D-MATH HS 2021 Prof. E. Kowalski

Exercise sheet 7

Commutative Algebra

- (1) a. Show that the fraction field of $\mathbb{C}[x, y]/(y^2 x^3 x)$ is not a purely transcendental extension of \mathbb{C} . (Hint: show first that if it were, then there would exist polynomials f and g in $\mathbb{C}[T]$ such that $f^2 = g^3 + g$.)
 - b. Show that it is *not* true that any field extension $K \subset L$ can be decomposed in $K \subset E \subset L$ where the extension E/K is algebraic and L/E is purely transcendental.
- (2) Let $K \subset L \subset E$ be fields. Show that

$$\operatorname{trdeg}_{K}(E) = \operatorname{trdeg}_{L}(E) + \operatorname{trdeg}_{K}(L).$$

- (3) Let K be an algebraically closed field and let R_1 and R_2 be finitelygenerated K-algebras which are integral domains. Let $R = R_1 \otimes_K R_2$.
 - a. Show that R is a finitely-generated K-algebra and that $R \neq \{0\}$.
 - b. Show that any $f \in R$ can be expressed in the form

$$f = \sum_i a_i \otimes b_i$$

where $a_i \in R_1$ and $b_i \in R_2$, and where the b_i are linearly independent over K.

c. Let

$$f_1 = \sum_i a_i \otimes b_i \in R, \qquad f_2 = \sum_j c_j \otimes d_j \in R$$

be two elements of R, as in the previous question. Assume that $f_1f_2 = 0$ in R. Let I_1 be the ideal in R_1 generated by (a_i) and I_2 the ideal generated by (c_j) .

For any maximal ideal m of R_1 , prove that either I_1 or I_2 is contained in m. (Hint: show that R_1/m is isomorphic to K and consider the morphism $\pi_m \otimes \operatorname{Id}_{R_2} \colon R \to R_1/m \otimes R_2 \simeq R_2$.)

- d. Deduce that $I_1 \cap I_2 = \{0\}$.
- e. If $f_1 \neq 0$, deduce that $I_2 = 0$, hence that $f_2 = 0$. (So that R is an integral domain.)

- (4) Let $n \ge 1$ and $m \ge 1$ be integers and let f_1, \ldots, f_m be elements of $\mathbb{Z}[X_1, \ldots, X_n]$. Let $\overline{\mathbb{Z}} \subset \mathbb{C}$ be the integral closure of \mathbb{Z} in \mathbb{C} , and let $\overline{\mathbb{Q}} \subset \mathbb{C}$ be the algebraic closure of \mathbb{Q} in \mathbb{C} .
 - a. Show that for any $x \in \overline{\mathbb{Q}}$, there exists an integer $n \ge 1$ such that $nx \in \overline{\mathbb{Z}}$.
 - b. Let $k \geq 1$ be an integer and (y_1, \ldots, y_k) in $\overline{\mathbb{Z}}^k$. Show that for any prime number p, there exists a maximal ideal $m \subset \mathbb{Z}[y_1, \ldots, y_k]$ such that $\mathbb{Z}[y_1, \ldots, y_k]/m$ is a finite extension of \mathbb{F}_p .
 - c. Let $k \geq 1$ be an integer and (y_1, \ldots, y_k) in $\overline{\mathbb{Q}}^k$. Show that there exists an integer $N \geq 1$ such that the ring $\mathbb{Z}[1/N, y_1, \ldots, y_k]$ is an integral extension of $\mathbb{Z}[1/N]$ (which is the localization of \mathbb{Z} at the element N), and that for any prime number p not dividing N, there exists a maximal ideal $m \subset \mathbb{Z}[1/N, y_1, \ldots, y_k]$ such that $\mathbb{Z}[1/N, y_1, \ldots, y_k]/m$ is a finite extension of \mathbb{F}_p .
 - d. Show that the system of equations

$$f_1(x_1,\ldots,x_n)=\cdots=f_m(x_1,\ldots,x_n)=0$$

has a solution in \mathbb{C}^n if and only if it has a solution in $\overline{\mathbb{Q}}^n$.

e. For a prime number p, let $\overline{\mathbb{F}}_p$ be an algebraic closure of the finite field \mathbb{F}_p . Show that the system of equations

$$f_1(x_1,...,x_n) = \cdots = f_m(x_1,...,x_n) = 0$$

has a solution in \mathbb{C}^n if and only if, for all prime numbers p large enough, the system has a solution in $\overline{\mathbb{F}}_p^n$.