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~���1 a. Let x =
∑2

i=1 x
iei and y =

∑2
i=1 y

iei. Then x⊗y =
∑

i,j x
iyiei⊗

ej . By applying the isomorphism φ one has

φ(x⊗ y) =
∑
i,j

xiyiφ(ei ⊗ ej)

= x1y1f1 + x1y2f2 + x2y1f3 + x2y2f4.

Hence φ(x⊗ y) = af1 + bf2 + cf3 + df4 iff

x1y1 = a x1y2 = b

x2y1 = c x2y2 = d,

which implies ad = bc. On the other hand, if ad = bc, a, b 6= 0,
pick x1 = 1, x2 = c/a = d/b, y1 = a and y2 = b. Similarly for
the other possibilities for a, b, c, d.

b. Let u = u1 ⊗ u2 : R2 ⊗ R2 → R2 ⊗ R2. Then the matrix of u is
given by the components of u(fi) with respect to the basis (fi)i:

u(e1 ⊗ e1) = u1(e1)⊗ u2(e1) = (1, 0)⊗ (−1, 2) = −f1 + 2f2

u(e1 ⊗ e2) = 4f1 + 3f2

u(e2 ⊗ e1) = −2f1 + 4f2 − 3f3 + 6f4

u(e2 ⊗ e2) = 8f1 + 6f2 + 12f3 + 9f4.

Therefore

u =


−1 4 −2 8
2 3 4 6
0 0 −3 12
0 0 6 9

 .

~���2 In Z⊗Z Z/2Z one has

2⊗ 1 = 1⊗ 2 · 1 = 1⊗ 0 = 0.

In general, for an A-module M we have a canonical isomorphism of
A-modules

φ : M ⊗A A/I −→M/IM

m⊗ a 7−→ am mod IM.
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So in our case

2Z⊗Z Z/2Z ' 2Z/(2)2Z ' 2Z/4Z;

via φ, 2⊗1 is sent to 2 in 2Z/4Z, which is not 0.~���3 a. The map f ◦ d : B → M ′ is an A-derivation, since, using the
B-linearity of f ,

f(d(bb′)) = f(bdb′ + b′db) = bf(db′) + b′f(db),

f(d(s(a))) = f(0) = 0

for all b, b′ ∈ B, a ∈ A.
b. Consider the B-module

Ω := BdB =
⊕
db∈dB

B.

Define
ΩB/A := Ω/Ω′,

where Ω′ is the B-submodule generated by the elements

d(bb′)− bdb′ − b′db,
d(b+ b′)− db− db′,
d(s(a))

for all b, b′ ∈ B, a ∈ A. Let

du : B −→ ΩB/A

b 7−→ [db]

and let

f : ΩB/A −→M

[db] 7−→ db.

Then f is well-defined and has the desired properties. For the
uniqueness, note that the universal derivation du is surjective, so
f is determined by f ◦ du = d.

To conclude, ΩB/A is unique up to B-isomorphism: considerM =
ΩB/A, f = du and let Ω′B/A, d

′
u : B → Ω′B/A be another solution

of the universal problem. Let f ′ : Ω′B/A → ΩB/A be the B-linear
map such that f ′ ◦d′u = du. By the above property of ΩB/A, there
is also a B-linear f so that f ◦ du = d′u. Therefore

f ′ ◦ f ◦ du = du,

which implies f ′ ◦ f = 1 by the surjectivity of du.
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~���4 a. The map F is induced by the corresponding A- bilinear map, and
it’s given by

F (f1 ⊗ f2) = (m1 ⊗m2 7→ f1(m1)⊗ f2(m2))

for every f1, f2,m1,m2 in the corresponding modules.
b. Since the vector spaces HomK(M1, N1) ⊗K HomK(M2, N2) and

HomK(M1⊗KM2, N1⊗KN2) have the same dimension, it’s enough
to check the injectivity of F . Let f1 ∈ HomK(M1, N1), f2 ∈
HomK(M2, N2) such that

f1(m1)⊗ f2(m2) = 0 ∀m1 ∈M1, m2 ∈M2.

Observe that if fi(mi) 6= 0 (i = 1, 2), then fi(mi) is part of a basis
of Ni, so f1(m1)⊗ f2(m2) is part of a basis of N1 ⊗K N2, and it
cannot be zero. On the other hand if f1(m1) = 0 or f2(m2) = 0,
then the tensor product is 0. Since this holds for all m1,m2, we
conclude that f1 = 0 or f2 = 0, so f1 ⊗ f2 = 0.

c. In general, for an A-module M and an ideal I of A, we have

HomA(A/I,M) ' (0 :M I),

and by the A-freeness of A,

HomA(A,M) 'M.

