D-MATH HS 2021 Prof. E. Kowalski

Solutions 2

Commutative Algebra

(1) Consider the morphism

$$\varphi: k \longrightarrow \mathbb{Z}/p\mathbb{Z}$$
$$\frac{\overline{a}}{\overline{b}} \longmapsto [a][b]^{-1}.$$

It is well-defined and actually an isomorphism, its inverse is

$$\psi: \mathbb{Z}/p\mathbb{Z} \longrightarrow k$$
$$[a] \longmapsto \frac{\overline{a}}{1}$$

Indeed,

$$\psi \circ \varphi\left(\frac{\overline{a}}{\overline{b}}\right) = \psi([a][b]^{-1}) = \psi([ab^{-1}]) = \overline{\frac{ab^{-1}}{1}} = \overline{\frac{a}{\overline{b}}}$$

and

$$\varphi \circ \psi([a]) = \varphi\left(\frac{\overline{a}}{1}\right) = [a].$$

- (2)
-) a. Injectivity: Let $\frac{a}{1} = 0$ in $S^{-1}R$. Then there exists $s \in S$ so that sa = 0. But s is a unit, so a = 0. Surjectivity: Let $\frac{a}{b} \in S^{-1}R$. Then $\varphi_S(ab^{-1}) = \frac{a}{b}$.
 - b. For every $b \in S$, since φ_S is surjective, there exists $r \in S$ so that $\frac{r}{1} = \frac{1}{b}$. This means that there is an $s \in S$ such that s(rb-1) = 0. So b is invertible with inverse $b^{-1} = sr$.
- (3) The map ψ is given by the composition $\psi: R \stackrel{\iota}{\hookrightarrow} A \stackrel{\pi}{\to} B$.
 - a. For every $s \in S$, in B one has $[s][X_s] = 1$. Furthermore, f is in particular a ring morphism, hence

$$f \circ \psi(s) = f([s]) = f([X_s]^{-1}) = (f([X_s]))^{-1}.$$

 So

$$(f \circ \psi(s))^{-1} = f([X_s]).$$

b. We want f so that the following diagram commutes:

with $g(s) \in T^{\times}$ for all $s \in S$. By using the universal property of *R*-algebras, we can extend *g* to a *R*-algebra morphism

$$g': A \longrightarrow T$$

$$X_s \longmapsto g(s)^{-1},$$

$$R \xrightarrow{\iota} A$$

$$\downarrow g'$$

$$R \xrightarrow{g} T$$

Furthermore, $I \subseteq \ker g'$, so there exists a map f so that the following diagram commutes:

By construction, one gets $f \circ \psi(r) = f([r]) = g(r)$ for all $r \in R$.

- c. Part b. gives the surjectivity of the map $f \mapsto f \circ \psi$. For the injectivity, let $f \circ \psi = f' \circ \psi$. Then for all $r \in R$, f([r]) = f'([r]), but this means that f = f'.
- d. The localization $S^{-1}R$ is an *R*-algebra via the canonical map φ : $R \to S^{-1}R$, and $\psi(S) \subseteq (S^{-1}R)^{\times}$. By the above, there exists $f: B \to S^{-1}R$ such that $\varphi = f \circ \psi$. Hence

$$f \circ \psi(r) = f([r]) = \frac{r}{1}$$

for all $r \in R$. Moreover,

$$f(X_s) = \varphi(s)^{-1} = \frac{1}{s}$$

for all $s \in S$. Claim: f is an isomorphism. Injectivity: if $\frac{r}{1} = 0$ in $S^{-1}R$, then there is an $s \in S$ with sr = 0. One can write $r = r(1 - sX_s)$, so $r \in I$. Surjectivity: Let $\frac{r}{s} \in S^{-1}R$. Then

$$f([rX_s]) = f([r])f([X_s]) = \frac{r}{1} \cdot \frac{1}{s} = \frac{r}{s}.$$

 $(\mathbf{4})$

a. The ideal \mathfrak{m}_A is the ideal generated by X. It is the kernel of the following morphism

$$\varphi: A \longrightarrow K$$
$$\sum_{n \ge 0} a_n X^n \longmapsto a_0.$$

Since $A/\mathfrak{m}_A \simeq K$, the ideal \mathfrak{m}_A is maximal. It is the only maximal ideal of A, since $\mathfrak{m}_A = A \setminus A^{\times}$.

