D-MATH
HS 2021
Prof. E. Kowalski

Solutions 4

(1) a. Let $x=\sum_{i=1}^{2} x^{i} e_{i}$ and $y=\sum_{i=1}^{2} y^{i} e_{i}$. Then $x \otimes y=\sum_{i, j} x^{i} y^{i} e_{i} \otimes$ e_{j}. By applying the isomorphism ϕ one has

$$
\begin{aligned}
\phi(x \otimes y) & =\sum_{i, j} x^{i} y^{i} \phi\left(e_{i} \otimes e_{j}\right) \\
& =x^{1} y^{1} f_{1}+x^{1} y^{2} f_{2}+x^{2} y^{1} f_{3}+x^{2} y^{2} f_{4} .
\end{aligned}
$$

Hence $\phi(x \otimes y)=a f_{1}+b f_{2}+c f_{3}+d f_{4}$ iff

$$
\begin{array}{ll}
x^{1} y^{1}=a & x^{1} y^{2}=b \\
x^{2} y^{1}=c & x^{2} y^{2}=d,
\end{array}
$$

which implies $a d=b c$. On the other hand, if $a d=b c, a, b \neq 0$, pick $x^{1}=1, x^{2}=c / a=d / b, y^{1}=a$ and $y^{2}=b$. Similarly for the other possibilities for a, b, c, d.
b. Let $u=u_{1} \otimes u_{2}: \mathbb{R}^{2} \otimes \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \otimes \mathbb{R}^{2}$. Then the matrix of u is given by the components of $u\left(f_{i}\right)$ with respect to the basis $\left(f_{i}\right)_{i}$:

$$
\begin{aligned}
& u\left(e_{1} \otimes e_{1}\right)=u_{1}\left(e_{1}\right) \otimes u_{2}\left(e_{1}\right)=(1,0) \otimes(-1,2)=-f_{1}+2 f_{2} \\
& u\left(e_{1} \otimes e_{2}\right)=4 f_{1}+3 f_{2} \\
& u\left(e_{2} \otimes e_{1}\right)=-2 f_{1}+4 f_{2}-3 f_{3}+6 f_{4} \\
& u\left(e_{2} \otimes e_{2}\right)=8 f_{1}+6 f_{2}+12 f_{3}+9 f_{4} .
\end{aligned}
$$

Therefore

$$
u=\left(\begin{array}{cccc}
-1 & 4 & -2 & 8 \\
2 & 3 & 4 & 6 \\
0 & 0 & -3 & 12 \\
0 & 0 & 6 & 9
\end{array}\right)
$$

(2) $\operatorname{In} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$ one has

$$
2 \otimes 1=1 \otimes 2 \cdot 1=1 \otimes 0=0 .
$$

In general, for an A-module M we have a canonical isomorphism of A-modules

$$
\begin{aligned}
\phi: M \otimes_{A} A / I & \longrightarrow M / I M \\
m \otimes a & \longmapsto a m \quad \bmod I M .
\end{aligned}
$$

So in our case

$$
2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z} \simeq 2 \mathbb{Z} /(2) 2 \mathbb{Z} \simeq 2 \mathbb{Z} / 4 \mathbb{Z} ;
$$

via $\phi, 2 \otimes 1$ is sent to 2 in $2 \mathbb{Z} / 4 \mathbb{Z}$, which is not 0 .
(3) a. The map $f \circ d: B \rightarrow M^{\prime}$ is an A-derivation, since, using the B-linearity of f,

$$
\begin{aligned}
f\left(d\left(b b^{\prime}\right)\right) & =f\left(b d b^{\prime}+b^{\prime} d b\right)=b f\left(d b^{\prime}\right)+b^{\prime} f(d b), \\
f(d(s(a))) & =f(0)=0
\end{aligned}
$$

for all $b, b^{\prime} \in B, a \in A$.
b. Consider the B-module

$$
\Omega:=B^{d B}=\bigoplus_{d b \in d B} B .
$$

Define

$$
\Omega_{B / A}:=\Omega / \Omega^{\prime},
$$

where Ω^{\prime} is the B-submodule generated by the elements

$$
\begin{aligned}
& d\left(b b^{\prime}\right)-b d b^{\prime}-b^{\prime} d b, \\
& d\left(b+b^{\prime}\right)-d b-d b^{\prime}, \\
& d(s(a))
\end{aligned}
$$

for all $b, b^{\prime} \in B, a \in A$. Let

$$
\begin{aligned}
d_{u}: B & \longrightarrow \Omega_{B / A} \\
b & \longmapsto[d b]
\end{aligned}
$$

and let

$$
\begin{aligned}
f: \Omega_{B / A} & \longrightarrow M \\
\quad[d b] & \longmapsto d b .
\end{aligned}
$$

