}/p\mathbb{Z} \to k$.
- (2) Let R be a ring and $S \subset R$ a multiplicative subset.
 - (a) If $S \subset \mathbb{R}^{\times}$, show that the canonical morphism

$$\varphi_S \colon R \to S^{-1}R$$

is an isomorphism.

- (b) Conversely, if φ_S is an isomorphism, show that $S \subset \mathbb{R}^{\times}$.
- (3) Let R be a ring and $S \subset R$ a multiplicative subset. Let A be the polynomial ring $A = R[(X_s)_{s \in S}]$ with one variable for each element of S. Let I be the ideal of A generated by all the elements $Y_s = 1 sX_s \in A$ for $s \in S$. Let B = A/I be the quotient ring. Let $\psi: R \to B$ be the canonical morphism (composition of $R \to A \to A/I$) that makes B into an R-algebra.
 - (a) Show that for any *R*-algebra *T* and any *R*-algebra morphism $f: B \to T$, the composition $f \circ \psi \colon R \to T$ satisfies $(f \circ \psi)(S) \subset T^{\times}$.
 - (b) Conversely, if $g: R \to T$ is a morphism of *R*-algebras, and $g(S) \subset T^{\times}$, show that there exists a morphism $f: B \to T$ of *R*-algebras such that $g = f \circ \psi$.

Hint: either construct f "by hand", or use the characteristic properties of morphisms from polynomial rings and from quotient rings.

(c) Show that the map $f \mapsto f \circ \psi$ gives a bijection

$$\operatorname{Hom}_{R-\operatorname{alg}}(B,T) \longrightarrow \{g \colon R \to T \mid g(S) \subset T^{\times}\}.$$

(d) Deduce that B is isomorphic to $S^{-1}R$, and write an explicit isomorphism $B \to S^{-1}R$.

(4) Let K be a field and let A = K[[X]] be the ring of formal power series with coefficients in K, i.e., of formal expressions

$$a = \sum_{n \ge 0} a_n X^n$$

with the usual rules for sums and products, e.g.

$$\left(\sum_{n\geq 0} a_n X^n\right) \cdot \left(\sum_{n\geq 0} b_n X^n\right) = \sum_{n\geq 0} c_n X^n,$$

where

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0.$$

(a) Show that A is a local ring with maximal ideal

$$m_A = \left\{ \sum_{n=0}^{+\infty} a_n X^n \mid a_0 = 0 \right\}.$$

What is the residue field $k = A/m_A$?

(b) Show that A is principal, in fact that any non-zero ideal I in A is of the form $I = (X^n)$ for some integer $n \ge 0$.

Hint: given a non-zero ideal I, consider an element $a \in I$ with smallest number of coefficients a_0, a_1, \ldots , equal to 0.

- (c) What is the inverse in A of 1 + X?
- (5) Let A be a ring and consider the polynomial ring A[X]. Let $f = \sum_{i=0}^{n} a_i X^i \in A[X]$ be a polynomial. Prove that:
 - (a) f is a unit in A[X] if and only if a_0 is a unit in A and a_1, \ldots, a_n are nilpotent;
 - (b) f is nilpotent if and only if a_0, \ldots, a_n are nilpotent;
 - (c) f is a zero-divisor if and only if there exists $a \neq 0$ in A such that af = 0.

Furthermore, prove that in the ring A[X], the Jacobson radical is equal to the nilradical.

(6) Let A be a ring and let S be a multiplicative subset of A. Prove that S is a multiplicative subset of A[X], and construct an isomorphism of rings

$$S^{-1}(A[X]) \longrightarrow (S^{-1}A)[X].$$