b. For every $p(X) = \sum_{k>0} a_k X^k \in I$, let

$$n_p := \min\{k \ge 0 : a_k \ne 0\},\$$

that is

$$p(X) = X^{n_p} q_p(X),$$

for some $q_p(X) \notin \mathfrak{m}_A$. Pick $p \in I$ so that $n = n_p$ is minimum. Then there is a $q \notin \mathfrak{m}_A$ such that

$$p(X) = X^n q(X).$$

Claim: $I = (X^n)$.

 (\supseteq) Since $q \in A^{\times}, X^n \in I$.

 (\subseteq) Let $r(X) = \sum_{k\geq 0} b_k X^k \in I$. By the choice of n, clearly $n_r \geq n$ and $b_k = 0$ for all k < n. That means that every non-zero term of r has an exponent of n or more, so we can factor out X^n and write r as

$$r(X) = X^n s(X),$$

for some $s \in A$. In particular, $r \in (X^n)$.

c. By the Cauchy product,

$$(1+X)(1-X+X^2-X^3+\dots) = 1,$$

 \mathbf{SO}

$$(1+X)^{-1} = \sum_{n \ge 0} (-1)^n X^n$$

in A.

(5) a. The polynomial f is a unit in A[X] iff there is a $g = \sum_{i=0}^{m} b_i X^i \in A[X]$ such that fg = 1. Then $fg = \sum_{i=0}^{m+n} c_i X^i = 1$ with $c_i = \sum_{k+h=i}^{k+n=i} a_k b_h$. For i = 0, we have $a_0 b_0 = 1$, which implies that $a_0 \in A^{\times}$ For i = m + n we obtain

$$a_n b_m = 0$$

By multiplying c_{n+m-1} with a_n we have

$$a_n(a_{n-1}b_m + a_nb_{m-1}) = 0 \Longrightarrow a_n^2b_{m-1} = 0.$$

Then

$$a_n^2 c_{n+m-2} = a_n^2 (a_{n-2}b_m + a_{n-1}b_{m-1} + a_n b_{m-2}) = 0 \Longrightarrow a_n^3 b_{m-2} = 0$$

and so on (by induction). In particular

$$a_n^{m+1}b_0 = 0.$$

But b_0 is a unit, hence $a_n^{m+1} = 0$ and a_n is nilpotent. Now, consider $f - a_n X^n$ and note that

$$(1 - a_n g X^n)(1 + a_n g X^n + (a_n g X^n)^2 + \dots + (a_n g X^n)^m)$$

= 1 - (a_n g X^n)^{m+1} = 1,

so $1-a_ngX^n$ is a unit. But f is also a unit, hence so is $f-a_nX^n$. By induction and by repeating the above argument we find that a_{n-1} is nilpotent and so on.

b. If a_0, \ldots, a_n are nilpotent, so is f, since $f \in (a_0, \ldots, a_n)A[X]$ and the set of nilpotent elements is an ideal. Conversely, let k > 0 such that $f^k = 0$, then clearly $a_0^k = 0$. Define

$$\begin{cases} f_0 = f \\ f_k = f_{k-1} - a_{k-1} X^{k-1} & \text{for } 1 \le k \le n-1 \end{cases}$$

Assume by induction that a_h is nilpotent for all $h \leq k-1$. Then $f_{k+1} = f - a_0 - a_1 X - \cdots - a_k X^k$ is nilpotent, so there is an ℓ such that $f_{k+1}^{\ell} = 0$, i.e.

$$X^{k\ell}(a_k + \dots + a_n X^{n-k})^\ell = 0,$$

which implies $a_k^{\ell} = 0$.

