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~�
��1 a. Let R := C[x, y]/(y2 − x3 − x) and let K := frac(R). Since
y2 − x3 − x is irreducible, K is a quadratic extension of C(x).
Moreover, K is a cubic extension of C(y). Therefore {x} and {y}
are transcendence basis fior K and so the transcendence degree is
1.
If the extension were purely transcendental, it would be equal to
C(T ) fort some T . Then there are non-constant rational functions
f and g so that

f(T )2 = g(T )3 + g(T ).

It’s easy to check that we can write

g(T ) =
u(T )

w(T )2

and
f(T ) =

v(T )

w(T )3
,

where u, v, w ∈ C[T ]. Hence by taking the formal derivative, one
has

g′(T ) =
poly
w(T )3

.

Define
h(T ) :=

g′(T )

f(T )
=

poly
v(T )

.

Similarly one gets

h(T ) =
poly

2u(T )2 + w(T )4
.

If the denominator of h(T ) has a root a ∈ C, then

v(a) = 3u(a)2 + w(a) = 0.

We can assume w(a) 6= 0 (if not, divide both u(T ) and v(T ) by
T − a). Thus f(a) and g(a) are well-defined and we get

f(a) = 3g(a)2 + 1
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as well as
f(a)2 = g(a)3 + g(a).

This is impossible. As f, g are non-constant, h is a non-zero poly-
nomial.
Now, replace f(T ) and g(T ) by f(1/T ) and g(1/T ). Then

−T−2h(1/T ) = g′(1/T )

2f(1/T )
.

In particular, f(1/T ) and g(1/T ) in another pair of functions
satisfying the equation in the definition of h. But we proved that
the quotient g′(1/T )

2f(1/T ) is a polynomial, which is impossible.

b. Let L = frac(R) and K = C. Since C is algebraically closed, it
has no nontrivial algebraic extensions, and we showed in a that
frac(R)/C is not purely transcendental.~�
��2 Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be transcendensce basis

for L/K and E/L, respectively. The claim is that X ∪ Y is a tran-
scendence base for the extension E/K. Let α ∈ E, then there exists
p ∈ L[X], p 6= 0 so that

p(y1, . . . , ym, α) = 0.

Each coefficient of p is an element of L, which is algebraic overK(x1, . . . , xn).
Hence we can replace each coefficient of p with a non-zero polynomial
of K[X] dependent upon x1, . . . , xn. We can then assume p to be the
non-zero polynomial q ∈ K[X] such that

q(x1, . . . , xn, y1, . . . , ym, α) = 0.

Call g(T ) = q(x1, . . . , xn, y1, . . . , ym, T ) ∈ K(X ∪ Y )[T ]. Thus α is
algebraic over K(X ∪ Y ), and so E is algebraic over K(X ∪ Y ).
To show that X ∪Y is a transcendence basis we have to show that it is
maximal. If v is not maximal then there exists some Z that contains
X∪Y , which is algebraically independent overK. So we can pick β ∈ Z
such that {x− 1, . . . , xn, y1, . . . , ym, β} is an algebraically independent
set. However, this gives us that {y1, . . . , ym, β} is an algebraically
independent subset of E over L, which invalidates the maximality of
Y .~�
��3 a. Since R1 are R2 are finitely generated K-algebras, there are t, s ≥

1 and surjective morphisms

K[X1, . . . , Xt] −→ R1,

K[X1, . . . , Xs] −→ R2.
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By the universal property of tensor product and the K-algebras
isomorphism

K[X1, . . . , Xt]⊗K K[X1, . . . , Xs] ' K[X1, . . . , Xt+s],

we have a surjective K-algebras morphism

K[X1, . . . , Xt+s] −→ R,

so R is finitely generated as well. It is nonzero, since tensor prod-
uct of nonzero vector spaces in nonzero.

b. Assume b1, . . . , bt ∈ R2 are l.d. over K, i.e. there are λ1, . . . , λt ∈
K not all zero s.t.

λ1b1 + · · ·+ λtbt = 0.

Assume λ1 6= 0, then b1 = λ−11 (−λ2b2 − · · · − λtbt). We can then
write

t∑
i=1

ai ⊗ bi = γ12a1 ⊗ b2 + γ13a1 ⊗ b3 + · · ·+ γ1ta1 ⊗ bt +
t∑

i=2

ai ⊗ bi

=

t∑
i=2

ci ⊗ bi,

for some coefficients γij ∈ K and ci ∈ R1. The last sum involves
only b2, . . . , bt in R2. Repeat this process until you just use a l.i.
set of bi’s.

c. The quotient R1/m is a finitelky generated K-algebra and a field;
then it is an algebraic extension of K, which is algebraically
closed, hence isomorphic to K. Let ϕ = πm ⊗ IdR2 . Assume
f1f2 = 0. Since ϕ(f1f2) = ϕ(f1)ϕ(f2) = 0, and R2 is an inte-
gral domain, either ϕ(f1) = 0 or ϕ(f2) = 0. Moreover, one has
ϕ(f1) =

∑
πm(ai)bi and ϕ(f2) =

∑
πm(ci)di. Assume ϕ(f2) = 0.

