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Commutative Algebra

@ a. Let R := Clz,y]/(y? — 23 — ) and let K := frac(R). Since
y? — 2% — x is irreducible, K is a quadratic extension of C(z).
Moreover, K is a cubic extension of C(y). Therefore {z} and {y}
are transcendence basis fior K and so the transcendence degree is
1.

If the extension were purely transcendental, it would be equal to
C(T) fort some T'. Then there are non-constant rational functions
f and ¢ so that

F(T)? = g(T)* + g(T).

It’s easy to check that we can write

u(T)
T) —
and 1)
v
T)= )
where u,v,w € C[T]. Hence by taking the formal derivative, one
has |
/ T — po y
D=y
Define e |
g poly
h(T) .= = .
D=5y v
Similarly one gets
W(T) = poly

2u(T)? +w(T)*
If the denominator of h(T") has a root a € C, then
v(a) = 3u(a)’ +w(a) = 0.

We can assume w(a) # 0 (if not, divide both u(T") and v(T") by
T — a). Thus f(a) and g(a) are well-defined and we get
(

f(a) = 3g(a)* +1



as well as
f(a)? = g(a)® + g(a).

This is impossible. As f, g are non-constant, h is a non-zero poly-
nomial.

Now, replace f(T') and g(T') by f(1/T) and g(1/T). Then

'(1/T)
_r-2p1y1) = LW
W= 55aT)
In particular, f(1/T) and ¢g(1/7) in another pair of functions
satisfying the equation in the definition of A. But we proved that

the quotient % is a polynomial, which is impossible.

b. Let L = frac(R) and K = C. Since C is algebraically closed, it
has no nontrivial algebraic extensions, and we showed in a that
frac(R)/C is not purely transcendental.

@ Let X = {z1,...,zn} and Y = {y1,...,ym} be transcendensce basis

for L/K and E/L, respectively. The claim is that X UY is a tran-
scendence base for the extension E/K. Let a € E, then there exists
p € L[X], p # 0 so that

p(yla" . 7ymaa) =0.

Each coefficient of p is an element of L, which is algebraic over K (z1, ..., ).
Hence we can replace each coefficient of p with a non-zero polynomial

of K[X] dependent upon z1,...,x,. We can then assume p to be the
non-zero polynomial ¢ € K[X] such that

Q(l‘l,---afEn,yla---,ym,a) :0

Call g(T) = q(x1,...,Zn, Y15+« Ym, 1) € K(X UY)[T]. Thus « is
algebraic over K(X UY'), and so E is algebraic over K(X UY).

To show that X UY is a transcendence basis we have to show that it is
maximal. If v is not maximal then there exists some Z that contains
XUY, which is algebraically independent over K. So we can pick 5 € Z
such that {z —1,...,2n,y1,...,Ym, 8} is an algebraically independent
set. However, this gives us that {yi,...,ym,3} is an algebraically
independent subset of E over L, which invalidates the maximality of
Y.

a. Since R are Ry are finitely generated K-algebras, there are ¢, s >
1 and surjective morphisms

K[X1,...,X/] — Ry,

K[Xl,.‘.,XS] —)RQ.



By the universal property of tensor product and the K-algebras
isomorphism

K[Xp,...,. X)) 9 K[Xq,...,Xs] ~ K[X1,..., Xits)
we have a surjective K-algebras morphism
K[Xi,...,Xi+s] — R,

so R is finitely generated as well. It is nonzero, since tensor prod-
uct of nonzero vector spaces in nonzero.

. Assume by,...,b; € Ry are 1.d. over K, i.e. there are Ay,..., \; €
K not all zero s.t.

A1br + -+ Nby = 0.

Assume A1 # 0, then b; = )\1_1(—)\2132 — - = \by). We can then
write

t t
Z%‘@bi = Y1201 @ by + Y1301 @ b3 + - - + Y1101 ®bt+zai®bi
i=1 =2

t
:Zci@)bia

=2

for some coefficients 7;; € K and ¢; € R1. The last sum involves
only bo,...,b; in Re. Repeat this process until you just use a l.i.
set of b;’s.

. The quotient Ry /m is a finitelky generated K-algebra and a field;
then it is an algebraic extension of K, which is algebraically
closed, hence isomorphic to K. Let ¢ = m,, ® Idr,. Assume
fifa = 0. Since p(f1f2) = ¢(f1)e(f2) = 0, and Ry is an inte-
gral domain, either ¢(f1) = 0 or ¢(f2) = 0. Moreover, one has
2(f1) = X (@)t and @(f2) = 3 Tom(ci)ds. Assume o(fo) = 0.
Since the (d;) are li., we have m,(c;) = 0 for all . Similarly by
assuming ¢(f1) = 0. In any case, I; N I C m for any maximal
ideal.

