D-MATH HS 2021 Prof. E. Kowalski

Solutions 4

Commutative Algebra

(1) a. Let $x = \sum_{i=1}^{2} x^{i} e_{i}$ and $y = \sum_{i=1}^{2} y^{i} e_{i}$. Then $x \otimes y = \sum_{i,j} x^{i} y^{i} e_{i} \otimes e_{j}$. By applying the isomorphism ϕ one has

$$\begin{split} \phi(x \otimes y) &= \sum_{i,j} x^i y^i \phi(e_i \otimes e_j) \\ &= x^1 y^1 f_1 + x^1 y^2 f_2 + x^2 y^1 f_3 + x^2 y^2 f_4. \end{split}$$

Hence $\phi(x \otimes y) = af_1 + bf_2 + cf_3 + df_4$ iff

$$\begin{aligned} x^1y^1 &= a & x^1y^2 &= b \\ x^2y^1 &= c & x^2y^2 &= d, \end{aligned}$$

which implies ad = bc. On the other hand, if ad = bc, $a, b \neq 0$, pick $x^1 = 1$, $x^2 = c/a = d/b$, $y^1 = a$ and $y^2 = b$. Similarly for the other possibilities for a, b, c, d.

b. Let $u = u_1 \otimes u_2 : \mathbb{R}^2 \otimes \mathbb{R}^2 \to \mathbb{R}^2 \otimes \mathbb{R}^2$. Then the matrix of u is given by the components of $u(f_i)$ with respect to the basis $(f_i)_i$:

$$u(e_1 \otimes e_1) = u_1(e_1) \otimes u_2(e_1) = (1,0) \otimes (-1,2) = -f_1 + 2f_2$$

$$u(e_1 \otimes e_2) = 4f_1 + 3f_2$$

$$u(e_2 \otimes e_1) = -2f_1 + 4f_2 - 3f_3 + 6f_4$$

$$u(e_2 \otimes e_2) = 8f_1 + 6f_2 + 12f_3 + 9f_4.$$

Therefore

$$u = \begin{pmatrix} -1 & 4 & -2 & 8\\ 2 & 3 & 4 & 6\\ 0 & 0 & -3 & 12\\ 0 & 0 & 6 & 9 \end{pmatrix}.$$

(2) In $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ one has

$$2 \otimes 1 = 1 \otimes 2 \cdot 1 = 1 \otimes 0 = 0.$$

In general, for an A-module M we have a canonical isomorphism of $A\operatorname{\!-modules}$

$$\phi: M \otimes_A A/I \longrightarrow M/IM$$
$$m \otimes a \longmapsto am \mod IM.$$

So in our case

$$2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \simeq 2\mathbb{Z}/(2)2\mathbb{Z} \simeq 2\mathbb{Z}/4\mathbb{Z};$$

via ϕ , 2 \otimes 1 is sent to 2 in 2 $\mathbb{Z}/4\mathbb{Z}$, which is not 0.

(3) a. The map $f \circ d : B \to M'$ is an A-derivation, since, using the B-linearity of f,

$$f(d(bb')) = f(bdb' + b'db) = bf(db') + b'f(db),$$

$$f(d(s(a))) = f(0) = 0$$

for all $b, b' \in B, a \in A$.

b. Consider the B-module

$$\Omega := B^{dB} = \bigoplus_{db \in dB} B.$$

Define

$$\Omega_{B/A} := \Omega/\Omega',$$

where Ω' is the *B*-submodule generated by the elements

$$d(bb') - bdb' - b'db,$$

$$d(b + b') - db - db',$$

$$d(s(a))$$

for all $b, b' \in B, a \in A$. Let

$$d_u: B \longrightarrow \Omega_{B/A}$$
$$b \longmapsto [db]$$

and let

$$f: \Omega_{B/A} \longrightarrow M$$
$$[db] \longmapsto db.$$

Then f is well-defined and has the desired properties. For the uniqueness, note that the universal derivation d_u is surjective, so f is determined by $f \circ d_u = d$.

To conclude, $\Omega_{B/A}$ is unique up to *B*-isomorphism: consider $M = \Omega_{B/A}$, $f = d_u$ and let $\Omega'_{B/A}$, $d'_u : B \to \Omega'_{B/A}$ be another solution of the universal problem. Let $f' : \Omega'_{B/A} \to \Omega_{B/A}$ be the *B*-linear map such that $f' \circ d'_u = d_u$. By the above property of $\Omega_{B/A}$, there is also a *B*-linear f so that $f \circ d_u = d'_u$. Therefore

$$f' \circ f \circ d_u = d_u,$$

which implies $f' \circ f = 1$ by the surjectivity of d_u .

