D-MATH
HS 2021
Prof. E. Kowalski

Solutions 2

Commutative Algebra

(1) Consider the morphism

$$
\begin{aligned}
\varphi: k & \longrightarrow \mathbb{Z} / p \mathbb{Z} \\
\bar{a} & \\
\bar{b} & \longmapsto a][b]^{-1} .
\end{aligned}
$$

It is well-defined and actually an isomorphism, its inverse is

\[

\]

Indeed,

$$
\psi \circ \varphi\left(\frac{\bar{a}}{b}\right)=\psi\left([a][b]^{-1}\right)=\psi\left(\left[a b^{-1}\right]\right)=\frac{\overline{a b^{-1}}}{1}=\frac{\bar{a}}{b}
$$

and

$$
\varphi \circ \psi([a])=\varphi\left(\frac{\bar{a}}{1}\right)=[a] .
$$

(2) a. Injectivity: Let $\frac{a}{1}=0$ in $S^{-1} R$. Then there exists $s \in S$ so that $s a=0$. But s is a unit, so $a=0$.
Surjectivity: Let $\frac{a}{b} \in S^{-1} R$. Then $\varphi_{S}\left(a b^{-1}\right)=\frac{a}{b}$.
b. For every $b \in S$, since φ_{S} is surjective, there exists $r \in S$ so that $\frac{r}{1}=\frac{1}{b}$. This means that there is an $s \in S$ such that $s(r b-1)=0$. So b is invertible with inverse $b^{-1}=s r$.
(3) The map ψ is given by the composition $\psi: R \stackrel{\iota}{\hookrightarrow} A \xrightarrow{\pi} B$.
a. For every $s \in S$, in B one has $[s]\left[X_{s}\right]=1$. Furthermore, f is in particular a ring morphism, hence

$$
f \circ \psi(s)=f([s])=f\left(\left[X_{s}\right]^{-1}\right)=\left(f\left(\left[X_{s}\right]\right)\right)^{-1} .
$$

So

$$
(f \circ \psi(s))^{-1}=f\left(\left[X_{s}\right]\right) .
$$

b. We want f so that the following diagram commutes:

with $g(s) \in T^{\times}$for all $s \in S$.
By using the universal property of R-algebras, we can extend g to a R-algebra morphism

$$
\begin{aligned}
& g^{\prime}: A \longrightarrow T \\
& X_{s} \longmapsto g(s)^{-1},
\end{aligned}
$$

Furthermore, $I \subseteq \operatorname{ker} g^{\prime}$, so there exists a map f so that the following diagram commutes:

By construction, one gets $f \circ \psi(r)=f([r])=g(r)$ for all $r \in R$.
c. Part b. gives the surjectivity of the map $f \mapsto f \circ \psi$. For the injectivity, let $f \circ \psi=f^{\prime} \circ \psi$. Then for all $r \in R, f([r])=f^{\prime}([r])$, but this means that $f=f^{\prime}$.
d. The localization $S^{-1} R$ is an R-algebra via the canonical $\operatorname{map} \varphi$: $R \rightarrow S^{-1} R$, and $\psi(S) \subseteq\left(S^{-1} R\right)^{\times}$. By the above, there exists $f: B \rightarrow S^{-1} R$ such that $\varphi=f \circ \psi$. Hence

$$
f \circ \psi(r)=f([r])=\frac{r}{1}
$$

for all $r \in R$. Moreover,

$$
f\left(X_{s}\right)=\varphi(s)^{-1}=\frac{1}{s}
$$

for all $s \in S$.
Claim: f is an isomorphism.
Injectivity: if $\frac{r}{1}=0$ in $S^{-1} R$, then there is an $s \in S$ with $s r=0$.
One can write $r=r\left(1-s X_{s}\right)$, so $r \in I$.
Surjectivity: Let $\frac{r}{s} \in S^{-1} R$. Then

$$
f\left(\left[r X_{s}\right]\right)=f([r]) f\left(\left[X_{s}\right]\right)=\frac{r}{1} \cdot \frac{1}{s}=\frac{r}{s} .
$$

(4) a. The ideal \mathfrak{m}_{A} is the ideal generated by X. It is the kernel of the following morphism

$$
\begin{aligned}
\varphi: A & \longrightarrow K \\
\sum_{n \geq 0} a_{n} X^{n} & \longmapsto a_{0} .
\end{aligned}
$$