Since the (di) are l.i., we have πm(ci) = 0 for all i. Similarly by
assuming ϕ(f1) = 0. In any case, I1 ∩ I2 ⊆ m for any maximal
ideal.

d. In R1 the nilradical is equal to the Jacobson radical, so evey
element of I1 ∩ I2 is nilpotent, hence 0, since R1 is an integral
domain.

e. Assume f 6= 0. Then I1 6= 0, pick x ∈ I1, x 6= 0. For every y ∈ I2,
one has xy = 0 by d. Since R1 is an integral domain, one has
y = 0, hence I2 = 0, so f2 = 0. It means that R is an integral
domain.
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~�
��4 a. Let x ∈ Q; then there exist s ≥ 1, ai, bi ∈ Z, ai not all zero, bi 6= 0
(i = 1, . . . , s) so that

as
bs
xs +

as−1
bs−1

xs−1 + · · ·+ a0
b0

= 0.

Multiplying by lcm(b0, . . . , bs), we can assume that the above
equation has coefficients in Z; call them cs, . . . , c0. Now, if one
multiplies by cs−1s , on gets

(csx)
s + cs−1(csx)

s−1 + cs−2cs(csx)
s−2 + · · ·+ c0c

s−1
s = 0.

Hence csx ∈ Z.
b. We consider the case k = 1. The general one can be achieved by

induction.
Let I be the ideal of Z[y] defined by

I = ({
s−1∑
i=0

aiy
i : p|ai ∀i}),

where s is the degree of the minimal polynomial of y over Z. The
composition φ of the following canonical morphisms

Z ↪→ Z[Y ] � Z[y]/I

has kernel pZ. So there is an embedding

Z/pZ ↪→ Z[y]/I.

The above extension is integral and I is a prime ideal. Since Z/pZ
is a field, Z[y]/I is a field as well, so I = m maximal.

c. By part a, for any i = 1, . . . , k there exists an integer ni so that
niyi is integral over Z. in particular, for every i there is an si ≥ 1
and integer coefficients not all zero so that

(niyi)si + asi−1(niyi)
si−1 + · · ·+ a0 = 0.

If we multiply by 1/nsii , we get that yi is integral over Z[1/ni] for
all i. So we have an integral extension

Z[1/n1, . . . , 1/nk] ⊆ Z[1/n1, . . . , 1/nk, y1, . . . , yk].

But Z[1/n1, . . . , 1/nk] = Z[1/N ], where N = lcm(n1, . . . , nk).
One has Z[1/N ] = S−1Z, where S = {1, N,N2, . . . }. Since p - N ,
pZ∩S = ∅. As in b, one can find m ⊆ Z[1/N, y] maximal so that

Z[1/N ]/pZ[1/N ] ↪→ Z[1/N, y]/m
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is integral. On the other hand, one has that

Z/pZ ↪→ S−1Z/pS−1Z

is integral. By composing, we have the integral extension

Z/pZ ↪→ Z[1/N, y]/m.

d. Consider the ideal I ⊆ Q[X1, . . . , Xn] generated by f1, . . . , fm,
and let J = IC[X1, . . . , Xn]. The set Z(V (I)) is the zero locus
(inside Q[X1, . . . , Xn]) of V (I), which is finite, since contained in
V (J). Let then (x11, x12, . . . , x1n), . . . , (xs1, xs2, . . . , xsn) be the
elements of V (I). Consider the polynomials

g1(X1, . . . , Xn) = (X1 − x11) . . . (X1 − xs1)
...

gn(X1, . . . , Xn) = (Xn − x1n) . . . (Xn − xsn).

Then gi ∈ Z(V (I)) for all i and if (y1, . . . , yn) is in V (I), it must
be one of the points (ai1, . . . , ain). By the Nullstellensatz, these
polynomials are in

√
I, i.e. for all i there exists ki such that gkii ∈

I. In particular gkii ∈ J for all i. This means that if (y1, . . . , yn) ∈
V (J), it must be a zero of each of these polynomials, i.e. y1 is
algebraic (in fact, one of a11, a21, . . . ), y2 is algebraic (in fact,
one of a12, a22, . . . ) and so on. Then (y1, . . . , yn) ∈ V (I), whence
V (I) = V (J).

e. By part c, for any x ∈ Q there are infinitely many primes p, an
integer N ≥ 1 so that for a maximal ideal m ∈ Z[1/N, x], x mod
m is in Fp. We call this reduction modulo m, reduction modulo
p of x.
Assume there are no solutions in Cn. By d, this is equivalent to
assume there are no algebraic solutions. By the Nullstellensatz
there are g1, . . . , gm ∈ Q[X1, . . . , Xn] so that

g1f1 + · · ·+ gmfm = 1.

The coefficients of gi are algebraic numbers. Pick then the primes
p not dividing a finite number of positive integers (the N ’s of c).
We can reduce those coefficients modulo p and we get

g1f1 + · · ·+ gmfm mod p = 1 mod p.

Again, by the Nullstellensatz, this is equivalent to {(xi) ∈ Fn
p :

fj((xi)) = 0 ∀j = 1, . . . ,m} = ∅ for all p as above.