. In R; the nilradical is equal to the Jacobson radical, so evey
element of I; N I is nilpotent, hence 0, since R; is an integral
domain.

. Assume f # 0. Then I # 0, pick x € I, x # 0. For every y € I,
one has zy = 0 by d. Since R; is an integral domain, one has
y = 0, hence I, = 0, so fo = 0. It means that R is an integral
domain.



@ a. Let x € Q; then there exist s > 1, a;, b; € Z, a; not all zero, b; # 0
(t=1,...,s) so that

Qa Ag_—1 _ agn
s 8 sl 4 22—

R b

Multiplying by lem(bg,...,bs), we can assume that the above
equation has coefficients in Z; call them cg,...,co. Now, if one

multiplies by ¢$~!, on gets

(Csx)s + Csfl(csx)s_l + CS,QCS(CSI‘)S_Q +--+ Coci_l =0.

Hence cox € Z.

b. We consider the case k = 1. The general one can be achieved by
induction.

Let I be the ideal of Z[y] defined by
s—1 .
I= ({Z a;y" : pla; Vi}),
=0

where s is the degree of the minimal polynomial of y over Z. The
composition ¢ of the following canonical morphisms

Z—ZY]— Zly]/I
has kernel pZ. So there is an embedding
7]pZ — Zly|/1.

The above extension is integral and I is a prime ideal. Since Z/pZ
is a field, Z[y]/I is a field as well, so I = m maximal.

c. By part a, for any ¢ = 1,..., k there exists an integer n; so that
n;y; is integral over Z. in particular, for every i there is an s; > 1
and integer coefficients not all zero so that

(niyi)si + a&-—l(”iyi)si_l +---+ap=0.

If we multiply by 1/n]", we get that y; is integral over Z[1/n;] for
all 7. So we have an integral extension

Z1/ne, .. ng) S [/, Uiy Uil

But Z[1/n1,...,1/ng] = Z[1/N], where N = lem(nq, ..., ng).
One has Z[1/N] = S7'Z, where S = {1, N,N?,...}. Since p{ N,
pZNS =10. Asin b, one can find m C Z[1/N, y] maximal so that

Z[1/N]/pZ[1/N] < Z[1/N, y]/m



is integral. On the other hand, one has that
Z/pZ — S~'Z/pS~'7Z

is integral. By composing, we have the integral extension
Z/pZ — Z[1/N,y|/m.

. Consider the ideal I C Q[X1,..., X,,] generated by fi,..., fm,
and let J = IC[Xy,...,X,]. The set Z(V(I)) is the zero locus
(inside Q[X7, ..., X,]) of V(I), which is finite, since contained in
V(J). Let then (z11,z12,...,%1n), -, (Ts1, Ts2,. .-, Tsn) be the
elements of V(I). Consider the polynomials

91(X1,~ . ,Xn) = (Xl — 1‘11) (Xl —$31)

gn(X1,.. 0, X)) = (Xn —21n) - -« (X — Zsn).

Then g; € Z(V (1)) for all ¢ and if (y1,...,yn) is in V(I), it must
be one of the points (a;1,...,a;,). By the Nullstellensatz, these
polynomials are in v/I, i.e. for all i there exists k; such that gf ‘e
I. In particular gfi € J for all 4. This means that if (y1,...,y,) €
V(J), it must be a zero of each of these polynomials, i.e. y; is

algebraic (in fact, one of aji,asi,...), y2 is algebraic (in fact,
one of aya,a9,...) and so on. Then (yi,...,y,) € V(I), whence
V(I)=V(J).

. By part c, for any z € Q there are infinitely many primes p, an
integer N > 1 so that for a maximal ideal m € Z[1/N, x|, x mod
m is in Fp' We call this reduction modulo m, reduction modulo
p of x.

Assume there are no solutions in C". By d, this is equivalent to
assume there are no algebraic solutions. By the Nullstellensatz
there are g1, ...,9m € Q[X1,..., X,] so that

afit o+ gmfm=1

The coefficients of g; are algebraic numbers. Pick then the primes
p not dividing a finite number of positive integers (the N’s of c).
We can reduce those coefficients modulo p and we get

gifi+- -+ gnfm modp=1 mod p.

Again, by the Nullstellensatz, this is equivalent to {(z;) € FZ :
[i((z))=0Vj=1,...,m} =0 for all p as above.