Since $A / \mathfrak{m}_{A} \simeq K$, the ideal \mathfrak{m}_{A} is maximal. It is the only maximal ideal of A, since $\mathfrak{m}_{A}=A \backslash A^{\times}$.
b. For every $p(X)=\sum_{k \geq 0} a_{k} X^{k} \in I$, let

$$
n_{p}:=\min \left\{k \geq 0: a_{k} \neq 0\right\},
$$

that is

$$
p(X)=X^{n_{p}} q_{p}(X)
$$

for some $q_{p}(X) \notin \mathfrak{m}_{A}$. Pick $p \in I$ so that $n=n_{p}$ is minimum. Then there is a $q \notin \mathfrak{m}_{A}$ such that

$$
p(X)=X^{n} q(X)
$$

Claim: $I=\left(X^{n}\right)$.
(〇) Since $q \in A^{\times}, X^{n} \in I$.
(\subseteq) Let $r(X)=\sum_{k \geq 0} b_{k} X^{k} \in I$. By the choice of n, clearly $n_{r} \geq n$ and $b_{k}=0$ for all $k<n$. That means that every non-zero term of r has an exponent of n or more, so we can factor out X^{n} and write r as

$$
r(X)=X^{n} s(X),
$$

for some $s \in A$. In particular, $r \in\left(X^{n}\right)$.
c. By the Cauchy product,

$$
(1+X)\left(1-X+X^{2}-X^{3}+\ldots\right)=1,
$$

so

$$
(1+X)^{-1}=\sum_{n \geq 0}(-1)^{n} X^{n}
$$

in A.
(5) a. The polynomial f is a unit in $A[X]$ iff there is a $g=\sum_{i=0}^{m} b_{i} X^{i} \in$ $A[X]$ such that $f g=1$. Then $f g=\sum_{i=0}^{m+n} c_{i} X^{i}=1$ with $c_{i}=$ $\sum_{k+h=i} a_{k} b_{h}$. For $i=0$, we have $a_{0} b_{0}=1$, which implies that $a_{0} \in A^{\times}$
For $i=m+n$ we obtain

$$
a_{n} b_{m}=0
$$

By multiplying c_{n+m-1} with a_{n} we have

$$
a_{n}\left(a_{n-1} b_{m}+a_{n} b_{m-1}\right)=0 \Longrightarrow a_{n}^{2} b_{m-1}=0
$$

Then
$a_{n}^{2} c_{n+m-2}=a_{n}^{2}\left(a_{n-2} b_{m}+a_{n-1} b_{m-1}+a_{n} b_{m-2}\right)=0 \Longrightarrow a_{n}^{3} b_{m-2}=0$
and so on (by induction). In particular

$$
a_{n}^{m+1} b_{0}=0
$$

But b_{0} is a unit, hence $a_{n}^{m+1}=0$ and a_{n} is nilpotent. Now, consider $f-a_{n} X^{n}$ and note that

$$
\begin{aligned}
\left(1-a_{n} g X^{n}\right)\left(1+a_{n} g X^{n}+\left(a_{n} g X^{n}\right)^{2}\right. & \left.+\cdots+\left(a_{n} g X^{n}\right)^{m}\right) \\
& =1-\left(a_{n} g X^{n}\right)^{m+1}=1
\end{aligned}
$$

so $1-a_{n} g X^{n}$ is a unit. But f is also a unit, hence so is $f-a_{n} X^{n}$. By induction and by repeating the above argument we find that a_{n-1} is nilpotent and so on.
b. If a_{0}, \ldots, a_{n} are nilpotent, so is f, since $f \in\left(a_{0}, \ldots, a_{n}\right) A[X]$ and the set of nilpotent elements is an ideal.
Conversely, let $k>0$ such that $f^{k}=0$, then clearly $a_{0}^{k}=0$. Define

$$
\left\{\begin{array}{l}
f_{0}=f \\
f_{k}=f_{k-1}-a_{k-1} X^{k-1} \quad \text { for } 1 \leq k \leq n-1
\end{array}\right.
$$

Assume by induction that a_{h} is nilpotent for all $h \leq k-1$. Then $f_{k+1}=f-a_{0}-a_{1} X-\cdots-a_{k} X^{k}$ is nilpotent, so there is an ℓ such that $f_{k+1}^{\ell}=0$, i.e.

