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~�
��1 Consider the morphism

ϕ : k −→ Z/pZ
a

b
7−→ [a][b]−1.

It is well-defined and actually an isomorphism, its inverse is

ψ : Z/pZ −→ k

[a] 7−→ a

1
.

Indeed,

ψ ◦ ϕ
(a
b

)
= ψ([a][b]−1) = ψ([ab−1]) =

ab−1

1
=
a

b

and
ϕ ◦ ψ([a]) = ϕ

(a
1

)
= [a].

~�
��2 a. Injectivity: Let a
1 = 0 in S−1R. Then there exists s ∈ S so that

sa = 0. But s is a unit, so a = 0.
Surjectivity: Let a

b ∈ S
−1R. Then ϕS(ab−1) = a

b .

b. For every b ∈ S, since ϕS is surjective, there exists r ∈ S so that
r
1 = 1

b . This means that there is an s ∈ S such that s(rb−1) = 0.
So b is invertible with inverse b−1 = sr.~�
��3 The map ψ is given by the composition ψ : R

ι
↪→ A

π→ B.

a. For every s ∈ S, in B one has [s][Xs] = 1. Furthermore, f is in
particular a ring morphism, hence

f ◦ ψ(s) = f([s]) = f([Xs]
−1) = (f([Xs]))

−1.

So
(f ◦ ψ(s))−1 = f([Xs]).
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b. We want f so that the following diagram commutes:

R T

B

g

f
ψ

with g(s) ∈ T× for all s ∈ S.
By using the universal property of R-algebras, we can extend g
to a R-algebra morphism

g′ : A −→ T

Xs 7−→ g(s)−1,

R A

R T

ι

g

g′

Furthermore, I ⊆ ker g′, so there exists a map f so that the
following diagram commutes:

A T

B

g′

f
π

By construction, one gets f ◦ ψ(r) = f([r]) = g(r) for all r ∈ R.
c. Part b. gives the surjectivity of the map f 7→ f ◦ ψ. For the

injectivity, let f ◦ ψ = f ′ ◦ ψ. Then for all r ∈ R, f([r]) = f ′([r]),
but this means that f = f ′.

d. The localization S−1R is an R-algebra via the canonical map ϕ :
R → S−1R, and ψ(S) ⊆ (S−1R)×. By the above, there exists
f : B → S−1R such that ϕ = f ◦ ψ. Hence

f ◦ ψ(r) = f([r]) =
r

1

for all r ∈ R. Moreover,

f(Xs) = ϕ(s)−1 =
1

s
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for all s ∈ S.
Claim: f is an isomorphism.
Injectivity: if r1 = 0 in S−1R, then there is an s ∈ S with sr = 0.
One can write r = r(1− sXs), so r ∈ I.
Surjectivity: Let r

s ∈ S
−1R. Then

f([rXs]) = f([r])f([Xs]) =
r

1
· 1

s
=
r

s
.

~�
��4 a. The ideal mA is the ideal generated by X. It is the kernel of the
following morphism

ϕ : A −→ K∑
n≥0

anX
n 7−→ a0.

Since A/mA ' K, the ideal mA is maximal. It is the only maximal
ideal of A, since mA = A \A×.

b. For every p(X) =
∑

k≥0 akX
k ∈ I, let

np := min{k ≥ 0 : ak 6= 0},

that is
p(X) = Xnpqp(X),

for some qp(X) /∈ mA. Pick p ∈ I so that n = np is minimum.
Then there is a q /∈ mA such that

p(X) = Xnq(X).

Claim: I = (Xn).
(⊇) Since q ∈ A×, Xn ∈ I.
(⊆) Let r(X) =

∑
k≥0 bkX

k ∈ I. By the choice of n, clearly
nr ≥ n and bk = 0 for all k < n. That means that every non-zero
term of r has an exponent of n or more, so we can factor out Xn

and write r as
r(X) = Xns(X),

for some s ∈ A. In particular, r ∈ (Xn).
c. By the Cauchy product,

(1 +X)(1−X +X2 −X3 + . . . ) = 1,

so
(1 +X)−1 =

∑
n≥0

(−1)nXn

in A.
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~�
��5 a. The polynomial f is a unit in A[X] iff there is a g =
∑m

i=0 biX
i ∈

A[X] such that fg = 1. Then fg =
∑m+n

i=0 ciX
i = 1 with ci =∑

k+h=i akbh. For i = 0, we have a0b0 = 1, which implies that
a0 ∈ A×
For i = m+ n we obtain

anbm = 0.