Hence we have an ismorphism

HomZ/4Z((Z/4Z)/(2Z/4Z),Z/4Z)⊗Z/4ZHomZ/4Z(Z/4Z, (Z/4Z)/(2Z/4Z))

' 2Z/4Z⊗Z/4Z (Z/4Z)/(2Z/4Z)

given by
φ⊗ ψ 7−→ φ(1)⊗ ψ(1).

By a similar argument,

HomZ/4Z((Z/4Z)/(2Z/4Z))

⊗Z/4ZHomZ/4Z((Z/4Z)/(2Z/4Z)⊗Z/4ZZ/4Z,Z/4Z⊗Z/4Z(Z/4Z)/(2Z/4Z))

' Z/4Z⊗Z/4Z (Z/4Z)/(2Z/4Z)

given by
α 7−→ α(1⊗ 1).

Moreover,

2Z/4Z⊗Z/4Z (Z/4Z)/(2Z/4Z) ' 2Z/4Z

via
2⊗ 1 7−→ 2.

The corresponding map F ′ induced by F sends 2 to 2⊗ 1, which
is 0 in Z/4Z⊗Z/4Z (Z/4Z)/(2Z/4Z). Clearly 1⊗ 1 /∈ imF ′.
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d. As an R-vector space, C ' R⊕ R; since the tensor product com-
mutes with finite direct sums we have isomorphisms of R-vector
spaces

Cn ⊗R Cn ' R⊕2n ⊗R Cm

' (R⊗R Cm)⊕2n

' (Cm)2n

' R4mn.

~���5 a. Take (f ′, f, f ′′) = (id, id, id) : (M) → (M) and the composition
of (f ′, f, f ′′) : (M)→ (N) and (g′, g, g′′) : (N)→ (L) given by

(g′, g, g′′) ◦ (f ′, f, f ′′) = ((g′ ◦ f ′), (g ◦ f), (g′′ ◦ f ′′)) : (M) −→ (L).

b. Let

0 −−−−→ M ′
u−−−−→ M

v−−−−→ M ′′ −−−−→ 0yu yid

yv mod ker v

0 −−−−→ ker v
i−−−−→ M

π−−−−→ cokeru −−−−→ 0

Since u is injective, ker v = imu and v is surjective, all the above
vertical maps are isomorphisms.~���6 a. Let m′ ∈ ker f ′, then

f ◦ u(m′) = a ◦ f ′(m′) = 0,

so u1(m′) ∈ ker f . Same for v1.
Furthermore, if m′ ∈ ker f ′, then v(u(m′)) = 0, since (M) is
exact.

b. Since a ◦ f ′ = f ◦ u, for all m′ ∈M ′,

a ◦ f ′(m′) ∈ im f.

Hence a induces a map

coker f ′ −→ coker f.

The exactness of (N) implies the claim.

c. Since
b ◦ f(m) = f ′′ ◦ v(m) = f ′′(m′′) = 0,

one gets
f(m) ∈ ker b = im a.
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Let m′′ = v(m) = v(m1). Then f(m1) ∈ im a, so write f(m1) =
a(n′1). The claim is that ñ′ = ñ1

′ in coker f ′, equivalent to n′ −
n1 ∈ im f ′:
m−m1 ∈ ker v = imu, so m−m1 = u(m′) for some m′ ∈M ′.
f(m−m1) = f(m)−f(m1) = a(n′−n′1) = f ◦u(m′) = a◦f ′(m′).
But a is injective, so n′ − n′1 = f ′(m′).

d. It remains to check the exactness at δ, i.e. that im v1 = ker δ and
that im δ = ker a1. We show that first equality, the second one is
analogous.
(⊆) Let m′′ ∈ ker f ′′, then m′′ = v(m) for some m ∈ ker f . Since
f(m) = 0, n′ ∈ ker a, so n′ = 0 and δ(m′′) = 0.
(⊇) Letm′′ ∈ ker f ′′ so that δ(m′′) = 0. Then for allm ∈ v−11 (m′′)
there exists m′ ∈M ′ such that

f(u(m′)) = f(m).

Thus m− u(m′) ∈ ker f and

v1(m− u(m′)) = v1(m)− v1(u(m′))

= v1(m)

= m′′.

e. If ker f ′ = ker f ′′ = coker f ′ = coker f ′′ = 0, from the exactness
of the sequence in d, one has

ker f = coker f = 0.

f. If coker f ′ = ker f = 0, again by d one has the exact sequence

0 −→ ker f ′′ −→ 0,

so ker f ′′ = 0.


