D-MATH
HS 2021
Prof. E. Kowalski

Solutions 5

Commutative Algebra

(1) We consider the case $n=2$, the general case follows by induction. First, note that all the ideals of $A_{1} \times A_{2}$ are of the form $I \times J$, with I, J ideals of A_{1} and A_{2}, respectively. Moreover, it's easy to show that the prime ideals of $A_{1} \times A_{2}$ are of the form $\wp_{1} \times A_{2}, A_{1} \times \wp_{2}$ with $\wp_{1} \subseteq A_{1}, \wp_{2} \subseteq A_{2}$ prime ideals. Therefore, any chain of prime ideals in $A_{1} \times A_{2}$ arises from either a chain of primes in A_{1} or a chain of primes in A_{2}. The longest chain must come from the longest chain in A_{1} or A_{2}.
(2) a. Let \mathcal{F} be the set of non-principal ideals of R. If \mathcal{F}^{\prime} is a chain in \mathcal{F}, then $\underset{I \in \mathcal{F} \mathcal{F}^{\prime}}{\cup} I$ is an ideal of \mathcal{F}, which is not principal, if not, one of the $I \in \mathcal{F}^{\prime}$ would be principal.
b. Since R is a domain of dimension 1 , any non-zero prime ideal \wp has height 1 . Let $a \in \wp$, write

$$
a=\prod_{i=1}^{n} a_{i},
$$

where a_{i} are irreducible. Since \wp is prime, there exists $i \in\{1, \ldots, n\}$ so that $a_{i} \in \wp$. But now

$$
0 \subset\left(a_{i}\right) \subseteq \wp
$$

is a chain of prime ideals. Because $\operatorname{ht}(\wp)=1$, one gets $\wp=\left(a_{i}\right)$.
Assume $\mathcal{F} \neq \emptyset$. By Zorn's lemma, \mathcal{F} has a maximal element I. In particular, I is not prime, pick then $a, b \notin I$ with $a b \in I$. Since

$$
I+(a) \supset I
$$

and

$$
I+(b) \supset I,
$$

by the maximality of I, both $I+(a)$ and $I+(b)$ are principal. Let $I+(a)=(x)$. Consider the ideal $J=I:_{R}(I+(a))$; it contains $I+(b)$, so it is principal generated by y, say. One has

$$
I=I+(a b)=(I+(a)) J=(x y),
$$

a contradiction.
(3) Suppose $a \notin S^{-1} \mathfrak{p}_{i}, a \notin k$. After clearing denominators, we may assume $a \in A$. Then a includes a monomial not including any of the generators of \mathfrak{p}_{i} as a factor. By removing monomials in a belonging to \mathfrak{p}_{i}, we may assume a contains no monomial such as $X_{m_{i}+1}$ with nonzero coefficients; then $a+X_{m_{i}+1} \in S$, hence it is a unit.
Next, any $x \in A, x \neq 0$ can be in only finitely many $S^{-1} \mathfrak{p}_{i}$. It's enough to check for the variables, which is obvious.
By the above, in particular $S^{-1} A$ satisfies condition 2 of the Lemma. To see that $S^{-1} A_{S^{-1} \mathfrak{p}_{i}}$ is noetherian, note that it coincides with

$$
A_{\mathfrak{p}_{i}} \simeq k\left(X_{j}\right)\left[X_{m_{i}+1}, \ldots, X_{m_{i+1}}\right]_{\left(X_{m_{i}+1}, \ldots, X_{m_{i+1}}\right)}
$$

a localization of a noetherian ring, where $j \in \mathbb{N} \backslash\left\{m_{i}+1, \ldots, m_{i+1}\right\}$. This will satisfy condition 1 of the Lemma. Hence it suffices to prove a generalization of the prime avoidance lemma: any ideal $I \subseteq A$ so that $I \subseteq \bigcup_{i} \mathfrak{p}_{i}$ is contained in \mathfrak{p}_{i} for some i.

