D-MATH
HS 2021
Prof. E. Kowalski

Solutions 3

Commutative Algebra
(1) a. The ideal I is finitely generated, pick generators $x_{1}, \ldots x_{m}$ and $k_{1}, \ldots, k_{m} \in \mathbb{N}$ so that $x_{i}^{k_{i}}=0$ for all i. Let

$$
\ell:=\max _{i=1, \ldots, m} k_{i},
$$

so that $x_{i}^{\ell}=0$ for all i.
Let $x=\sum_{i=1}^{m} r_{i} x_{i} \in I, r_{i} \in R$. Then
$x^{m \ell} \in\left(x_{1}^{i_{1}}, \ldots, x_{m}^{i_{m}}: i_{j} \geq 0, i_{1}+\cdots+i_{m}=\ell m\right) \subseteq\left(x_{1}^{\ell}, \ldots, x_{m}^{\ell}\right)=0$.
Take $k=m \ell$.
b. Consider $R=\mathbb{C}\left[X_{n}: n \geq 1\right] /\left(X_{n}^{n}: n \geq 1\right)$. The nilradical of R is thge maximal ideal $I=\left(X_{n}: n \geq 1\right)$, but $I^{n} \neq 0$ for all $n \geq 1$.
(2) The proper ideals of $S^{-1} R$ are of the form $I\left(S^{-1} R\right)$, where I is an ideal of $R, I \cap S=\emptyset$. Note that if $I=\left(x_{1}, \ldots, x_{m}\right)$ then $I\left(S^{-1} R\right)=$ $\left(\frac{x_{1}}{1}, \ldots, \frac{x_{m}}{1}\right)$, so it's finitely generated.
As a counterexample, pick any non-noetherian integral domain and it's fraction field (which is noetherian, since it's a field).
e.g. $R=\mathbb{C}\left[X_{n}: n \geq 1\right]$.
(3) Let $\varphi: R \longrightarrow M^{n}$ defined by $\varphi(x)=\left(x m_{1}, \ldots, x m_{n}\right)$ for all $x \in R$, where m_{1}, \ldots, m_{n} are the generators of M over A. The kernel of φ is precisely $(0: M)=I$, so there is an embedding

$$
R / I \hookrightarrow M^{n} .
$$

Now, M is noetherian, then M^{n} is noetherian and so is R / I.
(4) a. We know \mathbb{Q} is a \mathbb{Z}-module. By localizeing at the prime $p \mathbb{Z}$, one has that $\mathbb{Q}_{p \mathbb{Z}}$ has a structure of $\mathbb{Z}_{p \mathbb{Z}}$-module. But $\mathbb{Q}_{p \mathbb{Z}}$ is isomorphic to \mathbb{Q}.
b. The ring $\mathbb{Z}_{p \mathbb{Z}}$ is a local ring with maximal ideal $p \mathbb{Z}\left(\mathbb{Z}_{p \mathbb{Z}}\right)$. Thus $J=p \mathbb{Z}\left(\mathbb{Z}_{p \mathbb{Z}}\right)$. For all $\frac{r}{s} \in \mathbb{Q}$, write

$$
\frac{r}{s}=\frac{p^{R}}{p^{S}} \cdot \frac{r^{\prime}}{s^{\prime}},
$$

where $p \nmid r^{\prime}$ and $p \nmid s^{\prime}$. Then one can write

$$
\frac{r}{s}=\frac{a}{b} \cdot \frac{r_{1}}{s_{1}}
$$

with

$$
\begin{cases}a=p^{R}, b=1, r_{1}=r^{\prime}, s_{1}=s & \text { if } R \geq 1 \\ a=p, b=s^{\prime}, r_{1}=r, s_{1}=p^{S+1} & \text { if } R=0\end{cases}
$$

In particular $\frac{a}{b} \in p \mathbb{Z}\left(\mathbb{Z}_{p \mathbb{Z}}\right)$.
(5) a. This is a straightforward check.
b. Let $g(X)=a_{t} X^{t}+\cdots+a_{0} \in \mathbb{Q}[X]$. Then

$$
f(n)=\left(t+a_{t-1}\right) n^{t-1}+\ldots
$$

is a polynomial in n for all $n \in \mathbb{Z}$. So $f^{\prime}(X):=\left(t+a_{t-1}\right) X^{t-1}+\ldots$ is in R and $f^{\prime}(n)=f(n)$ for all $n \in \mathbb{Z}$.
c. The binomial coefficients are integers. $\binom{n}{k}$ has integral values also for negative integers n, since

