D-MATH
HS 2021
Prof. E. Kowalski

Exercise sheet 6

Commutative Algebra
(1) Let $R=\mathbf{Z}$ and let p be a prime number. We denote by M the R module $\mathbf{Z}[1 / p] / \mathbf{Z}$, contained in \mathbf{Q} / \mathbf{Z}.
a. If $N \subset M$ is a submodule such that $N \neq M$, then show that there exists $m \geq 0$ such that $1 / p^{n} \notin N$ if $n \geq m$. Deduce that N is finite.
b. Show that M is an artinian module.
c. Prove that the length of M is infinite.
(2) Let M, N be A-modules and let $f: M \rightarrow N$ be a morphism. Assume that N has finite length.
a. Show that $\operatorname{ker} f$ and $\operatorname{im} f$ have finite lengths and that

$$
\ell(\operatorname{im} f)+\ell(\operatorname{ker} f)=\ell(M) .
$$

b. Assume that $N=M$. Show that the following conditions are equivalent: (i) f is bijective; (ii) f is injective; (iii) f is surjective.
c. Assume that M is artinian. Show that there exists an integer $n \geq 1$ such that $\operatorname{ker}\left(f^{n}\right)+\operatorname{im}\left(f^{n}\right)=M$.
(3) a. Let M be an A-module of finite length. Show that the canonical morphism

$$
M \longrightarrow \prod_{\mathfrak{m} \subseteq A \text { max. }} M_{\mathfrak{m}}
$$

sending $x \in M$ to the family of fractions $x / 1$, is an isomorphism of A-modules.
b. Assume that A is artinian. Show that the canonical morphism

$$
A \longrightarrow \prod_{\mathfrak{m} \subseteq A \text { max. }} A_{\mathfrak{m}}
$$

is an isomorphism of rings. Hence any commutative artinian ring is a product of local rings.
(4) Let A be a local, noetherian commutative ring and let \mathfrak{m} be its maximal ideal. Let I be an ideal of A. Show that A / I has finite length if and only if there exists an integer $n \geq 0$ such that $\mathfrak{m}^{n} \subseteq I$.
(5) Let R be an artinian local ring with maximal ideal m and residue field $k=R / m$.
a. Prove that if every ideal in R is principal (warning! this does not mean that R is a PID, since R might not be an integral domain), then m / m^{2} is a vector space of dimension ≤ 1 over k.
b. Show that $m=m^{2}$ if and only if R is a field.
c. Suppose that m / m^{2} is a k-vector space of dimension 1 .
(i) Prove that m is a principal ideal.
(ii) Let I be an ideal of R which is non-zero and different from R. Show that there exists $r \geq 0$ such that $I \subset m^{r}$ but I is not contained in m^{r+1}. (Hint: use the Jacobson radical.)
(iii) Conclude that I is principal.
d. Show that if p is a prime number and $n \geq 1$, then $\mathbf{Z} / p^{n} \mathbf{Z}$ is an artinian local ring where every ideal is principal. When is it an integral domain?
e. Let k be a field and let $R=k\left[x^{2}, x^{3}\right] /\left(x^{4}\right)$. Show that R is an artinian local ring; determine the maximal ideal and show that the residue field is naturally isomorphic to k. Prove that $\mathrm{m} / \mathrm{m}^{2}$ has dimension 2 over k.