- $\mathbf{4}$
- a. The map F is induced by the corresponding A- bilinear map, and it's given by

 $F(f_1 \otimes f_2) = (m_1 \otimes m_2 \mapsto f_1(m_1) \otimes f_2(m_2))$

for every f_1, f_2, m_1, m_2 in the corresponding modules.

b. Since the vector spaces $\operatorname{Hom}_{K}(M_{1}, N_{1}) \otimes_{K} \operatorname{Hom}_{K}(M_{2}, N_{2})$ and $\operatorname{Hom}_{K}(M_{1} \otimes_{K} M_{2}, N_{1} \otimes_{K} N_{2})$ have the same dimension, it's enough to check the injectivity of F. Let $f_{1} \in \operatorname{Hom}_{K}(M_{1}, N_{1}), f_{2} \in$ $\operatorname{Hom}_{K}(M_{2}, N_{2})$ such that

$$f_1(m_1) \otimes f_2(m_2) = 0 \quad \forall m_1 \in M_1, \ m_2 \in M_2.$$

Observe that if $f_i(m_i) \neq 0$ (i = 1, 2), then $f_i(m_i)$ is part of a basis of N_i , so $f_1(m_1) \otimes f_2(m_2)$ is part of a basis of $N_1 \otimes_K N_2$, and it cannot be zero. On the other hand if $f_1(m_1) = 0$ or $f_2(m_2) = 0$, then the tensor product is 0. Since this holds for all m_1, m_2 , we conclude that $f_1 = 0$ or $f_2 = 0$, so $f_1 \otimes f_2 = 0$.

c. In general, for an A-module M and an ideal I of A, we have

$$\operatorname{Hom}_A(A/I, M) \simeq (0:_M I),$$

and by the A-freeness of A,

$$\operatorname{Hom}_A(A, M) \simeq M.$$

Hence we have an ismorphism

$$\begin{split} \operatorname{Hom}_{\mathbb{Z}/4\mathbb{Z}}((\mathbb{Z}/4\mathbb{Z})/(2\mathbb{Z}/4\mathbb{Z}),\mathbb{Z}/4\mathbb{Z}) \otimes_{\mathbb{Z}/4\mathbb{Z}} \operatorname{Hom}_{\mathbb{Z}/4\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z},(\mathbb{Z}/4\mathbb{Z})/(2\mathbb{Z}/4\mathbb{Z})) \\ &\simeq 2\mathbb{Z}/4\mathbb{Z} \otimes_{\mathbb{Z}/4\mathbb{Z}} (\mathbb{Z}/4\mathbb{Z})/(2\mathbb{Z}/4\mathbb{Z}) \end{split}$$

given by

$$\phi \otimes \psi \longmapsto \phi(1) \otimes \psi(1).$$

By a similar argument,

$$\begin{split} &\operatorname{Hom}_{\mathbb{Z}/4\mathbb{Z}}((\mathbb{Z}/4\mathbb{Z})/(2\mathbb{Z}/4\mathbb{Z})) \\ \otimes_{\mathbb{Z}/4\mathbb{Z}}\operatorname{Hom}_{\mathbb{Z}/4\mathbb{Z}}((\mathbb{Z}/4\mathbb{Z})/(2\mathbb{Z}/4\mathbb{Z})\otimes_{\mathbb{Z}/4\mathbb{Z}}\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/4\mathbb{Z}\otimes_{\mathbb{Z}/4\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z})/(2\mathbb{Z}/4\mathbb{Z})) \\ &\simeq \mathbb{Z}/4\mathbb{Z}\otimes_{\mathbb{Z}/4\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z})/(2\mathbb{Z}/4\mathbb{Z}) \end{split}$$

given by

$$\alpha \mapsto \alpha(1 \otimes 1).$$

Moreover,

$$2\mathbb{Z}/4\mathbb{Z}\otimes_{\mathbb{Z}/4\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z})/(2\mathbb{Z}/4\mathbb{Z})\simeq 2\mathbb{Z}/4\mathbb{Z}$$

via

$$2 \otimes 1 \longmapsto 2.$$

The corresponding map F' induced by F sends 2 to $2 \otimes 1$, which is 0 in $\mathbb{Z}/4\mathbb{Z} \otimes_{\mathbb{Z}/4\mathbb{Z}} (\mathbb{Z}/4\mathbb{Z})/(2\mathbb{Z}/4\mathbb{Z})$. Clearly $1 \otimes 1 \notin \operatorname{im} F'$.

