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~���1 We consider the case n = 2, the general case follows by induction.
First, note that all the ideals of A1 × A2 are of the form I × J , with
I, J ideals of A1 and A2, respectively. Moreover, it’s easy to show that
the prime ideals of A1 × A2 are of the form ℘1 × A2, A1 × ℘2 with
℘1 ⊆ A1, ℘2 ⊆ A2 prime ideals. Therefore, any chain of prime ideals
in A1 × A2 arises from either a chain of primes in A1 or a chain of
primes in A2. The longest chain must come from the longest chain in
A1 or A2.~���2 a. Let F be the set of non-principal ideals of R. If F ′ is a chain in

F , then ∪
I∈F ′

I is an ideal of F , which is not principal, if not, one

of the I ∈ F ′ would be principal.
b. Since R is a domain of dimension 1, any non-zero prime ideal ℘

has height 1. Let a ∈ ℘, write

a =

n∏
i=1

ai,

where ai are irreducible. Since ℘ is prime, there exists i ∈ {1, . . . , n}
so that ai ∈ ℘. But now

0 ⊂ (ai) ⊆ ℘

is a chain of prime ideals. Because ht(℘) = 1, one gets ℘ = (ai).

Assume F 6= ∅. By Zorn’s lemma, F has a maximal element I.
In particular, I is not prime, pick then a, b /∈ I with ab ∈ I. Since

I + (a) ⊃ I

and
I + (b) ⊃ I,

by the maximality of I, both I+(a) and I+(b) are principal. Let
I + (a) = (x). Consider the ideal J = I :R (I + (a)); it contains
I + (b), so it is principal generated by y, say. One has

I = I + (ab) = (I + (a))J = (xy),

a contradiction.
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~���3 Suppose a /∈ S−1pi, a /∈ k. After clearing denominators, we may
assume a ∈ A. Then a includes a monomial not including any of the
generators of pi as a factor. By removing monomials in a belonging
to pi, we may assume a contains no monomial such as Xmi+1 with
nonzero coefficients; then a+Xmi+1 ∈ S, hence it is a unit.
Next, any x ∈ A, x 6= 0 can be in only finitely many S−1pi. It’s enough
to check for the variables, which is obvious.
By the above, in particular S−1A satisfies condition 2 of the Lemma.
To see that S−1AS−1pi is noetherian, note that it coincides with

Api ' k(Xj)[Xmi+1, . . . , Xmi+1 ](Xmi+1,...,Xmi+1 )
,

a localization of a noetherian ring, where j ∈ N \ {mi + 1, . . . ,mi+1}.
This will satisfy condition 1 of the Lemma. Hence it suffices to prove
a generalization of the prime avoidance lemma:
any ideal I ⊆ A so that I ⊆

⋃
i pi is contained in pi for some i.

Proof. Assume I is not contained in
⋃

k∈K
pk for K ⊆ N finite set (if not,

it is the usual prime avoidence). Let f ∈ A and define

D(f) := {i ∈ N : f ∈ S−1pi}.

Let f ∈ I, then if there is no g ∈ I so that D(f) ∩D(g) 6= ∅, then

I ⊆
⋃

i∈D(f)

pi

and D(f) is finite. Hence there exists g ∈ I such that D(f)∩D(g) = ∅.
Note that is D(f) = ∅ or D(g) = ∅ then one or the other lies outside
of
⋃

i pi, contradicting I ⊆
⋃

i pi. Hence we may assume D(f) 6= ∅ and
D(g) 6= ∅.
Let σ ∈ D(g), d = deg f . The claim is that D(f + Xd+1

mσ+1g) = ∅,
proving a contradiction.
Clearly D(Xd+1

mσ+1g) = D(g), and since D(f) ∩D(g) = ∅,

f +Xd+1
mσ+1g /∈ p` ∀` ∈ D(f) ∪D(g).

Moreover, since the term of lowest degree ofXd+1
mσ+1g is of greater degree

than the term of highest degree of f , there can be no cancellation
among the monomials, so, by fixing an index `, if f /∈ p`, f has a
nonzero monomial not in p`, and that monomial persists with the same
nonzero coefficient in f + Xd+1

mσ+1g, hence f + Xd+1
mσ+1g cannot lie in

p`, since for a polynomial to lie in p`, every monomial must lie in
(Xm`+1, . . . , Xm`+1

).
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~���4 a. Consider the C-algebras morphism

Ψ : C[X,Y ] −→ C[T ]

X 7−→ T 2

Y 7−→ T 3.

