D-MATH
HS 2021
Prof. E. Kowalski

Solutions 7

Commutative Algebra
(1) a. Let $R:=\mathbb{C}[x, y] /\left(y^{2}-x^{3}-x\right)$ and let $K:=\operatorname{frac}(R)$. Since $y^{2}-x^{3}-x$ is irreducible, K is a quadratic extension of $\mathbb{C}(x)$. Moreover, K is a cubic extension of $\mathbb{C}(y)$. Therefore $\{x\}$ and $\{y\}$ are transcendence basis fior K and so the transcendence degree is 1.

If the extension were purely transcendental, it would be equal to $\mathbb{C}(T)$ fort some T. Then there are non-constant rational functions f and g so that

$$
f(T)^{2}=g(T)^{3}+g(T)
$$

It's easy to check that we can write

$$
g(T)=\frac{u(T)}{w(T)^{2}}
$$

and

$$
f(T)=\frac{v(T)}{w(T)^{3}}
$$

where $u, v, w \in \mathbb{C}[T]$. Hence by taking the formal derivative, one has

$$
g^{\prime}(T)=\frac{\text { poly }}{w(T)^{3}}
$$

Define

$$
h(T):=\frac{g^{\prime}(T)}{f(T)}=\frac{\text { poly }}{v(T)} .
$$

Similarly one gets

$$
h(T)=\frac{\text { poly }}{2 u(T)^{2}+w(T)^{4}}
$$

If the denominator of $h(T)$ has a root $a \in \mathbb{C}$, then

$$
v(a)=3 u(a)^{2}+w(a)=0 .
$$

We can assume $w(a) \neq 0$ (if not, divide both $u(T)$ and $v(T)$ by $T-a)$. Thus $f(a)$ and $g(a)$ are well-defined and we get

$$
f(a)=3 g(a)^{2}+1
$$

as well as

$$
f(a)^{2}=g(a)^{3}+g(a)
$$

This is impossible. As f, g are non-constant, h is a non-zero polynomial.
Now, replace $f(T)$ and $g(T)$ by $f(1 / T)$ and $g(1 / T)$. Then

$$
-T^{-2} h(1 / T)=\frac{g^{\prime}(1 / T)}{2 f(1 / T)}
$$

In particular, $f(1 / T)$ and $g(1 / T)$ in another pair of functions satisfying the equation in the definition of h. But we proved that the quotient $\frac{g^{\prime}(1 / T)}{2 f(1 / T)}$ is a polynomial, which is impossible.
b. Let $L=\operatorname{frac}(R)$ and $K=\mathbb{C}$. Since \mathbb{C} is algebraically closed, it has no nontrivial algebraic extensions, and we showed in a that $\operatorname{frac}(R) / \mathbb{C}$ is not purely transcendental.
(2) Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{m}\right\}$ be transcendensce basis for L / K and E / L, respectively. The claim is that $X \cup Y$ is a transcendence base for the extension E / K. Let $\alpha \in E$, then there exists $p \in L[X], p \neq 0$ so that

$$
p\left(y_{1}, \ldots, y_{m}, \alpha\right)=0
$$

Each coefficient of p is an element of L, which is algebraic over $K\left(x_{1}, \ldots, x_{n}\right)$. Hence we can replace each coefficient of p with a non-zero polynomial of $K[X]$ dependent upon x_{1}, \ldots, x_{n}. We can then assume p to be the non-zero polynomial $q \in K[X]$ such that

$$
q\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}, \alpha\right)=0
$$

Call $g(T)=q\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}, T\right) \in K(X \cup Y)[T]$. Thus α is algebraic over $K(X \cup Y)$, and so E is algebraic over $K(X \cup Y)$.
To show that $X \cup Y$ is a transcendence basis we have to show that it is maximal. If v is not maximal then there exists some Z that contains $X \cup Y$, which is algebraically independent over K. So we can pick $\beta \in Z$ such that $\left\{x-1, \ldots, x_{n}, y_{1}, \ldots, y_{m}, \beta\right\}$ is an algebraically independent set. However, this gives us that $\left\{y_{1}, \ldots, y_{m}, \beta\right\}$ is an algebraically independent subset of E over L, which invalidates the maximality of Y.
a. Since R_{1} are R_{2} are finitely generated K-algebras, there are $t, s \geq$ 1 and surjective morphisms

$$
\begin{aligned}
& K\left[X_{1}, \ldots, X_{t}\right] \longrightarrow R_{1} \\
& K\left[X_{1}, \ldots, X_{s}\right] \longrightarrow R_{2} .
\end{aligned}
$$

By the universal property of tensor product and the K-algebras isomorphism

$$
K\left[X_{1}, \ldots, X_{t}\right] \otimes_{K} K\left[X_{1}, \ldots, X_{s}\right] \simeq K\left[X_{1}, \ldots, X_{t+s}\right]
$$

we have a surjective K-algebras morphism

$$
K\left[X_{1}, \ldots, X_{t+s}\right] \longrightarrow R
$$

so R is finitely generated as well. It is nonzero, since tensor product of nonzero vector spaces in nonzero.
b. Assume $b_{1}, \ldots, b_{t} \in R_{2}$ are l.d. over K, i.e. there are $\lambda_{1}, \ldots, \lambda_{t} \in$ K not all zero s.t.

