D-MATH
HS 2021
Prof. E. Kowalski

Exercise sheet 7

Commutative Algebra

(1) a. Show that the fraction field of $\mathbb{C}[x, y] /\left(y^{2}-x^{3}-x\right)$ is not a purely transcendental extension of \mathbb{C}. (Hint: show first that if it were, then there would exist polynomials f and g in $\mathbb{C}[T]$ such that $f^{2}=g^{3}+g$.)
b. Show that it is not true that any field extension $K \subset L$ can be decomposed in $K \subset E \subset L$ where the extension E / K is algebraic and L / E is purely transcendental.
(2) Let $K \subset L \subset E$ be fields. Show that

$$
\operatorname{trdeg}_{K}(E)=\operatorname{trdeg}_{L}(E)+\operatorname{trdeg}_{K}(L) .
$$

(3) Let K be an algebraically closed field and let R_{1} and R_{2} be finitelygenerated K-algebras which are integral domains. Let $R=R_{1} \otimes_{K} R_{2}$.
a. Show that R is a finitely-generated K-algebra and that $R \neq\{0\}$.
b. Show that any $f \in R$ can be expressed in the form

$$
f=\sum_{i} a_{i} \otimes b_{i}
$$

where $a_{i} \in R_{1}$ and $b_{i} \in R_{2}$, and where the b_{i} are linearly independent over K.
c. Let

$$
f_{1}=\sum_{i} a_{i} \otimes b_{i} \in R, \quad f_{2}=\sum_{j} c_{j} \otimes d_{j} \in R
$$

be two elements of R, as in the previous question. Assume that $f_{1} f_{2}=0$ in R. Let I_{1} be the ideal in R_{1} generated by $\left(a_{i}\right)$ and I_{2} the ideal generated by $\left(c_{j}\right)$.
For any maximal ideal m of R_{1}, prove that either I_{1} or I_{2} is contained in m. (Hint: show that R_{1} / m is isomorphic to K and consider the morphism $\pi_{m} \otimes \operatorname{Id}_{R_{2}}: R \rightarrow R_{1} / m \otimes R_{2} \simeq R_{2}$.)
d. Deduce that $I_{1} \cap I_{2}=\{0\}$.
e. If $f_{1} \neq 0$, deduce that $I_{2}=0$, hence that $f_{2}=0$. (So that R is an integral domain.)
(4) Let $n \geq 1$ and $m \geq 1$ be integers and let f_{1}, \ldots, f_{m} be elements of $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$. Let $\overline{\mathbb{Z}} \subset \mathbb{C}$ be the integral closure of \mathbb{Z} in \mathbb{C}, and let $\overline{\mathbb{Q}} \subset \mathbb{C}$ be the algebraic closure of \mathbb{Q} in \mathbb{C}.
a. Show that for any $x \in \overline{\mathbb{Q}}$, there exists an integer $n \geq 1$ such that $n x \in \overline{\mathbb{Z}}$.
b. Let $k \geq 1$ be an integer and $\left(y_{1}, \ldots, y_{k}\right)$ in $\overline{\mathbb{Z}}^{k}$. Show that for any prime number p, there exists a maximal ideal $m \subset \mathbb{Z}\left[y_{1}, \ldots, y_{k}\right]$ such that $\mathbb{Z}\left[y_{1}, \ldots, y_{k}\right] / m$ is a finite extension of \mathbb{F}_{p}.
c. Let $k \geq 1$ be an integer and $\left(y_{1}, \ldots, y_{k}\right)$ in $\overline{\mathbb{Q}}^{k}$. Show that there exists an integer $N \geq 1$ such that the ring $\mathbb{Z}\left[1 / N, y_{1}, \ldots, y_{k}\right]$ is an integral extension of $\mathbb{Z}[1 / N]$ (which is the localization of \mathbb{Z} at the element N), and that for any prime number p not dividing N, there exists a maximal ideal $m \subset \mathbb{Z}\left[1 / N, y_{1}, \ldots, y_{k}\right]$ such that $\mathbb{Z}\left[1 / N, y_{1}, \ldots, y_{k}\right] / m$ is a finite extension of \mathbb{F}_{p}.
d. Show that the system of equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
$$

has a solution in \mathbb{C}^{n} if and only if it has a solution in $\overline{\mathbb{Q}}^{n}$.
e. For a prime number p, let $\overline{\mathbb{F}}_{p}$ be an algebraic closure of the finite field \mathbb{F}_{p}. Show that the system of equations

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
$$

has a solution in \mathbb{C}^{n} if and only if, for all prime numbers p large enough, the system has a solution in $\overline{\mathbb{F}}_{p}^{n}$.

