Exercise Sheet 2

Exercise 1 (Transitive Group Actions). Let G be a topological group, X a topological space and $\mu: G \times X \rightarrow X$ a continuous transitive group action, i.e. for any two $x, y \in X$ there is $g \in G$ such that $\mu(g, x)=g \cdot x=y$.
a) Show that if G is compact then X is compact.
b) Show that if G is connected then X is connected.

Exercise 2 (Examples of Haar Measures). a) Let us consider the three-dimensional Heisenberg group $H=\mathbb{R} \rtimes_{\eta} \mathbb{R}^{2}$, where $\eta: \mathbb{R} \rightarrow \operatorname{Aut}\left(\mathbb{R}^{2}\right)$ is defined by

$$
\eta(x)\binom{y}{z}=\binom{y}{z+x y}
$$

for all $x, y, z \in \mathbb{R}$. Thus the group operation is given by

$$
\left(x_{1}, y_{1}, z_{1}\right) *\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+x_{1} y_{2}\right)
$$

and it is easy to see that it can be identified with the matrix group

$$
H \cong\left\{\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right): x, y, z \in \mathbb{R}\right\}
$$

Verify that the Lebesgue measure is the Haar measure of $\mathbb{R} \rtimes_{\eta} \mathbb{R}^{2}$ and that the group is unimodular.
b) Let

$$
P=\left\{\left(\begin{array}{cc}
a & b \\
0 & a^{-1}
\end{array}\right): a, b \in \mathbb{R}, a \neq 0\right\}
$$

Show that $\frac{d a}{a^{2}} d b$ is the left Haar measure and $d a d b$ is the right Haar measure. In particular, P is not unimodular.
c) Let $G:=\operatorname{GL}_{n}(\mathbb{R}) \subseteq \mathbb{R}^{n^{2}}$ denote the group of invertible matrices over \mathbb{R}. Let $\lambda_{n^{2}}$ denote the Lebesgue measure on $\mathbb{R}^{n^{2}}$. Prove that

$$
\mathrm{d} m(x):=|\operatorname{det} x|^{-n} \mathrm{~d} \lambda_{n^{2}}(x)
$$

defines a bi-invariant (i.e. left- and right-invariant) Haar measure on G.
d) Let $G=\mathrm{SL}_{n}(\mathbb{R})$ denote the group of matrices of determinant 1 in $\mathbb{R}^{n \times n}$. For a Borel subset $B \subseteq \mathrm{SL}_{n}(\mathbb{R})$ define

$$
m(B):=\lambda_{n^{2}}(\{t g ; g \in B, t \in[0,1]\})
$$

Show that m is a well-defined bi-invariant Haar measure on $\mathrm{SL}_{n}(\mathbb{R})$.
e) Let G denote the $a x+b$ group defined as

$$
G=\left\{\left(\begin{array}{ll}
a & b \\
& 1
\end{array}\right) ; a \in \mathbb{R}^{\times}, b \in \mathbb{R}\right\}
$$

Note that every element in G can be written in a unique fashion as a product of the form:

$$
\left(\begin{array}{ll}
a & b \\
& 1
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \\
& 1
\end{array}\right)\left(\begin{array}{ll}
1 & \beta \\
& 1
\end{array}\right)
$$

where $\alpha \in \mathbb{R}^{\times}$and $\beta \in \mathbb{R}$, which yields a coordinate system $\mathbb{R}^{\times} \times \mathbb{R} \leftrightarrow G$. Prove that

$$
\mathrm{d} m(\alpha, \beta)=\frac{1}{|\alpha|} \mathrm{d} \alpha \mathrm{~d} \beta
$$

defines a left Haar measure on G. Calculate $\Delta_{G}(\alpha, \beta)$ for $\alpha \in \mathbb{R}^{\times}$and $\beta \in \mathbb{R}$.
Exercise 3 (Haar Measure and Transitive Actions). Let G be a locally compact Hausdorff group and let X be a topological space. Suppose that G acts on X continuously and transitively. Let $o \in X$, and denote $\pi: G \rightarrow X, g \mapsto g \cdot o$. Further, let

$$
H:=\operatorname{Stab}(o)=\{h \in G \mid h \cdot o=o\}
$$

be the stabilizer of o.
Suppose there is a continuous section $\sigma: X \rightarrow G$ of π, i.e. $\pi \circ \sigma=\operatorname{Id}_{X}$.
a) Show that $\psi: X \times H \rightarrow G,(x, h) \mapsto \sigma(x) h$ is a homeomorphism.

Hint: Find a continuous inverse!
b) Suppose there is a (left) Haar measure ν on H and suppose there is a left G-invariant Borel regular measure λ on X.
Show that the push-forward measure $\psi_{*}(\lambda \otimes \nu)$ is a (left) Haar measure on G.
c) Find a Haar measure on $\operatorname{Iso}\left(\mathbb{R}^{2}\right)$.

Exercise $4\left(\operatorname{Aut}\left(\mathbb{R}^{n},+\right) \cong \mathrm{GL}(n, \mathbb{R})\right)$. For a topological group G, we denote by $\operatorname{Aut}(G)$ the group of bijective, continuous homomorphisms of G with continuous inverse. Consider the locally compact Hausdorff group $G=\left(\mathbb{R}^{n},+\right)$ where $n \in \mathbb{N}_{0}$.
a) Show that $\operatorname{Aut}(G)$, i.e. the group of bijective homomorphisms which are homeomorphisms as well, is given by $\mathrm{GL}_{n}(\mathbb{R})$.
b) Show that $\bmod : \operatorname{Aut}(G) \rightarrow \mathbb{R}_{>0}$ is given by $\alpha \mapsto|\operatorname{det} \alpha|$.

Remark. By the definition given in the lecture $\bmod (\alpha)$ is the unique positive real number such that $m(\alpha \cdot f)=\bmod (\alpha) m(f)$ for all $f \in C_{c}(G), m$ left-Haar measure on G. This definitions may differ by an inverse from other definitions in the literature.
c) Prove that there exists a discontinuous, bijective homomorphism from the additive group $(\mathbb{R},+)$ to itself.

Exercise 5 (Iterated Quotient Measures). Let G be a locally compact Hausdorff group. Show that if $H_{1} \leq H_{2} \leq G$ are closed subgroups and H_{1}, H_{2}, G are all unimodular then there exist invariant measures $d x, d y, d z$ on $G / H_{1}, G / H_{2}$ and H_{2} / H_{1} respectively such that

$$
\int_{G / H_{1}} f(x) d x=\int_{G / H_{2}}\left(\int_{H_{2} / H_{1}} f(y z) d z\right) d y
$$

for all $f \in C_{c}\left(G / H_{1}\right)$.
Exercise 6 (No SL $2(\mathbb{R})$-invariant Measure on $\left.\mathrm{SL}_{2}(\mathbb{R}) / P\right)$. Let $G=\mathrm{SL}_{2}(\mathbb{R})$ and P be the subgroup of upper triangular matrices. Show directly that there is no (non-trivial) finite G-invariant measure on G / P.

Hint: Identify $G / P \cong \mathbb{S}^{1} \cong \mathbb{R} \cup\{\infty\}$ with the unit circle and consider a rotation

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

and a translation

$$
\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) .
$$