$$
\lambda_{1} b_{1}+\cdots+\lambda_{t} b_{t}=0
$$

Assume $\lambda_{1} \neq 0$, then $b_{1}=\lambda_{1}^{-1}\left(-\lambda_{2} b_{2}-\cdots-\lambda_{t} b_{t}\right)$. We can then write

$$
\begin{aligned}
\sum_{i=1}^{t} a_{i} \otimes b_{i} & =\gamma_{12} a_{1} \otimes b_{2}+\gamma_{13} a_{1} \otimes b_{3}+\cdots+\gamma_{1 t} a_{1} \otimes b_{t}+\sum_{i=2}^{t} a_{i} \otimes b_{i} \\
& =\sum_{i=2}^{t} c_{i} \otimes b_{i}
\end{aligned}
$$

for some coefficients $\gamma_{i j} \in K$ and $c_{i} \in R_{1}$. The last sum involves only b_{2}, \ldots, b_{t} in R_{2}. Repeat this process until you just use a l.i. set of b_{i} 's.
c. The quotient R_{1} / m is a finitelky generated K-algebra and a field; then it is an algebraic extension of K, which is algebraically closed, hence isomorphic to K. Let $\varphi=\pi_{m} \otimes \operatorname{Id}_{R_{2}}$. Assume $f_{1} f_{2}=0$. Since $\varphi\left(f_{1} f_{2}\right)=\varphi\left(f_{1}\right) \varphi\left(f_{2}\right)=0$, and R_{2} is an integral domain, either $\varphi\left(f_{1}\right)=0$ or $\varphi\left(f_{2}\right)=0$. Moreover, one has $\varphi\left(f_{1}\right)=\sum \pi_{m}\left(a_{i}\right) b_{i}$ and $\varphi\left(f_{2}\right)=\sum \pi_{m}\left(c_{i}\right) d_{i}$. Assume $\varphi\left(f_{2}\right)=0$. Since the $\left(d_{i}\right)$ are l.i., we have $\pi_{m}\left(c_{i}\right)=0$ for all i. Similarly by assuming $\varphi\left(f_{1}\right)=0$. In any case, $I_{1} \cap I_{2} \subseteq m$ for any maximal ideal.
d. In R_{1} the nilradical is equal to the Jacobson radical, so evey element of $I_{1} \cap I_{2}$ is nilpotent, hence 0 , since R_{1} is an integral domain.
e. Assume $f \neq 0$. Then $I_{1} \neq 0$, pick $x \in I_{1}, x \neq 0$. For every $y \in I_{2}$, one has $x y=0$ by d. Since R_{1} is an integral domain, one has $y=0$, hence $I_{2}=0$, so $f_{2}=0$. It means that R is an integral domain.
(4) a. Let $x \in \overline{\mathbb{Q}}$; then there exist $s \geq 1, a_{i}, b_{i} \in \mathbb{Z}, a_{i}$ not all zero, $b_{i} \neq 0$ $(i=1, \ldots, s)$ so that

$$
\frac{a_{s}}{b_{s}} x^{s}+\frac{a_{s-1}}{b_{s-1}} x^{s-1}+\cdots+\frac{a_{0}}{b_{0}}=0
$$

Multiplying by $\operatorname{lcm}\left(b_{0}, \ldots, b_{s}\right)$, we can assume that the above equation has coefficients in \mathbb{Z}; call them c_{s}, \ldots, c_{0}. Now, if one multiplies by c_{s}^{s-1}, on gets

$$
\left(c_{s} x\right)^{s}+c_{s-1}\left(c_{s} x\right)^{s-1}+c_{s-2} c_{s}\left(c_{s} x\right)^{s-2}+\cdots+c_{0} c_{s}^{s-1}=0
$$

Hence $c_{s} x \in \overline{\mathbb{Z}}$.
b. We consider the case $k=1$. The general one can be achieved by induction.
Let I be the ideal of $\mathbb{Z}[y]$ defined by

$$
I=\left(\left\{\sum_{i=0}^{s-1} a_{i} y^{i}: p \mid a_{i} \forall i\right\}\right)
$$

where s is the degree of the minimal polynomial of y over \mathbb{Z}. The composition ϕ of the following canonical morphisms

$$
\mathbb{Z} \hookrightarrow \mathbb{Z}[Y] \rightarrow \mathbb{Z}[y] / I
$$

has kernel $p \mathbb{Z}$. So there is an embedding

$$
\mathbb{Z} / p \mathbb{Z} \hookrightarrow \mathbb{Z}[y] / I
$$

The above extension is integral and I is a prime ideal. Since $\mathbb{Z} / p \mathbb{Z}$ is a field, $\mathbb{Z}[y] / I$ is a field as well, so $I=m$ maximal.
c. By part a, for any $i=1, \ldots, k$ there exists an integer n_{i} so that $n_{i} y_{i}$ is integral over \mathbb{Z}. in particular, for every i there is an $s_{i} \geq 1$ and integer coefficients not all zero so that

$$
\left(n_{i} y_{i}\right) s_{i}+a_{s_{i}-1}\left(n_{i} y_{i}\right)^{s_{i}-1}+\cdots+a_{0}=0 .
$$

