Exercise sheet 5

Commutative Algebra

(1) Let $m \geq 1$ be an integer and let A_{1}, \ldots, A_{m} be non-zero rings. Show that

$$
\operatorname{dim}\left(A_{1} \times \cdots \times A_{m}\right)=\max \left(\operatorname{dim}\left(A_{1}\right), \ldots, \operatorname{dim}\left(A_{m}\right)\right)
$$

(2) a. Let R be a ring. Show that the set of non-principal ideals in R satisfies the conditions of Zorn's Lemma.
b. Let R be a UFD of dimension 1 . Show that all prime ideals of R are principal, and conclude that R is a PID.
(3) Nagata's example of Noetheria domain of infinite dimension.

Let k be a field, and let $A=k\left[X_{n}: n \geq 1\right]$ be the polynomial ring in a countably infinite set of indeterminates. Let $m_{1}>m_{2}>\ldots$ be an increasing sequence of positive integers such that

$$
m_{i+1}-m_{i}>m_{i}-m_{i-1}
$$

for all $i>1$. Let $\mathfrak{p}_{i}=\left(X_{m_{i}+1}, X_{m_{i}+2}, \ldots, X_{m_{i+1}}\right)$ and let S be the complement in A of the union of the prime ideals \mathfrak{p}_{i}. Each \mathfrak{p}_{i} is a prime ideal and therefore S is multiplicatively closed.
a. Show that $\operatorname{ht}\left(S^{-1} \mathfrak{p}_{i}\right)=m_{i+1}-m_{i}$ and deduce that $\operatorname{dim} S^{-1} A=$ ∞.

To show that $S^{-1} A$ is noetherian, use the following.
Lemma. Let A be a ring such that

1. for each maximal ideal $\mathfrak{m} \subseteq A$, the localization $A_{\mathfrak{m}}$ is noetherian;
2. for each $x \in A, x \neq 0$, the set of maximal ideals of A which contain x is finite.

Then A is noetherian.
b. Show that $S^{-1} \mathfrak{p}_{i}$ are maximal ideals of $S^{-1} A$. To see that they are the only maximal ideals, use the prime avoidence lemma: Let J, I_{1}, \ldots, I_{n} be ideals of a ring A such that

$$
J \subseteq \bigcup_{i=1}^{n} I_{i} .
$$

If at least $n-2$ among the I_{i} are prime ideals, then there exists $i \in\{1, \ldots, n\}$ such that $J \subseteq I_{i}$.
c. Show that $S^{-1} A$ satisfies condition 2 of the above lemma, and conclude.
(4) a. Prove that the ring $R=\mathbb{C}[X, Y] /\left(Y^{2}-X^{3}\right)$ is an integral domain of dimension 1 .
b. Prove that R is not integrally closed (in its fraction field K).
c. Show that $p=(X-1, Y-1) /\left(Y^{2}-X^{3}\right)$ is a well-defined maximal ideal in R.
d. Prove that the localization R_{p} is integrally closed (in its fraction field, which is also K).
(5) Let $R=\mathbb{Z}[\sqrt{5}]=\mathbb{Z}[X] /\left(X^{2}-5\right)$.
a. Show that R is a noetherian integral domain of dimension 1 with fraction field equal to $K=\mathbb{Q}(\sqrt{5})$.
b. Show that R is not integrally closed.
c. Show that the integral closure of R in K is $\mathbb{Z}[(1+\sqrt{5}) / 2]$.

