D-MATH
HS 2021
Prof. E. Kowalski

Exercise sheet 3

Commutative Algebra

(1) Let R be a ring and $I \subset R$ the nilradical of R.
a. Show that if R is noetherian, there exists an integer $k \geq 0$ such that $x^{k}=0$ for all $x \in I$.
b. Show that this is not true for all rings.
(2) Let R be a noetherian ring and $S \subset R$ a multiplicative set. Show that $S^{-1} R$ is noetherian. Give an example (where S contains no zerodivisor) where the converse does not hold.
(3) Let R be a ring and M a noetherian R-module. Let

$$
I=\{r \in R \mid r M=\{0\}\} .
$$

Show that the quotient ring R / I is noetherian.
Hint: construct an injective R-linear map $R / I \rightarrow M^{n}$ for some integer $n \geq 0$.
(4) Let R be the local ring $\mathbb{Z}_{p \mathbb{Z}}$.
a. Show that \mathbb{Q} is an R-module.
b. Show that $\mathbb{Q}=J \mathbb{Q}$ where J is the Jacobson radical of R.
(5) Let R be the set of $f \in \mathbf{Q}[X]$ such that $f(\mathbf{Z}) \subset \mathbf{Z}$.
a. Check that the set R is a subring of $\mathbf{Q}[X]$ containing $\mathbf{Z}[X]$.
b. Let $f: \mathbf{Z} \rightarrow \mathbf{Z}$ be a function. If there exists $g \in R$ such that $f(n)=g(n+1)-g(n)$ for all $n \in \mathbf{Z}$, then there is an $f^{\prime} \in R$ so that $f^{\prime}(n)=f(n)$ for all $n \in \mathbb{Z}$.
c. Show that the functions f_{k} defined for $k \geq 0$ by

$$
f_{k}(n)=\binom{n}{k}=\frac{n(n-1) \cdots(n-k+1)}{k!}
$$

are in R, and that R is a free \mathbf{Z}-module with basis $\left(f_{k}\right)_{k \geq 0}$.
d. Show that R is not noetherian.
(6) Let R be a ring and M a noetherian R-module. Let $u: M \rightarrow M$ be an R-linear map. Show that u is surjective if and only if u is an isomorphism.
Hint: consider the submodules $\operatorname{ker}\left(u^{n}\right)$.
(7) Let A be a commutative ring which is not noetherian. Let \mathscr{F} be the set of all ideals of A which are not finitely generated, so that $\mathscr{F} \neq \emptyset$.
a. Prove that \mathscr{F} is an inductive set for the inclusion relation (i.e., any totally ordered subset has an upper-bound). Let P be a maximal element of \mathscr{F}. In the rest of the exercise, we shall prove that P is a (non-finitely generated) prime ideal of A. We argue by contradiction. Let $a, b \in A$ be such that $a b \in P$ while $a \notin P$ and $b \notin P$.
b. Prove that there exist $u_{1}, \ldots, u_{m} \in P$ and $v_{1}, \ldots, v_{n} \in A$ such that $P+(a)=\left(u_{1}, \ldots, u_{m}, a\right)$ and $(P:(a))=\left(v_{1}, \ldots, v_{n}\right)$, where

$$
(P:(a))=\{x \in A \mid x a \in P\} .
$$

c. Prove that $P=\left(u_{1}, \ldots, u_{m}, a v_{1}, \ldots, a v_{n}\right)$. Derive from this contradiction that P is a prime ideal of A.

This proves that a commutative ring is noetherian if and only if every prime ideal is finitely generated, a theorem of I. S. Cohen.