Proof. Assume I is not contained in $\bigcup_{k \in K} \mathfrak{p}_{k}$ for $K \subseteq \mathbb{N}$ finite set (if not, it is the usual prime avoidence). Let $f \in A$ and define

$$
D(f):=\left\{i \in \mathbb{N}: f \in S^{-1} \mathfrak{p}_{i}\right\}
$$

Let $f \in I$, then if there is no $g \in I$ so that $D(f) \cap D(g) \neq \emptyset$, then

$$
I \subseteq \bigcup_{i \in D(f)} \mathfrak{p}_{i}
$$

and $D(f)$ is finite. Hence there exists $g \in I$ such that $D(f) \cap D(g)=\emptyset$. Note that is $D(f)=\emptyset$ or $D(g)=\emptyset$ then one or the other lies outside of $\bigcup_{i} \mathfrak{p}_{i}$, contradicting $I \subseteq \bigcup_{i} \mathfrak{p}_{i}$. Hence we may assume $D(f) \neq \emptyset$ and $D(g) \neq \emptyset$.
Let $\sigma \in D(g), d=\operatorname{deg} f$. The claim is that $D\left(f+X_{m_{\sigma}+1}^{d+1} g\right)=\emptyset$, proving a contradiction.
Clearly $D\left(X_{m_{\sigma}+1}^{d+1} g\right)=D(g)$, and since $D(f) \cap D(g)=\emptyset$,

$$
f+X_{m_{\sigma}+1}^{d+1} g \notin \mathfrak{p}_{\ell} \quad \forall \ell \in D(f) \cup D(g)
$$

Moreover, since the term of lowest degree of $X_{m_{\sigma}+1}^{d+1} g$ is of greater degree than the term of highest degree of f, there can be no cancellation among the monomials, so, by fixing an index ℓ, if $f \notin \mathfrak{p}_{\ell}, f$ has a nonzero monomial not in \mathfrak{p}_{ℓ}, and that monomial persists with the same nonzero coefficient in $f+X_{m_{\sigma}+1}^{d+1} g$, hence $f+X_{m_{\sigma}+1}^{d+1} g$ cannot lie in \mathfrak{p}_{ℓ}, since for a polynomial to lie in \mathfrak{p}_{ℓ}, every monomial must lie in $\left(X_{m_{\ell}+1}, \ldots, X_{m_{\ell+1}}\right)$.
(4) a. Consider the \mathbb{C}-algebras morphism

$$
\begin{aligned}
\Psi: \mathbb{C}[X, Y] & \longrightarrow \mathbb{C}[T] \\
X & \longmapsto T^{2} \\
Y & \longmapsto T^{3} .
\end{aligned}
$$

We prove that $\operatorname{ker} \Psi=\left(Y^{2}-X^{3}\right)$. From this, we deduce that R is isomorphic to a subring of $\mathbb{C}[T]$, which is an integral domain. Indeed, $R \simeq \mathbb{C}\left[T^{2}, T^{3}\right]$.
(〕): Clear.
(\subseteq) : Any $f \in \mathbb{C}[X, Y]$ can be written as

$$
f=f_{0}(X)+f_{1}(X) Y+\left(Y^{2}-X^{3}\right) g(X, Y) .
$$

To see this, note that

$$
X^{m} Y^{n}=\left(Y^{2}-X^{3}\right) X^{m} Y^{n-2}+X^{m+3} Y^{n-2}
$$

for all $m \in \mathbb{N}, n \geq 2$. Hence by induction

$$
X^{m} Y^{n}=\left(Y^{2}-X^{3}\right) p(X, Y)+q_{0}(X)+q_{1}(X) Y .
$$

Let $f \in \operatorname{ker} \Psi$, then

$$
\begin{aligned}
0 & =\Psi(f(X, Y))=f\left(T^{2}, T^{3}\right) \\
& =f_{0}\left(T^{2}\right)+f_{1}\left(T^{2}\right) T^{3} .
\end{aligned}
$$

The even terms of $f_{0}\left(T^{2}\right)+f_{1}\left(T^{2}\right) T^{3}$ are $f_{0}\left(T^{2}\right)$, the odd terms are $f_{1}\left(T^{2}\right) T^{3}$. Thus $f_{0}\left(T^{2}\right)=0$ and $f_{1}\left(T^{2}\right)=0$, i.e. $f_{0}(X)=0$ and $f_{1}(X)=0$. Thus

$$
f=\left(Y^{2}-X^{3}\right) g(X, Y) .
$$

Finally, we have that the Krull dimension of R is ≥ 1, since it is not a field. Also,

$$
\operatorname{dim} R \leq \operatorname{dim} \mathbb{C}[X, Y]-\operatorname{ht}\left(Y^{2}-X^{3}\right)=2-\operatorname{ht}\left(Y^{2}-X^{3}\right) .
$$

