D-MATH
HS 2021
Prof. E. Kowalski

Exercise sheet 4

(1)Let $\left(e_{1}, e_{2}\right)$ be the canonical basis of \mathbb{R}^{2}, and consider the isomorphism of \mathbb{R}-vector spaces

$$
\begin{aligned}
& \mathbb{R}^{2} \otimes_{\mathbb{R}} \mathbb{R}^{2} \cong \mathbb{R}^{4} \\
& e_{1} \otimes e_{1} \longmapsto f_{1} \\
& e_{1} \otimes e_{2} \longmapsto f_{2} \\
& e_{2} \otimes e_{1} \longmapsto f_{3} \\
& e_{2} \otimes e_{2} \longmapsto f_{4} .
\end{aligned}
$$

a. Show that $a f_{1}+b f_{2}+c f_{3}+d f_{4} \in \mathbb{R}^{4}$ is the image of a pure tensor $x \otimes y \in \mathbb{R}^{2} \otimes_{\mathbb{R}} \mathbb{R}^{2}$ if and only if

$$
a d=b c .
$$

b. Compute the matrix $u_{1} \otimes u_{2}$, where

$$
u_{1}=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)
$$

and

$$
u_{2}=\left(\begin{array}{cc}
-1 & 4 \\
2 & 3
\end{array}\right) .
$$

(2) Show that $2 \otimes 1=0$ in $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$, but $2 \otimes 1 \neq 0$ in $2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$.
(3) Let A be a commutative ring and B an A-algebra via $s: A \rightarrow B$. Let M, M^{\prime} be B-modules. An A-derivation

$$
d: B \longrightarrow M
$$

of M is a morphism of abelian groups such that

$$
\begin{aligned}
d\left(b b^{\prime}\right) & =b d\left(b^{\prime}\right)+b^{\prime} d(b), \\
d(s(a)) & =0
\end{aligned}
$$

for all $b, b^{\prime} \in B, a \in A$.
a. Prove that for any B-linear map $f: M \rightarrow M^{\prime}$, the composition $f \circ d$ is an A-derivation on M^{\prime}.
b. Prove that there exists a universal A-derivation, i.e. a B-module $\Omega_{B / A}$ with an A-derivation

$$
d_{u}: B \longrightarrow \Omega_{B / A}
$$

with the property that for any B-module M and any A-derivation $d: B \rightarrow M$ there is a unique B-linear map $f: \Omega_{B / A} \longrightarrow M$ so that the following diagram commutes:

Hint: Construct $\Omega_{B / A}$ as a quotient of a free module.
(4) Let $M_{1}, M_{2}, N_{1}, N_{2}$ be A-modules.
a. Define an A-linear morphism
$\operatorname{Hom}_{A}\left(M_{1}, N_{1}\right) \otimes_{A} \operatorname{Hom}_{A}\left(M_{2}, N_{2}\right) \xrightarrow{F} \operatorname{Hom}_{A}\left(M_{1} \otimes_{A} M_{2}, N_{1} \otimes_{A} N_{2}\right)$.
b. If $A=K$ is a field and $M_{1}, M_{2}, N_{1}, N_{2}$ are finite dimensional over K, then F is an isomorphism.
c. Consider $A=\mathbb{Z} / 4 \mathbb{Z}, I=2 \mathbb{Z} / 4 \mathbb{Z} \subseteq A$ and $M_{1}=A / I, M_{2}=A$, $N_{1}=A, N_{2}=A / I$. Show that in this case F is not injective and not surjective.
d. Compute the \mathbb{R}-vector space

$$
\mathbb{C}^{n} \otimes_{\mathbb{R}} \mathbb{C}^{m}
$$

for every $m, n \geq 1$.
(5) Let R be a ring and let $M^{\prime}, M, M^{\prime \prime}$ and $N^{\prime}, N, N^{\prime \prime}$ be R-modules with short exact sequences

$$
\begin{gathered}
0 \rightarrow M^{\prime} \xrightarrow{u} M \xrightarrow{v} M^{\prime \prime} \rightarrow 0 \\
0 \rightarrow N^{\prime} \xrightarrow{a} N \xrightarrow{b} N^{\prime \prime} \rightarrow 0
\end{gathered}
$$

denoted (M) and (N) for short.