d. As an \mathbb{R} -vector space, $\mathbb{C} \simeq \mathbb{R} \oplus \mathbb{R}$; since the tensor product commutes with finite direct sums we have isomorphisms of \mathbb{R} -vector spaces

$$\mathbb{C}^n \otimes_{\mathbb{R}} \mathbb{C}^n \simeq \mathbb{R}^{\oplus 2n} \otimes_{\mathbb{R}} \mathbb{C}^m$$
$$\simeq (\mathbb{R} \otimes_{\mathbb{R}} \mathbb{C}^m)^{\oplus 2n}$$
$$\simeq (\mathbb{C}^m)^{2n}$$
$$\simeq \mathbb{R}^{4mn}.$$

(5) a. Take $(f', f, f'') = (id, id, id) : (M) \to (M)$ and the composition of $(f', f, f'') : (M) \to (N)$ and $(g', g, g'') : (N) \to (L)$ given by

$$(g',g,g'')\circ(f',f,f'')=((g'\circ f'),(g\circ f),(g''\circ f'')):(M)\longrightarrow(L).$$

b. Let

Since u is injective, ker $v = \operatorname{im} u$ and v is surjective, all the above vertical maps are isomorphisms.

(6) a. Let $m' \in \ker f'$, then

$$f \circ u(m') = a \circ f'(m') = 0,$$

so $u_1(m') \in \ker f$. Same for v_1 . Furthermore, if $m' \in \ker f'$, then v(u(m')) = 0, since (M) is exact.

b. Since $a \circ f' = f \circ u$, for all $m' \in M'$,

$$a \circ f'(m') \in \operatorname{im} f.$$

Hence a induces a map

$$\operatorname{coker} f' \longrightarrow \operatorname{coker} f.$$

The exactness of (N) implies the claim.

c. Since

$$b \circ f(m) = f'' \circ v(m) = f''(m'') = 0,$$

one gets

$$f(m) \in \ker b = \operatorname{im} a.$$

Let $m'' = v(m) = v(m_1)$. Then $f(m_1) \in \operatorname{im} a$, so write $f(m_1) = a(n'_1)$. The claim is that $\tilde{n}' = \tilde{n_1}'$ in coker f', equivalent to $n' - n_1 \in \operatorname{im} f'$: $m - m_1 \in \ker v = \operatorname{im} u$, so $m - m_1 = u(m')$ for some $m' \in M'$. $f(m - m_1) = f(m) - f(m_1) = a(n' - n'_1) = f \circ u(m') = a \circ f'(m')$.

 $f(m-m_1) = f(m) - f(m_1) = a(n-n_1) = f \circ u(m) = a \circ u(m)$ But *a* is injective, so $n' - n'_1 = f'(m')$.

d. It remains to check the exactness at δ , i.e. that im $v_1 = \ker \delta$ and that im $\delta = \ker a_1$. We show that first equality, the second one is analogous.

(⊆) Let $m'' \in \ker f''$, then m'' = v(m) for some $m \in \ker f$. Since $f(m) = 0, n' \in \ker a, \text{ so } n' = 0$ and $\delta(m'') = 0$.

(2) Let $m'' \in \ker f''$ so that $\delta(m'') = 0$. Then for all $m \in v_1^{-1}(m'')$ there exists $m' \in M'$ such that

$$f(u(m')) = f(m).$$

Thus $m - u(m') \in \ker f$ and

$$v_1(m - u(m')) = v_1(m) - v_1(u(m'))$$

= $v_1(m)$
= m'' .

e. If ker $f' = \ker f'' = \operatorname{coker} f' = \operatorname{coker} f'' = 0$, from the exactness of the sequence in d, one has

$$\ker f = \operatorname{coker} f = 0.$$

f. If coker $f' = \ker f = 0$, again by d one has the exact sequence

$$0 \longrightarrow \ker f'' \longrightarrow 0,$$

so ker f'' = 0.