Then f is well-defined and has the desired properties. For the uniqueness, note that the universal derivation d_{u} is surjective, so f is determined by $f \circ d_{u}=d$.

To conclude, $\Omega_{B / A}$ is unique up to B-isomorphism: consider $M=$ $\Omega_{B / A}, f=d_{u}$ and let $\Omega_{B / A}^{\prime}, d_{u}^{\prime}: B \rightarrow \Omega_{B / A}^{\prime}$ be another solution of the universal problem. Let $f^{\prime}: \Omega_{B / A}^{\prime} \rightarrow \Omega_{B / A}$ be the B-linear map such that $f^{\prime} \circ d_{u}^{\prime}=d_{u}$. By the above property of $\Omega_{B / A}$, there is also a B-linear f so that $f \circ d_{u}=d_{u}^{\prime}$. Therefore

$$
f^{\prime} \circ f \circ d_{u}=d_{u},
$$

which implies $f^{\prime} \circ f=1$ by the surjectivity of d_{u}.
(4) a. The map F is induced by the corresponding A - bilinear map, and it's given by

$$
F\left(f_{1} \otimes f_{2}\right)=\left(m_{1} \otimes m_{2} \mapsto f_{1}\left(m_{1}\right) \otimes f_{2}\left(m_{2}\right)\right)
$$

for every $f_{1}, f_{2}, m_{1}, m_{2}$ in the corresponding modules.
b. Since the vector spaces $\operatorname{Hom}_{K}\left(M_{1}, N_{1}\right) \otimes_{K} \operatorname{Hom}_{K}\left(M_{2}, N_{2}\right)$ and $\operatorname{Hom}_{K}\left(M_{1} \otimes_{K} M_{2}, N_{1} \otimes_{K} N_{2}\right)$ have the same dimension, it's enough to check the injectivity of F. Let $f_{1} \in \operatorname{Hom}_{K}\left(M_{1}, N_{1}\right), f_{2} \in$ $\operatorname{Hom}_{K}\left(M_{2}, N_{2}\right)$ such that

$$
f_{1}\left(m_{1}\right) \otimes f_{2}\left(m_{2}\right)=0 \quad \forall m_{1} \in M_{1}, m_{2} \in M_{2} .
$$

Observe that if $f_{i}\left(m_{i}\right) \neq 0(i=1,2)$, then $f_{i}\left(m_{i}\right)$ is part of a basis of N_{i}, so $f_{1}\left(m_{1}\right) \otimes f_{2}\left(m_{2}\right)$ is part of a basis of $N_{1} \otimes_{K} N_{2}$, and it cannot be zero. On the other hand if $f_{1}\left(m_{1}\right)=0$ or $f_{2}\left(m_{2}\right)=0$, then the tensor product is 0 . Since this holds for all m_{1}, m_{2}, we conclude that $f_{1}=0$ or $f_{2}=0$, so $f_{1} \otimes f_{2}=0$.
c. In general, for an A-module M and an ideal I of A, we have

$$
\operatorname{Hom}_{A}(A / I, M) \simeq\left(0:_{M} I\right),
$$

and by the A-freeness of A,

$$
\operatorname{Hom}_{A}(A, M) \simeq M .
$$

Hence we have an ismorphism

$$
\begin{aligned}
& \operatorname{Hom}_{\mathbb{Z} / 4 \mathbb{Z}}((\mathbb{Z} / 4 \mathbb{Z}) /(2 \mathbb{Z} / 4 \mathbb{Z}), \mathbb{Z} / 4 \mathbb{Z}) \otimes_{\mathbb{Z} / 4 \mathbb{Z}} \operatorname{Hom}_{\mathbb{Z}} / 4 \mathbb{Z} \\
& \simeq 2 \mathbb{Z} / 4 \mathbb{Z},\left(\mathbb{Z} \otimes_{\mathbb{Z} / 4 \mathbb{Z}}(\mathbb{Z} / 4 \mathbb{Z}) /(2 \mathbb{Z}) / 4 \mathbb{Z}\right)
\end{aligned}
$$

