D-MATH HS 2021 Prof. E. Kowalski

Solutions 6

Commutative Algebra

(1) a. Let $N \subset M$, and write $N = N'/\mathbb{Z}$ for some $\mathbb{Z} \subseteq N' \subset \mathbb{Z}[1/p]$. Let

$$m := \max\{n \in \mathbb{N} : p^{-n}\mathbb{Z} \subseteq N'\}.$$

Then *m* is finite, if not $N' = \mathbb{Z}[1/p]$. By definition, *N* is generated over \mathbb{Z} by p^{-m} .

Now, if $a \in \mathbb{Z}$, $a \ge p^m$, we can find $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ with $|r| < p^m$ such that

$$a = p^m q + r.$$

In particular,

$$ap^{-m} \equiv rp^{-m} \mod \mathbb{Z}.$$

This means, that a representative of the coset of ap^{-m} in N is given by an element rp^{-m} , with $|r| < p^m$. Hence N is finite.

b. Note that

 $(\mathbf{2})$

$$p^{-n}\mathbb{Z} \subseteq p^{-m}\mathbb{Z}$$

if m > n. Every descendent chain is then of the form

$$p^{-n_0}\mathbb{Z} \supset p^{-n_1}\mathbb{Z} \supset \dots$$

where $n_0 > n_1 > \ldots$. The latter chain of positive integers must stabilize, hence so the above chain.

c. The following is an infinite ascendent chain in M:

$$\mathbb{Z} \subseteq p^{-1}\mathbb{Z} \subseteq p^{-2}\mathbb{Z} \subseteq \dots$$

In particular, M is not noetherian, so its length is infinite.

- a. Since ker f is a submodule of M, $\ell(\ker f) \leq \ell(M) < \infty$. Moreover, by $\operatorname{im} f \simeq M/\ker f$ one has $\ell(\operatorname{im} f) = \ell(M) \ell(\ker f) < \infty$.
- b. Assume that f is injective. Since $\ell(M) < \infty$, in particular M is artinian. Then the following descendent chain stabilizes:

$$\operatorname{im} f \supseteq \operatorname{im} f^2 \supseteq \ldots,$$

that is, there exists $t \ge 1$ such that $\inf f^t = \inf f^{t+1}$. Let $n \in M$ and let $m \in M$ such that $f^t(n) = f^{t+1}(m)$. Then

$$f^{t}(n) - f^{t}(f(m)) = 0$$
$$\implies f^{t}(n - f(m)) = 0$$
$$\stackrel{f \text{ injective}}{\Longrightarrow} n = f(m)$$
$$\implies n \in \text{ im } f.$$

If f is surjective, consider the analogous ascendent chain

$$\ker f \subseteq \ker f^2 \subseteq \dots$$

and use the fact that M is notherian.

c. Let n as above so that im $f^n = \operatorname{im} f^m$ for all $m \ge n$. Let $m \in M$ and $m' \in M$ such that $f^{n+n}(m') = f^n(m)$. Then

$$m = (m - f^n(m')) + f^n(m')$$

and

$$f^n(m - f^n(m')) = f^n(m) - f^{n+n}(m') = 0,$$

so $m - f^n(m') \ker f^n$. Hence

$$M = \ker f^n + \operatorname{im} f^n.$$

(3) a. Let $\Phi: M \to \prod_{\mathfrak{m} \subseteq A} M_{\mathfrak{m}}$. Note that if M is a simple module (i.e. $\ell(M) = 1$), $M \simeq A/\mathfrak{m}$, say, for some maximal ideal \mathfrak{m} of A, then $M_{\mathfrak{m}} \simeq A/\mathfrak{m}$. Moreover, if $\mathfrak{m}' \neq \mathfrak{m}$, then

$$M_{\mathfrak{m}'} \simeq (A/\mathfrak{m})_{\mathfrak{m}'} \simeq A_{\mathfrak{m}'}/\mathfrak{m}_{\mathfrak{m}'} = 0,$$

since $\mathfrak{m} \not\subseteq \mathfrak{m}'$. In particular, if \mathfrak{m}' and \mathfrak{m}'' are distinct maximal ideals, then $(M_{\mathfrak{m}'})_{\mathfrak{m}''} = 0$.

Now, let $n := \ell(M)$ and pick a decomposition series

$$M = M_0 \supset M_1 \supset \cdots \supset M_n = 0.$$

By localizing at \mathfrak{m} , the fact that the quotients M_i/M_{i+1} are simple and the above remarks we get

$$(M_i/M_{i+1})_{\mathfrak{m}} = \begin{cases} M_i/M_{i+1} & \text{if } \mathfrak{m} =:_A (M_i/M_{i+1}) \\ 0 & \text{otherwise.} \end{cases}$$

From this, we see that $M_{\mathfrak{m}}$ has a decomposition series corresponding to the subseries of the one for M, obtained by keeping only those $(M_i)_{\mathfrak{m}}$ such that $M_i/M_{i+1} \simeq A/\mathfrak{m}$. Consider now a maximal ideal \mathfrak{m}' and the localization of Φ :

$$\Phi_{\mathfrak{m}'}: M_{\mathfrak{m}'} \longrightarrow \prod_{\mathfrak{m} \subseteq A} (M_{\mathfrak{m}})_{\mathfrak{m}'} = (M_{\mathfrak{m}'})_{\mathfrak{m}'} = M_{\mathfrak{m}'}.$$