If we multiply by $1 / n_{i}^{s_{i}}$, we get that y_{i} is integral over $\mathbb{Z}\left[1 / n_{i}\right]$ for all i. So we have an integral extension

$$
\mathbb{Z}\left[1 / n_{1}, \ldots, 1 / n_{k}\right] \subseteq \mathbb{Z}\left[1 / n_{1}, \ldots, 1 / n_{k}, y_{1}, \ldots, y_{k}\right]
$$

But $\mathbb{Z}\left[1 / n_{1}, \ldots, 1 / n_{k}\right]=\mathbb{Z}[1 / N]$, where $N=\operatorname{lcm}\left(n_{1}, \ldots, n_{k}\right)$.
One has $\mathbb{Z}[1 / N]=S^{-1} \mathbb{Z}$, where $S=\left\{1, N, N^{2}, \ldots\right\}$. Since $p \nmid N$, $p \mathbb{Z} \cap S=\emptyset$. As in b, one can find $m \subseteq \mathbb{Z}[1 / N, y]$ maximal so that

$$
\mathbb{Z}[1 / N] / p \mathbb{Z}[1 / N] \hookrightarrow \mathbb{Z}[1 / N, y] / m
$$

is integral. On the other hand, one has that

$$
\mathbb{Z} / p \mathbb{Z} \hookrightarrow S^{-1} \mathbb{Z} / p S^{-1} \mathbb{Z}
$$

is integral. By composing, we have the integral extension

$$
\mathbb{Z} / p \mathbb{Z} \hookrightarrow \mathbb{Z}[1 / N, y] / m
$$

d. Consider the ideal $I \subseteq \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right]$ generated by f_{1}, \ldots, f_{m}, and let $J=I \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$. The set $Z(V(I))$ is the zero locus (inside $\left.\overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right]\right)$ of $V(I)$, which is finite, since contained in $V(J)$. Let then $\left(x_{11}, x_{12}, \ldots, x_{1 n}\right), \ldots,\left(x_{s 1}, x_{s 2}, \ldots, x_{s n}\right)$ be the elements of $V(I)$. Consider the polynomials

$$
\begin{aligned}
g_{1}\left(X_{1}, \ldots, X_{n}\right) & =\left(X_{1}-x_{11}\right) \ldots\left(X_{1}-x_{s 1}\right) \\
\vdots & \\
g_{n}\left(X_{1}, \ldots, X_{n}\right) & =\left(X_{n}-x_{1 n}\right) \ldots\left(X_{n}-x_{s n}\right) .
\end{aligned}
$$

Then $g_{i} \in Z(V(I))$ for all i and if $\left(y_{1}, \ldots, y_{n}\right)$ is in $V(I)$, it must be one of the points $\left(a_{i 1}, \ldots, a_{i n}\right)$. By the Nullstellensatz, these polynomials are in \sqrt{I}, i.e. for all i there exists k_{i} such that $g_{i}^{k_{i}} \in$ I. In particular $g_{i}^{k_{i}} \in J$ for all i. This means that if $\left(y_{1}, \ldots, y_{n}\right) \in$ $V(J)$, it must be a zero of each of these polynomials, i.e. y_{1} is algebraic (in fact, one of a_{11}, a_{21}, \ldots), y_{2} is algebraic (in fact, one of $\left.a_{12}, a_{22}, \ldots\right)$ and so on. Then $\left(y_{1}, \ldots, y_{n}\right) \in V(I)$, whence $V(I)=V(J)$.
e. By part c, for any $x \in \overline{\mathbb{Q}}$ there are infinitely many primes p, an integer $N \geq 1$ so that for a maximal ideal $m \in \mathbb{Z}[1 / N, x], x \bmod$ m is in $\overline{\mathbb{F}}_{p}$. We call this reduction modulo m, reduction modulo p of x.
Assume there are no solutions in \mathbb{C}^{n}. By d, this is equivalent to assume there are no algebraic solutions. By the Nullstellensatz there are $g_{1}, \ldots, g_{m} \in \mathbb{\mathbb { Q }}\left[X_{1}, \ldots, X_{n}\right]$ so that

$$
g_{1} f_{1}+\cdots+g_{m} f_{m}=1 .
$$

The coefficients of g_{i} are algebraic numbers. Pick then the primes p not dividing a finite number of positive integers (the N 's of c). We can reduce those coefficients modulo p and we get

$$
g_{1} f_{1}+\cdots+g_{m} f_{m} \quad \bmod p=1 \quad \bmod p
$$

Again, by the Nullstellensatz, this is equivalent to $\left\{\left(x_{i}\right) \in \overline{\mathbb{F}}_{p}^{n}\right.$: $\left.f_{j}\left(\left(x_{i}\right)\right)=0 \forall j=1, \ldots, m\right\}=\emptyset$ for all p as above.