given by

$$
\phi \otimes \psi \longmapsto \phi(1) \otimes \psi(1) .
$$

By a similar argument,

$$
\begin{aligned}
& \quad \operatorname{Hom}_{\mathbb{Z} / 4 \mathbb{Z}}((\mathbb{Z} / 4 \mathbb{Z}) /(2 \mathbb{Z} / 4 \mathbb{Z})) \\
& \begin{aligned}
\otimes_{\mathbb{Z} / 4 \mathbb{Z}} \operatorname{Hom}_{\mathbb{Z} / 4 \mathbb{Z}}((\mathbb{Z} / 4 \mathbb{Z}) /(2 \mathbb{Z} / 4 \mathbb{Z}) & \left.\otimes_{\mathbb{Z} / 4 \mathbb{Z}} \mathbb{Z} / 4 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z} \otimes_{\mathbb{Z} / 4 \mathbb{Z}}(\mathbb{Z} / 4 \mathbb{Z}) /(2 \mathbb{Z} / 4 \mathbb{Z})\right) \\
& \simeq \mathbb{Z} / 4 \mathbb{Z} \otimes_{\mathbb{Z} / 4 \mathbb{Z}}(\mathbb{Z} / 4 \mathbb{Z}) /(2 \mathbb{Z} / 4 \mathbb{Z})
\end{aligned}
\end{aligned}
$$

given by

$$
\alpha \longmapsto \alpha(1 \otimes 1) .
$$

Moreover,

$$
2 \mathbb{Z} / 4 \mathbb{Z} \otimes_{\mathbb{Z} / 4 \mathbb{Z}}(\mathbb{Z} / 4 \mathbb{Z}) /(2 \mathbb{Z} / 4 \mathbb{Z}) \simeq 2 \mathbb{Z} / 4 \mathbb{Z}
$$

via

$$
2 \otimes 1 \longmapsto 2 .
$$

The corresponding map F^{\prime} induced by F sends 2 to $2 \otimes 1$, which is 0 in $\mathbb{Z} / 4 \mathbb{Z} \otimes_{\mathbb{Z} / 4 \mathbb{Z}}(\mathbb{Z} / 4 \mathbb{Z}) /(2 \mathbb{Z} / 4 \mathbb{Z})$. Clearly $1 \otimes 1 \notin \operatorname{im} F^{\prime}$.
d. As an \mathbb{R}-vector space, $\mathbb{C} \simeq \mathbb{R} \oplus \mathbb{R}$; since the tensor product commutes with finite direct sums we have isomorphisms of \mathbb{R}-vector spaces

$$
\begin{aligned}
\mathbb{C}^{n} \otimes_{\mathbb{R}} \mathbb{C}^{n} & \simeq \mathbb{R}^{\oplus 2 n} \otimes_{\mathbb{R}} \mathbb{C}^{m} \\
& \simeq\left(\mathbb{R} \otimes_{\mathbb{R}} \mathbb{C}^{m}\right)^{\oplus 2 n} \\
& \simeq\left(\mathbb{C}^{m}\right)^{2 n} \\
& \simeq \mathbb{R}^{4 m n} .
\end{aligned}
$$

(5) a. Take $\left(f^{\prime}, f, f^{\prime \prime}\right)=(\mathrm{id}, \mathrm{id}, \mathrm{id}):(M) \rightarrow(M)$ and the composition of $\left(f^{\prime}, f, f^{\prime \prime}\right):(M) \rightarrow(N)$ and $\left(g^{\prime}, g, g^{\prime \prime}\right):(N) \rightarrow(L)$ given by
$\left(g^{\prime}, g, g^{\prime \prime}\right) \circ\left(f^{\prime}, f, f^{\prime \prime}\right)=\left(\left(g^{\prime} \circ f^{\prime}\right),(g \circ f),\left(g^{\prime \prime} \circ f^{\prime \prime}\right)\right):(M) \longrightarrow(L)$.
b. Let