By multiplying cn+m−1 with an we have

an(an−1bm + anbm−1) = 0 =⇒ a2nbm−1 = 0.

Then

a2ncn+m−2 = a2n(an−2bm+an−1bm−1+anbm−2) = 0 =⇒ a3nbm−2 = 0

and so on (by induction). In particular

am+1
n b0 = 0.

But b0 is a unit, hence am+1
n = 0 and an is nilpotent.

Now, consider f − anXn and note that

(1− angXn)(1 + angX
n + (angX

n)2 + · · ·+ (angX
n)m)

= 1− (angX
n)m+1 = 1,

so 1−angXn is a unit. But f is also a unit, hence so is f−anXn.
By induction and by repeating the above argument we find that
an−1 is nilpotent and so on.

b. If a0, . . . , an are nilpotent, so is f , since f ∈ (a0, . . . , an)A[X] and
the set of nilpotent elements is an ideal.
Conversely, let k > 0 such that fk = 0, then clearly ak0 = 0.
Define {

f0 = f

fk = fk−1 − ak−1Xk−1 for 1 ≤ k ≤ n− 1.

Assume by induction that ah is nilpotent for all h ≤ k− 1. Then
fk+1 = f − a0 − a1X − · · · − akXk is nilpotent, so there is an `
such that f `k+1 = 0, i.e.

Xk`(ak + · · ·+ anX
n−k)` = 0,

which implies a`k = 0.
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c. Let g
∑m

i=0 biX
i ∈ A[X], g 6= 0 be such that fg = 0 in A[X]. We

can assume b0 6= 0 by observing that Xgf = 0 iff gf = 0. Pick
also g of minimum degree.
In particular anbm = 0, and clearly (ang)f = 0. Since deg(ang) <
m, by the choice of g, ang = 0. From

fg = a0 + a1Xg + · · ·+ an−1X
n−1g

= a0 + · · ·+ an−1bmX
n−1+m = 0

one has an−1bm = 0. Again, deg(an−1g) < m, so an−1g = 0.
By proceeding, obne obtains an−kg = 0 for all k = 0, . . . , n. In
particular b0ak = 0 for all k = 0, . . . , n. So b0f = 0.

In general, √
(0) =

⋂
p prime

p ⊆
⋂

M maximal

M = J(A[X]).

If f /∈M for some M, then

M ⊂ (f) + M.

By the maximality of M, (f) + M = (1). In particular there exist
g ∈ A[X], h ∈M such that

fg + h = 1,

so 1− fg ∈M is not a unit.

Then, if f ∈ J(A[X]), for all g ∈ A[X], 1−fg ∈ A[X]×. Take g = −X.
Thus

1 + fX = 1 + a0X + · · · ∈ A[X]×.

By part a, the coefficients a0, . . . , an are nilpotent, and by b f is nilpo-
tent.~�
��6 Define

φ : S−1(A[X]) −→ (S−1A)[X]

by

φ
(∑ aiX

i

s

)
=

deg f∑
i=0

ai
s
Xi

for
∑
aiX

i ∈ A[X], s ∈ S. Then φ is well-defined, since if
∑
aiX

i/s =∑
biX

i/s′, then there exists s′′ ∈ S such that

s′′
( n∑
i=0

(ais
′ − cis)Xi

)
= 0
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with ci = bi if i ≤ m and 0 otherwise (assuming n = deg(
∑
aiX

i) ≥
deg(

∑
biX

i) = m). It turns out that

s′′(ais
′ − cis) = 0

for i = 0, . . . , n. Hence ai/s = bi/s
′ in S−1A and

φ
(∑

aiX
i/s
)

= φ
(∑

biX
i/s′
)
.

It remains to show that φ is an isomorphism of rings, which is an easy
check.
Alternatively, one can use the universal property of localization. For
the ring morphism α : A[X] → (S−1A)[X], α(

∑
aiX

i) =
∑ ai

s X
i

there is a unique φ such that the following diagram commutes

A[X] (S−1A)[X]

S−1(A[X])

α

φ
Φ

where Φ is the localization map, α = φ ◦ Φ.
On the other hand, since S−1(A[X]) is a S−1A-algebra, by the universal
property of the polynomial ring, there is a unique morphism

ψ : (S−1A)[X] −→ S−1(A[X])

sending 1/X to X/1. It’s now easy to check (it’s enough to do for the
indeterminate X) that ψ is the inverse of φ.