A morphism $(M) \rightarrow(N)$ is the data of three linear maps $f^{\prime}: M^{\prime} \rightarrow N^{\prime}$, $f: M \rightarrow N, f^{\prime \prime}: M^{\prime \prime} \rightarrow N^{\prime \prime}$ such that the diagram

commutes, i.e. $f \circ u=a \circ f^{\prime}$ and $f^{\prime \prime} \circ v=b \circ f$.
a. Define the identity morphism $(M) \rightarrow(M)$ so that we obtain a category of short exact sequences.
b. Show that any short exact sequence is isomorphic to an exact sequence of the form

$$
0 \rightarrow N \xrightarrow{i} M \xrightarrow{\pi} M / N \rightarrow 0
$$

where i is the inclusion of a submodule and π the canonical projection.
(6) Let R be a ring and let

be a morphism of short exact sequences.
We denote coker $(f)=N / \operatorname{im}(f)$ and similarly for f^{\prime} and $f^{\prime \prime}$.
a. Show that the restriction of u to $\operatorname{ker}\left(f^{\prime}\right)$ is a linear map $u_{1}: \operatorname{ker}\left(f^{\prime}\right) \rightarrow$ $\operatorname{ker}(f)$ and that the restriction of v to $\operatorname{ker}(f)$ is a linear map $v_{1}: \operatorname{ker}(f) \rightarrow \operatorname{ker}\left(f^{\prime \prime}\right)$. Show that

$$
0 \rightarrow \operatorname{ker}\left(f^{\prime}\right) \xrightarrow{u_{1}} \operatorname{ker}(f) \xrightarrow{v_{1}} \operatorname{ker}\left(f^{\prime \prime}\right)
$$

is exact.
b. Show that a induces by passing to the quotient a linear map $a_{1}: \operatorname{coker}\left(f^{\prime}\right) \rightarrow \operatorname{coker}(f)$ and that b induces a linear map $b_{1}: \operatorname{coker}(f) \rightarrow$ $\operatorname{coker}\left(f^{\prime \prime}\right)$. Show that

$$
\operatorname{coker}\left(f^{\prime}\right) \xrightarrow{a_{1}} \operatorname{coker}(f) \xrightarrow{b_{1}} \operatorname{coker}\left(f^{\prime \prime}\right) \rightarrow 0
$$

is exact.
c. Let $m^{\prime \prime} \in \operatorname{ker}\left(f^{\prime \prime}\right)$, let $m \in M$ such that $v(m)=m^{\prime \prime}$. Show that $f(m) \in \operatorname{im}(a)$; let $n^{\prime} \in N^{\prime}$ be such that $a\left(n^{\prime}\right)=f(m)$, and let $\widetilde{n}^{\prime} \in \operatorname{coker}\left(f^{\prime}\right)$ be the class of $n^{\prime} \operatorname{modulo} \operatorname{im}\left(f^{\prime}\right)$ in $\operatorname{coker}\left(f^{\prime}\right)$.
Show that \widetilde{n}^{\prime} does not depend on the choices of m and n^{\prime}. Deduce that the map $m^{\prime \prime} \mapsto \widetilde{n}^{\prime}$ is a well-defined R-linear map δ from $\operatorname{ker}\left(f^{\prime \prime}\right)$ to $\operatorname{coker}\left(f^{\prime}\right)$.
d. Show that the sequence
$0 \rightarrow \operatorname{ker}\left(f^{\prime}\right) \xrightarrow{u_{1}} \operatorname{ker}(f) \xrightarrow{v_{1}} \operatorname{ker}\left(f^{\prime \prime}\right) \xrightarrow{\delta} \operatorname{coker}\left(f^{\prime}\right) \xrightarrow{a_{1}} \operatorname{coker}(f) \xrightarrow{b_{1}} \operatorname{coker}\left(f^{\prime \prime}\right) \rightarrow 0$ is exact.
e. Show that if f^{\prime} and $f^{\prime \prime}$ are isomorphisms, then f is an isomorphism.
f. Show that if f^{\prime} is surjective and f is injective, then $f^{\prime \prime}$ is injective.

