Exercise Sheet 1

Exercise 1.(Unitary Operators):

Let \mathcal{H} be a Hilbert space and $U(\mathcal{H})$ its group of unitary operators. Show that the weak operator topology coincides with the strong operator topology on $U(\mathcal{H})$.

Exercise 2.(Compact-Open Topology):

Let X, Y, Z be topological space, and denote by $C(Y, X) := \{f : Y \to X \text{ continuous}\}$ the set of continuous maps from Y to X. The set C(Y, X) can be endowed with the *compact-open topology*, that is generated by the subbasic sets

$$S(K, U) := \{ f \in C(Y, X) | f(K) \subseteq U \},$$

where $K \subseteq Y$ is compact and $U \subseteq X$ is open.

Prove the following useful facts about the compact-open topology. If *Y* is locally compact, then:

- a) The evaluation map $e: C(Y, X) \times Y \to X, e(f, y) := f(y)$, is continuous.
- b) A map $f: Y \times Z \to X$ is continuous if and only if the map

$$\hat{f}: Z \to C(Y,X), \hat{f}(z)(y) = f(y,z),$$

is continuous.

Exercise 3.(General Linear Group $GL(n, \mathbb{R})$):

The general linear group

$$GL(n, \mathbb{R}) := \{ A \in \mathbb{R}^{n \times n} | \det A \neq 0 \} \subseteq \mathbb{R}^{n \times n}$$

is naturally endowed with the subspace topology of $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$. However, it can also be seen as a subset of the space of homeomorphisms of \mathbb{R}^n via the injection

$$j: \operatorname{GL}(n, \mathbb{R}) \to \operatorname{Homeo}(\mathbb{R}^n),$$

 $A \mapsto (x \mapsto Ax).$

- a) Show that $j(GL(n,\mathbb{R})) \subset Homeo(\mathbb{R}^n)$ is a closed subset, where $Homeo(\mathbb{R}^n) \subset C(\mathbb{R}^n,\mathbb{R}^n)$ is endowed with the compact-open topology.
- b) If we identify $GL(n, \mathbb{R})$ with its image $j(GL(n, \mathbb{R})) \subset Homeo(\mathbb{R}^n)$ we can endow it with the induced subspace topology. Show that this topology coincides with

the usual topology coming from the inclusion $GL(n, \mathbb{R}) \subset \mathbb{R}^{n \times n}$.

Hint: Exercise 2 can be useful here.

Exercise 4.(Isometry Group Iso(X)):

Let (X, d) be a *compact* metric space. Recall that the isometry group of X is defined as

$$Iso(X) = \{ f \in Homeo(X) : d(f(x), f(y)) = d(x, y) \text{ for all } x, y \in X \}.$$

Show that $Iso(X) \subset Homeo(X)$ is compact with respect to the compact-open topology.

<u>Hint:</u> Use the fact that the compact-open topology is induced by the metric of uniform-convergence and apply Arzelà–Ascoli's theorem.

Exercise 5.(p-adic Integers \mathbb{Z}_p):

Let $p \in \mathbb{N}$ be a prime number. Recall that the p-adic integers \mathbb{Z}_p can be seen as the subspace

$$\left\{ (a_n)_{n\in\mathbb{N}} \in \prod_{n\in\mathbb{N}} \mathbb{Z}/p^n\mathbb{Z} : a_{n+1} \equiv a_n \pmod{p^n} \right\}$$

of the infinite product $\prod_{n\in\mathbb{N}} \mathbb{Z}/p^n\mathbb{Z}_p$ carrying the induced topology. Note that each $\mathbb{Z}/p^n\mathbb{Z}$ carries the discrete topology and $\prod_{n\in\mathbb{N}} \mathbb{Z}/p^n\mathbb{Z}$ is endowed with the resulting product topology.

a) Show that the image of \mathbb{Z} via the embedding

$$\iota: \mathbb{Z} \to \mathbb{Z}_p,$$

$$x \mapsto (x \pmod p^n)_{n \in \mathbb{N}}$$

is dense. In particular, \mathbb{Z}_p is a compactification of \mathbb{Z} .

b) Show that the 2-adic integers \mathbb{Z}_2 are homeomorphic to the "middle thirds" cantor set

$$C = \left\{ \sum_{n=1}^{\infty} \varepsilon_n 3^{-n} : \varepsilon_n \in \{0, 2\} \text{ for each } n \in \mathbb{N} \right\} \subset [0, 1].$$

Exercise 6^{\dagger} .(Homeomorphism Group Homeo(X)):

- a) Let X be a *compact* Hausdorff space. Show that (Homeo(X), \circ) is a topological group when endowed with the compact-open topology.
- b) Let $\mathbb{S}^1 \subset \mathbb{C}\setminus\{0\}$ denote the circle. Show that Homeo(\mathbb{S}^1) is not locally compact. Remark: In fact, Homeo(M) is not locally compact for any manifold M.