$$
\binom{-n}{k}=(-1)^{k}\binom{n+k-1}{k} .
$$

Let $f \in R$; we proceed by induction over $d:=\operatorname{deg} f$. If $d=0$, then $f(X)=n \in \mathbb{Z}$, so

$$
f(X)=n\binom{X}{0}
$$

Assume now that all polynomials in R of degree $<d$ can be written as a combination with coefficients in \mathbb{Z} of $\left(f_{k}\right)_{k \geq 0}$. Write

$$
f(X)=\frac{a_{d}}{b_{d}} X^{d}+\sum_{i=0}^{d-1} \frac{a_{i}}{b_{i}} X^{i}
$$

One has that

$$
b_{d} f(X)-a_{d} d!\binom{X}{d}
$$

is in R and its degree is $\leq d$. By induction, there are integers n_{j} so that

$$
\begin{gathered}
b_{d} f(X)-a_{d} d!\binom{X}{d}=\sum_{j=0}^{d-1} n_{j}\binom{X}{j} \\
\Longrightarrow f(X)=\frac{a_{d}}{b_{d}} d!\binom{X}{d}+\frac{1}{b_{d}} \sum_{j=0}^{d-1} n_{j}\binom{X}{j} .
\end{gathered}
$$

Note that $f(0)=\frac{n_{0}}{b_{d}}$, so $b_{d} \mid n_{0} ; f(1)=\frac{n_{1}}{b_{d}}+\frac{n_{0}}{b_{d}}$, so $b_{d} \mid n_{1}$. Also, $f(d-1)=\sum_{j=0}^{d-1} \frac{n_{j}}{b_{d}}\binom{d-1}{j}$, by induction one gets that $b_{d} \mid n_{j}$ for all $j=0, \ldots, d-1$. Since $f(d)=\frac{a_{d}}{b_{d}} d!+\frac{1}{b_{d}} \sum_{j=0}^{d-1} n_{j}\binom{d}{j}$ and the second summand is an integer, one gets that $\frac{a_{d}}{b_{d}} d!$ is an integer as well. So $\left.f \in<f_{k}: k \geq 0\right\rangle_{\mathbb{Z}}$ and we conclude by induction.
d. \mathbb{Z} is noetherian, but R is not finitely generated over \mathbb{Z}, so it is not noetherian.
(6) Consider the ascendent chain

$$
\operatorname{ker}(u) \subseteq \operatorname{ker}\left(u^{2}\right) \subseteq \cdots \subseteq \operatorname{ker}\left(u^{n}\right) \subseteq \ldots
$$

Since M is noetherian, there exists $n \geq 1$ such that $\operatorname{ker}\left(u^{n}\right)=\operatorname{ker}\left(n^{n+1}\right)$. In particular, if $m \in M$ is so that $u\left(u^{n}(m)\right)=0$, then $u^{n}(m)=0$. Since u (and hence u^{n}) is surjective, we conclude that u is also injective.
(7) a. Let \mathscr{F}_{0} be a totally ordered subset of \mathscr{F}. The maximum of \mathscr{F}_{0} is $\bigcup_{I \in \mathscr{F}_{0}} I$. by Zorn's Lemmma, \mathscr{F} has a maximal element P.
b. The ideal $P+(a) \supset P$, so $P+(a) \notin \mathscr{F}$ by the maximality of P. This means that $P+(a)$ is finitely generated,

$$
P+(a)=\left(u_{1}, \ldots, u_{m}, a\right)
$$

where $u_{1}, \ldots, u_{m} \in P$.
Also, $P \subseteq(P: a)$ and the inclusion is strict $(b \in(P: a)$ and $b \notin P)$. As above, we have that ($P: a$) is finitely generated,

$$
(P: a)=\left(v_{1}, \ldots, v_{n}\right)
$$

with $v_{1}, \ldots, v_{n} \in A$.
c. The inclusion " \supseteq " is clear by the above. On the other hand, if $x \in P$, we can write $x+a \in P+(a)$ as

$$
x+a=\sum_{i=1}^{m} a_{i} u_{i}+y a,
$$

where $a_{i}, y \in A$. Then $1-y \in(P: a)$, since

$$
(1-y) a=\sum a_{i} u_{i}-x \in P
$$

hence

$$
1-y=\sum_{i=1}^{n} c_{i} v_{i}
$$

for some $c_{i} \in A$. By multiplying both sides by a we get

$$
x=\sum a_{i} u_{i}-\sum c_{i} v_{i} a .
$$

Thus P is finitely generated, a contradiction.