The height of $\left(Y^{2}-X^{3}\right)$ is 1: suppose

$$
0 \neq \wp \subseteq\left(Y^{2}-X^{3}\right)
$$

is a chain of primes; take an irreducible $g \in \wp$, then $g=r \cdot\left(Y^{2}-\right.$ $\left.X^{3}\right)$. But then r is a constant, so

$$
\wp \supseteq(g)=\left(Y^{2}-X^{3}\right)
$$

Hence $\operatorname{dim} R=1$.
b. The element $\frac{Y}{X} \in \operatorname{frac}(R) \backslash R$ satisfies the integral equation

$$
\left(\frac{Y}{X}\right)^{2}-X=0
$$

c. One sees by evaluating at $(1,1)$ that $\left(Y^{2}-X^{3}\right) \subseteq(X-1, Y-1)$. Moreover,

$$
R / p \simeq \mathbb{C}[X, Y] /(X-1, Y-1) \stackrel{f \mapsto f(1,1)}{\simeq} \mathbb{C}
$$

d. The maximal ideal of R_{p} is principal:

$$
p R_{p}=(X-1) R_{p}
$$

since $Y-1=(X-1)\left(X^{2}+X+1\right) /(Y+1)$. Then it is a PID.
(5) a. The polynomial $X^{2}-5$ is irreducible in $\mathbb{Z}[X]$ (Eisenstein criterion for instance), so prime, so R is an integral domain. Also, $\operatorname{ht}\left(X^{2}-\right.$ $5)=1$ since it is principal. The dimension of R is ≥ 1, since it is not a field. It is also ≤ 1 by the inequality

$$
\operatorname{dim} R \leq \operatorname{dim} \mathbb{Z}[X]-\operatorname{ht}\left(X^{2}-5\right) \leq 2-1=1
$$

The fraction field is

$$
\operatorname{frac}(\mathbb{Z}[\sqrt{5}])=\left\{\frac{a+b \sqrt{5}}{c+d \sqrt{5}}: a, b, c, d \in \mathbb{Z},(c, d) \neq(0,0)\right\}=\mathbb{Q}(\sqrt{5})
$$

by noting that

$$
\frac{a+b \sqrt{5}}{c+d \sqrt{5}}=\frac{(a+b \sqrt{5})(c-d \sqrt{5})}{c^{2}-5 d^{2}}
$$

b. Observe that

$$
\left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{1+5+2 \sqrt{5}}{4}=\frac{1+\sqrt{5}}{2}+1
$$

Then $\alpha:=\frac{1+\sqrt{5}}{2}$ satisfies

$$
\alpha^{2}-\alpha-1=0
$$

and α is not in R.
c. Let $x=a+b \sqrt{5}$ be integral over \mathbb{Z}, with $a, b \in \mathbb{Q}$. Consider the automorphism

$$
\begin{aligned}
\sigma: \mathbb{Q}(\sqrt{5}) & \longrightarrow \mathbb{Q}(\sqrt{5}) \\
\sqrt{5} & \longmapsto-\sqrt{5} .
\end{aligned}
$$

Then $x+\sigma(x)$ and $x \sigma(x)$ are integral over \mathbb{Z}, since $\sigma(x)$ is. But

$$
\begin{aligned}
& x+\sigma(x)=2 a ; \\
& x \sigma(x)=a^{2}-5 b^{2}
\end{aligned}
$$

are both elements of \mathbb{Q} integral over \mathbb{Z}, which is integrally closed. Hence

$$
\begin{equation*}
2 a, a^{2}-5 b^{2} \in \mathbb{Z} \tag{1}
\end{equation*}
$$

On the other hand, x is a root of

$$
X^{2}-2 a X+a^{2}-5 b^{2} \in \mathbb{Z}[X]
$$

so by assuming (1) one has

$$
4\left(a^{2}-5 b^{2}\right)=(2 a)^{2}-5(2 b)^{2} \Longrightarrow 5(2 b)^{2} \in \mathbb{Z} \Longrightarrow 2 b \in \mathbb{Z}
$$

Write

$$
a=\frac{u}{2}, \quad b=\frac{v}{2},
$$

where $u, v \in \mathbb{Z}$. Condition (1) translates to

$$
\begin{equation*}
u^{2}-5 v^{2} \in 4 \mathbb{Z} \tag{2}
\end{equation*}
$$

- if v is even, then (2) implies u even as well, so $a, b \in \mathbb{Z}$ and $x \in R$;
- if v is odd, then $v^{2} \equiv 1 \bmod 4$ and by (2) also $u^{2} \equiv 1 \bmod 4$.

In particular

$$
x=\frac{1}{2}(u+\sqrt{5} v)
$$

where u and v are either both even or both odd.