We prove that ker Ψ = (Y 2 −X3). From this, we deduce that R
is isomorphic to a subring of C[T ], which is an integral domain.
Indeed, R ' C[T 2, T 3].
(⊇): Clear.
(⊆): Any f ∈ C[X,Y ] can be written as

f = f0(X) + f1(X)Y + (Y 2 −X3)g(X,Y ).

To see this, note that

XmY n = (Y 2 −X3)XmY n−2 +Xm+3Y n−2

for all m ∈ N, n ≥ 2. Hence by induction

XmY n = (Y 2 −X3)p(X,Y ) + q0(X) + q1(X)Y.

Let f ∈ ker Ψ, then

0 = Ψ(f(X,Y )) = f(T 2, T 3)

= f0(T
2) + f1(T

2)T 3.

The even terms of f0(T 2) + f1(T
2)T 3 are f0(T 2), the odd terms

are f1(T 2)T 3. Thus f0(T 2) = 0 and f1(T 2) = 0, i.e. f0(X) = 0
and f1(X) = 0. Thus

f = (Y 2 −X3)g(X,Y ).

Finally, we have that the Krull dimension of R is ≥ 1, since it is
not a field. Also,

dimR ≤ dimC[X,Y ]− ht(Y 2 −X3) = 2− ht(Y 2 −X3).

The height of (Y 2 −X3) is 1: suppose

0 6= ℘ ⊆ (Y 2 −X3)

is a chain of primes; take an irreducible g ∈ ℘, then g = r · (Y 2 −
X3). But then r is a constant, so

℘ ⊇ (g) = (Y 2 −X3).

Hence dimR = 1.
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b. The element Y
X ∈ frac(R) \R satisfies the integral equation(Y

X

)2
−X = 0.

c. One sees by evaluating at (1, 1) that (Y 2−X3) ⊆ (X − 1, Y − 1).
Moreover,

R/p ' C[X,Y ]/(X − 1, Y − 1)
f 7→f(1,1)
' C.

d. The maximal ideal of Rp is principal:

pRp = (X − 1)Rp,

since Y − 1 = (X − 1)(X2 +X + 1)/(Y + 1). Then it is a PID.~���5 a. The polynomial X2−5 is irreducible in Z[X] (Eisenstein criterion
for instance), so prime, so R is an integral domain. Also, ht(X2−
5) = 1 since it is principal. The dimension of R is ≥ 1, since it is
not a field. It is also ≤ 1 by the inequality

dimR ≤ dimZ[X]− ht(X2 − 5) ≤ 2− 1 = 1.

The fraction field is

frac(Z[
√

5]) =

{
a+ b

√
5

c+ d
√

5
: a, b, c, d ∈ Z, (c, d) 6= (0, 0)

}
= Q(

√
5),

by noting that

a+ b
√

5

c+ d
√

5
=

(a+ b
√

5)(c− d
√

5)

c2 − 5d2
.

b. Observe that(1 +
√

5

2

)2
=

1 + 5 + 2
√

5

4
=

1 +
√

5

2
+ 1.

Then α := 1+
√
5

2 satisfies

α2 − α− 1 = 0

and α is not in R.
c. Let x = a + b

√
5 be integral over Z, with a, b ∈ Q. Consider the

automorphism

σ : Q(
√

5) −→ Q(
√

5)
√

5 7−→ −
√

5.
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Then x+ σ(x) and xσ(x) are integral over Z, since σ(x) is. But

x+ σ(x) = 2a;

xσ(x) = a2 − 5b2

are both elements of Q integral over Z, which is integrally closed.
Hence

2a, a2 − 5b2 ∈ Z (1)

On the other hand, x is a root of

X2 − 2aX + a2 − 5b2 ∈ Z[X],

so by assuming (1) one has

4(a2 − 5b2) = (2a)2 − 5(2b)2 =⇒ 5(2b)2 ∈ Z =⇒ 2b ∈ Z.

Write
a =

u

2
, b =

v

2
,

where u, v ∈ Z. Condition (1) translates to

u2 − 5v2 ∈ 4Z (2)

• if v is even, then (2) implies u even as well, so a, b ∈ Z and
x ∈ R;
• if v is odd, then v2 ≡ 1 mod 4 and by (2) also u2 ≡ 1 mod 4.

In particular

x =
1

2
(u+

√
5v)

where u and v are either both even or both odd.


