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~���1 a. Let N ⊂M , and write N = N ′/Z for some Z ⊆ N ′ ⊂ Z[1/p]. Let

m := max{n ∈ N : p−nZ ⊆ N ′}.

Then m is finite, if not N ′ = Z[1/p]. By definition, N is generated
over Z by p−m.

Now, if a ∈ Z, a ≥ pm, we can find q ∈ Z and r ∈ Z with |r| < pm

such that
a = pmq + r.

In particular,
ap−m ≡ rp−m mod Z.

This means, that a representative of the coset of ap−m in N is
given by an element rp−m, with |r| < pm. Hence N is finite.

b. Note that
p−nZ ⊆ p−mZ

if m > n. Every descendent chain is then of the form

p−n0Z ⊃ p−n1Z ⊃ . . .

where n0 > n1 > . . . . The latter chain of positive integers must
stabilize, hence so the above chain.

c. The following is an infinite ascendent chain in M :

Z ⊆ p−1Z ⊆ p−2Z ⊆ . . .

In particular, M is not noetherian, so its length is infinite.~���2 a. Since ker f is a submodule ofM , `(ker f) ≤ `(M) <∞. Moreover,
by im f 'M/ ker f one has `(im f) = `(M)− `(ker f) <∞.

b. Assume that f is injective. Since `(M) < ∞, in particular M is
artinian. Then the following descendent chain stabilizes:

im f ⊇ im f2 ⊇ . . . ,
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that is, there exists t ≥ 1 such that im f t = im f t+1. Let n ∈ M
and let m ∈M such that f t(n) = f t+1(m). Then

f t(n)− f t(f(m)) = 0

=⇒f t(n− f(m)) = 0

f injective
=⇒ n = f(m)

=⇒n ∈ im f.

If f is surjective, consider the analogous ascendent chain

ker f ⊆ ker f2 ⊆ . . .

and use the fact that M is noetherian.

c. Let n as above so that im fn = im fm for all m ≥ n. Let m ∈M
and m′ ∈M such that fn+n(m′) = fn(m). Then

m = (m− fn(m′)) + fn(m′)

and
fn(m− fn(m′)) = fn(m)− fn+n(m′) = 0,

so m− fn(m′) ker fn. Hence

M = ker fn + im fn.

~���3 a. Let Φ : M →
∏

m⊆AMm. Note that if M is a simple module (i.e.
`(M) = 1), M ' A/m, say, for some maximal ideal m of A, then
Mm ' A/m. Moreover, if m′ 6= m, then

Mm′ ' (A/m)m′ ' Am′/mm′ = 0,

since m 6⊆ m′. In particular, if m′ and m′′ are distinct maximal
ideals, then (Mm′)m′′ = 0.
Now, let n := `(M) and pick a decomposition series

M = M0 ⊃M1 ⊃ · · · ⊃Mn = 0.

By localizing at m, the fact that the quotientsMi/Mi+1 are simple
and the above remarks we get

(Mi/Mi+1)m =

{
Mi/Mi+1 if m =:A (Mi/Mi+1)

0 otherwise.

From this, we see that Mm has a decomposition series correspond-
ing to the subseries of the one for M , obtained by keeping only



3

those (Mi)m such that Mi/Mi+1 ' A/m.
Consider now a maximal ideal m′ and the localization of Φ:

Φm′ : Mm′ −→
∏
m⊆A

(Mm)m′ = (Mm′)m′ = Mm′ .

Then Φm′ = idMm′ for every maximal ideal m′. In particular Φm′

is an isomorphism of Am′-modules for every maximal ideal m′; but
the localization is a flat module, so the above implies that Φ is
an isomorphism of A-modules (slogan: "being an isomorphism is
a local property").

b. Since A is artinian, it has finite length, and there are only finitely
many maximal ideals, so by part a we get an isomorphism of
A-modules

Φ : A '
∏
m⊆A

Am '
⊕
m⊆A

Am.

Since each map A→ Am is a morphism of rings, the isomorphism
Φ is actually an isomorphism of rings.~���4 • Assume A/I has finite length. W still denote by m the maximal
ideal of A/I.
One has that A/I is also artinian, so it has Krull dimension 0. In
particular, the only prime ideal in A/I is m. Then

J =
√

(0) = m.

As in exercise 1 of Serie 3, there exists n ≥ 0 so that Jn = (0).
Hence mn = (0) in A/I.

• Viceversa, let mn = (0) for some n ≥ 0. One has the decomposi-
tion series in A/I

A/I ⊇ m ⊇ m2 ⊇ · · · ⊇ mn = 0.

Let Mi := mi/mi+1 for all i = 0, . . . , n − 1. In particular, Mi

is noetherian for all i. Since mMi = 0, Mi is a (A/I)/m-vector
space, so it is also artinian. By a ("reverse") induction, we show
that mi is artinian for all i:
If i = n, mn = 0, so it is artinian.
Assume now mi+1 artinian. From the exact sequence

0 −→ mi+1 −→ mi −→Mi −→ 0

mi is artinian as well.
From the exact sequence

0 −→ m −→ A/I −→ (A/I)/m −→ 0

we also get that A/I is artinian. Hence A/I is both artinian and
noetherian, which implies that it has finite length.
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~���5 a. It is clear, since m is principal, and a set of generators of m/m2

over k is given by the generators of m over R modulo m2.

b. If m = m2, by Nakayama’s lemma, m = 0, so R is a field.

c. As a consequence of Nakayama’s lemma, one has that

dimk(m/m2) = minimal number of generators of m.

Then m is principal. Pick x ∈ R a generator.

Since R is artinian,
m =

√
(0) = J.

As before, there exists N so that mN = (0). Let

r := max{n ∈ N : mn ⊇ I}.

Since mN = (0) and I 6= (0), r is finite. By definition of r,
mr+1 6⊇ I.

Thus there exist y ∈ I, a ∈ R such that

y = axr and y /∈ (xr+1).

In particular a /∈ m = (x), so it is a unit in R. We then have
xr ∈ I, so mr = (xr) ⊆ I. By the above, I = (xr).

d. The ring Z/pnZ is a finite local ring with maximal ideal pZ/Z. It
is an integral domain if and only if n = 1, so a field.

e. R is artinian, since it is noetherian with just one prime ideal
(x2, x3)/(x4):
Let ℘ ⊆ R be prime. Then ℘ = ℘′/(x4), where ℘′ = (f1, . . . , fn, x

4) ⊆
k[x2, x3] prime, for some f1, . . . , fn ∈ k[x2, x3]. In particular,
x4 ∈ ℘′, so x ∈ ℘′, then

℘′ = (f1, . . . , fn, x)

and (x2, x3) ⊆ ℘′. But (x2, x3) is maximal in k[x2, x3], since the
morphism

k[x2, x3] � k

f 7→ f(0)

has kernel (x2, x3). Then ℘′ = (x2, x3). Finally, modulo x4 one
has ℘2 = 0, so dimk(℘/℘2) = 2.