Since u is injective, $\operatorname{ker} v=\operatorname{im} u$ and v is surjective, all the above vertical maps are isomorphisms.
(6) a. Let $m^{\prime} \in \operatorname{ker} f^{\prime}$, then

$$
f \circ u\left(m^{\prime}\right)=a \circ f^{\prime}\left(m^{\prime}\right)=0,
$$

so $u_{1}\left(m^{\prime}\right) \in \operatorname{ker} f$. Same for v_{1}.
Furthermore, if $m^{\prime} \in \operatorname{ker} f^{\prime}$, then $v\left(u\left(m^{\prime}\right)\right)=0$, since (M) is exact.
b. Since $a \circ f^{\prime}=f \circ u$, for all $m^{\prime} \in M^{\prime}$,

$$
a \circ f^{\prime}\left(m^{\prime}\right) \in \operatorname{im} f .
$$

Hence a induces a map

$$
\text { coker } f^{\prime} \longrightarrow \text { coker } f .
$$

The exactness of (N) implies the claim.
c. Since

$$
b \circ f(m)=f^{\prime \prime} \circ v(m)=f^{\prime \prime}\left(m^{\prime \prime}\right)=0,
$$

one gets

$$
f(m) \in \operatorname{ker} b=\operatorname{im} a .
$$

Let $m^{\prime \prime}=v(m)=v\left(m_{1}\right)$. Then $f\left(m_{1}\right) \in \operatorname{im} a$, so write $f\left(m_{1}\right)=$ $a\left(n_{1}^{\prime}\right)$. The claim is that $\widetilde{n}^{\prime}=\widetilde{n_{1}}$ in coker f^{\prime}, equivalent to $n^{\prime}-$ $n_{1} \in \operatorname{im} f^{\prime}:$ $m-m_{1} \in \operatorname{ker} v=\operatorname{im} u$, so $m-m_{1}=u\left(m^{\prime}\right)$ for some $m^{\prime} \in M^{\prime}$. $f\left(m-m_{1}\right)=f(m)-f\left(m_{1}\right)=a\left(n^{\prime}-n_{1}^{\prime}\right)=f \circ u\left(m^{\prime}\right)=a \circ f^{\prime}\left(m^{\prime}\right)$. But a is injective, so $n^{\prime}-n_{1}^{\prime}=f^{\prime}\left(m^{\prime}\right)$.
d. It remains to check the exactness at δ, i.e. that $\operatorname{im} v_{1}=\operatorname{ker} \delta$ and that $\operatorname{im} \delta=\operatorname{ker} a_{1}$. We show that first equality, the second one is analogous.
(\subseteq) Let $m^{\prime \prime} \in \operatorname{ker} f^{\prime \prime}$, then $m^{\prime \prime}=v(m)$ for some $m \in \operatorname{ker} f$. Since $f(m)=0, n^{\prime} \in \operatorname{ker} a$, so $n^{\prime}=0$ and $\delta\left(m^{\prime \prime}\right)=0$.
(\supseteq) Let $m^{\prime \prime} \in \operatorname{ker} f^{\prime \prime}$ so that $\delta\left(m^{\prime \prime}\right)=0$. Then for all $m \in v_{1}^{-1}\left(m^{\prime \prime}\right)$ there exists $m^{\prime} \in M^{\prime}$ such that

$$
f\left(u\left(m^{\prime}\right)\right)=f(m) .
$$

Thus $m-u\left(m^{\prime}\right) \in \operatorname{ker} f$ and

$$
\begin{aligned}
v_{1}\left(m-u\left(m^{\prime}\right)\right) & =v_{1}(m)-v_{1}\left(u\left(m^{\prime}\right)\right) \\
& =v_{1}(m) \\
& =m^{\prime \prime}
\end{aligned}
$$

e. If $\operatorname{ker} f^{\prime}=\operatorname{ker} f^{\prime \prime}=\operatorname{coker} f^{\prime}=\operatorname{coker} f^{\prime \prime}=0$, from the exactness of the sequence in d, one has

$$
\operatorname{ker} f=\operatorname{coker} f=0 .
$$

f. If coker $f^{\prime}=\operatorname{ker} f=0$, again by d one has the exact sequence

$$
0 \longrightarrow \operatorname{ker} f^{\prime \prime} \longrightarrow 0,
$$

so $\operatorname{ker} f^{\prime \prime}=0$.

