D-MATH HS 2021 Prof. E. Kowalski

Solutions 1

Commutative Algebra

(1) a. Clearly G sends the identity Id_X to $Id_{G(X)}$. To check the compatibility with respect to composition of morphisms, let

$$X \xrightarrow{g} Y \xrightarrow{f} Z$$

in \mathscr{D} . Then for all $x \in X$ one has

$$G(f \circ g)(x) = (f \circ g)(x).$$

On the other hand,

$$\mathbb{C}^{(X)} \xrightarrow{G(g)} \mathbb{C}^{(Y)} \xrightarrow{G(f)} \mathbb{C}^{(Z)}$$
$$x \longmapsto g(x) \longmapsto f(g(x)),$$

 \mathbf{SO}

$$(G(f) \circ G(g))(x) = f(g(x))$$

and we get the desired equality.

b. Define

(2)

$$\begin{split} \Phi: \operatorname{Hom}_{\mathscr{C}}(G(X), V) &\longrightarrow \operatorname{Hom}_{\mathscr{D}}(X, F(V)) \\ (f: \mathbb{C}^{(X)} \to V) \longmapsto (\Phi(f): X \to V), \end{split}$$

where $\Phi(f)(x) = f(x)$ for all $x \in X$. The inverse of Φ is given by

$$\Psi : \operatorname{Hom}_{\mathscr{D}}(X, F(V)) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(G(X), V)$$
$$(g : X \to V) \longmapsto (\Psi(g) : \mathbb{C}^{(X)} \to V),$$

where $\Psi(g)(x) = g(x)$ for all $x \in X$ and extended by linearity.

- a. No, because there are maps between non-trivial underlying sets of groups which are not morphisms of groups.
 - b. No, as above, there are maps between the underlying set of topological spaces which are not continuous.

c. No, consider the rings $X = Y = \mathbb{C}[x]$. The unit groups are both isomorphic to \mathbb{C}^{\times} . We call ϕ the map

 $\operatorname{Hom}_{(\operatorname{Rings})}(\mathbb{C}[x],\mathbb{C}[x])\longrightarrow \operatorname{Hom}_{(\operatorname{Grp})}(\mathbb{C}^{\times},\mathbb{C}^{\times}).$

The valuation at 0 morphism in $\operatorname{Hom}_{(\operatorname{Rings})}(\mathbb{C}[x], \mathbb{C}[x])$ fixes the group of unity, as well as of course the identity map. Hence ϕ is not injective.

d. No, the reason lies in the cardinality. Take an infinite dimensional vector space. Then $\dim V^*$ is strictly larger. Hence there is no surjective map

$$\operatorname{Hom}_{\mathbb{C}}(V, W) \longrightarrow \operatorname{Hom}_{\mathbb{C}}(W^*, V^*).$$

e. This is true, the map F is simply the transposition map, a bijection with inverse the transposition itself.

a. No, take the empy set as a counterexample.

- b. Yes, any set can be equipped with the discrete topology, for instance.
- c. No, not every group is the group of unity of a ring. As a classical counterexample, let Z/5Z, the cyclic group of order 5.

Firstly, note that if R is any ring, then the characteristic of R is 2 or R has $-1 \neq 1$. So if a group G doesn't have a central element (i.e. it commutes with every element of R) of order 2, it can only arise as the group of units of a ring of characteristic 2.

Assume there exists R ring with R^* cyclic of order 5. Then R contains the field \mathbb{F}_2 and no any larger field, since such a field would contain a $(2^n - 1)$ -th root of unity, but $(2^n - 1)|5$ iff n = 1. Let $r \in R^* \simeq \mathbb{Z}/5\mathbb{Z}$. Then $r^5 = 1$ and the subring B generated by r is isomorphic to $\mathbb{F}[X]/(f)$ for some $f|X^5 - 1$. Now,

$$X^{5} - 1 = (X - 1)(X^{4} + X^{3} + X^{2} + 1)$$

as a product of irreducible polynomials. Thus either

- f = X 1 and $B = \mathbb{F}_2$,
- $f = X^4 + X^3 + X^2 + 1$ and $B = \mathbb{F}_{2^4}$ with 15 units,
- $f = X^5 1$ and $B = \mathbb{F}_2 \times \mathbb{F}_{2^4}$ with 15 units,

contradicting the existence of just 5 units.

- d. No, consider for instance a vector space of countably infinite dimension over \mathbb{C} , like $\mathbb{C}[X]$. It cannot be the dual of any \mathbb{C} -vector space.
- e. Yes, in the finite dimensional case we have a (non canonical) isomorphism $V \sim V^*$ for any vector space V.

(3)

 $(\mathbf{4})$

a. and b. are straightforward checks.

c. Fully faithfullness:

$$M_{n,m}(\mathbb{C}) \xrightarrow{F} \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^n, \mathbb{C}^m)$$

 $A \longmapsto (x \mapsto Ax).$

The bijectivity of the above map follows by linear algebra, the one to one correspondence between linear maps and matrices associated to fixed basis (e.g. canonical) of \mathbb{C}^n and \mathbb{C}^m .

The functor F is also essentially surjective, since any vector space over \mathbb{C} of dimension n is isomorphic to \mathbb{C}^n .

d. Define

$$\begin{split} G:(fdVec) &\longrightarrow \mathscr{C}\\ V = < \underline{v} >_{\mathbb{C}} \longmapsto \dim V\\ (f: V = < \underline{v} >_{\mathbb{C}} \to W = < \underline{w} >_{\mathbb{C}}) \longmapsto M_{w}^{\underline{v}}(f) \in M_{\dim W, \dim V}(\mathbb{C}), \end{split}$$

where $\underline{v} = v_1, \ldots, v_{\dim V}$ is a fixed basis of V over \mathbb{C} (same for W) and $M_{\underline{w}}^{\underline{v}}(f)$ is the matrix associated to f with respect to the basis \underline{v} and \underline{w} .

The following diagrams commute for every $f: V \to W$ linear map and for every $n, m \in \mathbb{N}$, which means that

$$F \circ G \xrightarrow{\Phi} \mathrm{Id}_{(fdVec)}$$

and

$$G \circ F \xrightarrow{\Psi} \mathrm{Id}_{\mathscr{C}}$$

are natural transformations;