Then $\Phi_{\mathfrak{m}'} = \mathrm{id}_{M_{\mathfrak{m}'}}$ for every maximal ideal \mathfrak{m}' . In particular $\Phi_{\mathfrak{m}'}$ is an isomorphism of $A_{\mathfrak{m}'}$ -modules for every maximal ideal \mathfrak{m}' ; but the localization is a flat module, so the above implies that Φ is an isomorphism of A-modules (slogan: "being an isomorphism is a local property").

b. Since A is artinian, it has finite length, and there are only finitely many maximal ideals, so by part a we get an isomorphism of A-modules

$$\Phi: A \simeq \prod_{\mathfrak{m} \subseteq A} A_{\mathfrak{m}} \simeq \bigoplus_{\mathfrak{m} \subseteq A} A_{\mathfrak{m}}.$$

Since each map $A \to A_{\mathfrak{m}}$ is a morphism of rings, the isomorphism Φ is actually an isomorphism of rings.

• Assume A/I has finite length. W still denote by \mathfrak{m} the maximal ideal of A/I.

One has that A/I is also artinian, so it has Krull dimension 0. In particular, the only prime ideal in A/I is \mathfrak{m} . Then

$$J = \sqrt{(0)} = \mathfrak{m}$$

As in exercise 1 of Serie 3, there exists $n \ge 0$ so that $J^n = (0)$. Hence $\mathfrak{m}^n = (0)$ in A/I.

• Viceversa, let $\mathfrak{m}^n = (0)$ for some $n \ge 0$. One has the decomposition series in A/I

$$A/I \supseteq \mathfrak{m} \supseteq \mathfrak{m}^2 \supseteq \cdots \supseteq \mathfrak{m}^n = 0.$$

Let $M_i := \mathfrak{m}^i/\mathfrak{m}^{i+1}$ for all $i = 0, \ldots, n-1$. In particular, M_i is noetherian for all i. Since $\mathfrak{m}M_i = 0$, M_i is a $(A/I)/\mathfrak{m}$ -vector space, so it is also artinian. By a ("reverse") induction, we show that \mathfrak{m}^i is artinian for all i:

If i = n, $\mathfrak{m}^n = 0$, so it is artinian.

Assume now \mathfrak{m}^{i+1} artinian. From the exact sequence

$$0 \longrightarrow \mathfrak{m}^{i+1} \longrightarrow \mathfrak{m}^i \longrightarrow M_i \longrightarrow 0$$

 \mathfrak{m}^i is artinian as well.

 $(\mathbf{4})$

From the exact sequence

$$0 \longrightarrow \mathfrak{m} \longrightarrow A/I \longrightarrow (A/I)/\mathfrak{m} \longrightarrow 0$$

we also get that A/I is artinian. Hence A/I is both artinian and noetherian, which implies that it has finite length.

- (5) a. It is clear, since \mathfrak{m} is principal, and a set of generators of $\mathfrak{m}/\mathfrak{m}^2$ over k is given by the generators of \mathfrak{m} over R modulo \mathfrak{m}^2 .
 - b. If $\mathfrak{m} = \mathfrak{m}^2$, by Nakayama's lemma, $\mathfrak{m} = 0$, so R is a field.
 - c. As a consequence of Nakayama's lemma, one has that

$$\dim_k(\mathfrak{m}/\mathfrak{m}^2) =$$
minimal number of generators of \mathfrak{m} .

Then \mathfrak{m} is principal. Pick $x \in R$ a generator.

Since R is artinian,

$$\mathfrak{m} = \sqrt{(0)} = J.$$

As before, there exists N so that $\mathfrak{m}^N = (0)$. Let

$$r := \max\{n \in \mathbb{N} : \mathfrak{m}^n \supseteq I\}$$

Since $\mathfrak{m}^N = (0)$ and $I \neq (0)$, r is finite. By definition of r, $\mathfrak{m}^{r+1} \not\supseteq I$.

Thus there exist $y \in I$, $a \in R$ such that

$$y = ax^r$$
 and $y \notin (x^{r+1})$.

In particular $a \notin \mathfrak{m} = (x)$, so it is a unit in R. We then have $x^r \in I$, so $\mathfrak{m}^r = (x^r) \subseteq I$. By the above, $I = (x^r)$.

- d. The ring $\mathbb{Z}/p^n\mathbb{Z}$ is a finite local ring with maximal ideal $p\mathbb{Z}/\mathbb{Z}$. It is an integral domain if and only if n = 1, so a field.
- e. R is artinian, since it is noetherian with just one prime ideal $(x^2, x^3)/(x^4)$: Let $\varphi \subseteq R$ be prime. Then $\varphi = \varphi'/(x^4)$ where $\varphi' = (f_1, \dots, f_r, x^4)$

Let $\wp \subseteq R$ be prime. Then $\wp = \wp'/(x^4)$, where $\wp' = (f_1, \ldots, f_n, x^4) \subseteq k[x^2, x^3]$ prime, for some $f_1, \ldots, f_n \in k[x^2, x^3]$. In particular, $x^4 \in \wp'$, so $x \in \wp'$, then

$$\wp' = (f_1, \dots, f_n, x)$$

and $(x^2,x^3)\subseteq \wp'.$ But (x^2,x^3) is maximal in $k[x^2,x^3],$ since the morphism

$$k[x^2, x^3] \twoheadrightarrow k$$
$$f \mapsto f(0)$$

has kernel (x^2, x^3) . Then $\wp' = (x^2, x^3)$. Finally, modulo x^4 one has $\wp^2 = 0$, so $\dim_k(\wp/\wp^2) = 2$.