$$
X^{k \ell}\left(a_{k}+\cdots+a_{n} X^{n-k}\right)^{\ell}=0
$$

which implies $a_{k}^{\ell}=0$.
c. Let $g \sum_{i=0}^{m} b_{i} X^{i} \in A[X], g \neq 0$ be such that $f g=0$ in $A[X]$. We can assume $b_{0} \neq 0$ by observing that $X g f=0$ iff $g f=0$. Pick also g of minimum degree.
In particular $a_{n} b_{m}=0$, and clearly $\left(a_{n} g\right) f=0$. Since $\operatorname{deg}\left(a_{n} g\right)<$ m, by the choice of $g, a_{n} g=0$. From

$$
\begin{aligned}
& f g=a_{0}+a_{1} X g+\cdots+a_{n-1} X^{n-1} g \\
& \quad=a_{0}+\cdots+a_{n-1} b_{m} X^{n-1+m}=0
\end{aligned}
$$

one has $a_{n-1} b_{m}=0$. Again, $\operatorname{deg}\left(a_{n-1} g\right)<m$, so $a_{n-1} g=0$.
By proceeding, obne obtains $a_{n-k} g=0$ for all $k=0, \ldots, n$. In particular $b_{0} a_{k}=0$ for all $k=0, \ldots, n$. So $b_{0} f=0$.
In general,

$$
\sqrt{(0)}=\bigcap_{\mathfrak{p} \text { prime }} \mathfrak{p} \subseteq \bigcap_{\mathfrak{M} \text { maximal }} \mathfrak{M}=J(A[X])
$$

If $f \notin \mathfrak{M}$ for some \mathfrak{M}, then

$$
\mathfrak{M} \subset(f)+\mathfrak{M}
$$

By the maximality of $\mathfrak{M},(f)+\mathfrak{M}=(1)$. In particular there exist $g \in A[X], h \in \mathfrak{M}$ such that

$$
f g+h=1
$$

so $1-f g \in \mathfrak{M}$ is not a unit.

Then, if $f \in \mathrm{~J}(A[X])$, for all $g \in A[X], 1-f g \in A[X]^{\times}$. Take $g=-X$. Thus

$$
1+f X=1+a_{0} X+\cdots \in A[X]^{\times}
$$

By part a, the coefficients a_{0}, \ldots, a_{n} are nilpotent, and by $\mathrm{b} f$ is nilpotent.
(6) Define

$$
\phi: S^{-1}(A[X]) \longrightarrow\left(S^{-1} A\right)[X]
$$

by

$$
\phi\left(\frac{\sum a_{i} X^{i}}{s}\right)=\sum_{i=0}^{\operatorname{deg} f} \frac{a_{i}}{s} X^{i}
$$

for $\sum a_{i} X^{i} \in A[X], s \in S$. Then ϕ is well-defined, since if $\sum a_{i} X^{i} / s=$ $\sum b_{i} X^{i} / s^{\prime}$, then there exists $s^{\prime \prime} \in S$ such that

$$
s^{\prime \prime}\left(\sum_{i=0}^{n}\left(a_{i} s^{\prime}-c_{i} s\right) X^{i}\right)=0
$$

with $c_{i}=b_{i}$ if $i \leq m$ and 0 otherwise (assuming $n=\operatorname{deg}\left(\sum a_{i} X^{i}\right) \geq$ $\left.\operatorname{deg}\left(\sum b_{i} X^{i}\right)=m\right)$. It turns out that

$$
s^{\prime \prime}\left(a_{i} s^{\prime}-c_{i} s\right)=0
$$

for $i=0, \ldots, n$. Hence $a_{i} / s=b_{i} / s^{\prime}$ in $S^{-1} A$ and

$$
\phi\left(\sum a_{i} X^{i} / s\right)=\phi\left(\sum b_{i} X^{i} / s^{\prime}\right)
$$

It remains to show that ϕ is an isomorphism of rings, which is an easy check.
Alternatively, one can use the universal property of localization. For the ring morphism $\alpha: A[X] \rightarrow\left(S^{-1} A\right)[X], \alpha\left(\sum a_{i} X^{i}\right)=\sum \frac{a_{i}}{s} X^{i}$ there is a unique ϕ such that the following diagram commutes

where Φ is the localization map, $\alpha=\phi \circ \Phi$.
On the other hand, since $S^{-1}(A[X])$ is a $S^{-1} A$-algebra, by the universal property of the polynomial ring, there is a unique morphism

$$
\psi:\left(S^{-1} A\right)[X] \longrightarrow S^{-1}(A[X])
$$

sending $1 / X$ to $X / 1$. It's now easy to check (it's enough to do for the indeterminate X) that ψ is the inverse of ϕ.