4

c. Let $g \sum_{i=0}^{m} b_i X^i \in A[X]$, $g \neq 0$ be such that fg = 0 in A[X]. We can assume $b_0 \neq 0$ by observing that Xgf = 0 iff gf = 0. Pick also g of minimum degree.

In particular $a_n b_m = 0$, and clearly $(a_n g)f = 0$. Since $\deg(a_n g) < m$, by the choice of g, $a_n g = 0$. From

$$fg = a_0 + a_1 Xg + \dots + a_{n-1} X^{n-1}g$$

= $a_0 + \dots + a_{n-1} b_m X^{n-1+m} = 0$

one has $a_{n-1}b_m = 0$. Again, $\deg(a_{n-1}g) < m$, so $a_{n-1}g = 0$. By proceeding, obne obtains $a_{n-k}g = 0$ for all k = 0, ..., n. In particular $b_0a_k = 0$ for all k = 0, ..., n. So $b_0f = 0$.

In general,

$$\sqrt{(0)} = \bigcap_{\mathfrak{p} \text{ prime}} \mathfrak{p} \subseteq \bigcap_{\mathfrak{M} \text{ maximal}} \mathfrak{M} = \mathcal{J}(A[X]).$$

If $f \notin \mathfrak{M}$ for some \mathfrak{M} , then

$$\mathfrak{M} \subset (f) + \mathfrak{M}.$$

By the maximality of \mathfrak{M} , $(f) + \mathfrak{M} = (1)$. In particular there exist $g \in A[X], h \in \mathfrak{M}$ such that

$$fg + h = 1,$$

so $1 - fg \in \mathfrak{M}$ is not a unit.

Then, if $f \in \mathcal{J}(A[X])$, for all $g \in A[X]$, $1 - fg \in A[X]^{\times}$. Take g = -X. Thus

$$1 + fX = 1 + a_0X + \dots \in A[X]^{\times}.$$

By part a, the coefficients a_0, \ldots, a_n are nilpotent, and by b f is nilpotent.

6) Define

$$\phi: S^{-1}(A[X]) \longrightarrow (S^{-1}A)[X]$$

by

$$\phi\left(\frac{\sum a_i X^i}{s}\right) = \sum_{i=0}^{\deg f} \frac{a_i}{s} X^i$$

for $\sum a_i X^i \in A[X]$, $s \in S$. Then ϕ is well-defined, since if $\sum a_i X^i/s = \sum b_i X^i/s'$, then there exists $s'' \in S$ such that

$$s''\Big(\sum_{i=0}^{n} (a_i s' - c_i s) X^i\Big) = 0$$

with $c_i = b_i$ if $i \leq m$ and 0 otherwise (assuming $n = \deg(\sum a_i X^i) \geq \deg(\sum b_i X^i) = m$). It turns out that

$$s''(a_is' - c_is) = 0$$

for i = 0, ..., n. Hence $a_i/s = b_i/s'$ in $S^{-1}A$ and

$$\phi\left(\sum a_i X^i/s\right) = \phi\left(\sum b_i X^i/s'\right).$$

It remains to show that ϕ is an isomorphism of rings, which is an easy check.

Alternatively, one can use the universal property of localization. For the ring morphism $\alpha : A[X] \to (S^{-1}A)[X], \ \alpha(\sum a_i X^i) = \sum \frac{a_i}{s} X^i$ there is a unique ϕ such that the following diagram commutes

where Φ is the localization map, $\alpha = \phi \circ \Phi$. On the other hand, since $S^{-1}(A[X])$ is a $S^{-1}A$ -algebra, by the universal property of the polynomial ring, there is a unique morphism

 $\psi: (S^{-1}A)[X] \longrightarrow S^{-1}(A[X])$

sending 1/X to X/1. It's now easy to check (it's enough to do for the indeterminate X) that ψ is the inverse of ϕ .