Exercise Sheet 6

Exercise 1 (Isomorphism theorems for Lie algebras). Let \mathfrak{g} be a Lie algebra.

a) Let $\mathfrak{h} \leq \mathfrak{g}$ be an ideal. Show that

$$[X + \mathfrak{h}, Y + \mathfrak{h}] := [X, Y] + \mathfrak{h}$$

defines a Lie algebra structure on $\mathfrak{g}/\mathfrak{h}$.

b) Show that if $\varphi : \mathfrak{g} \to \mathfrak{h}$ is a Lie algebra homomorphism then

$$\mathfrak{g}/\ker\varphi \cong \mathrm{im}\varphi$$

as Lie algebras.

c) Let $\mathfrak{h} \subseteq \mathfrak{I}$ be ideals of \mathfrak{g} . Show that

$$\mathfrak{I}/\mathfrak{h} \leq \mathfrak{g}/\mathfrak{h}$$
 and $(\mathfrak{g}/\mathfrak{h})/(\mathfrak{I}/\mathfrak{h}) \cong \mathfrak{g}/\mathfrak{I}$.

d) Let \mathfrak{h} and \mathfrak{I} be ideals of \mathfrak{g} . Show that $\mathfrak{h} + \mathfrak{I}$ and $\mathfrak{h} \cap \mathfrak{I}$ are ideals in \mathfrak{g} , and that

$$\mathfrak{h}/(\mathfrak{h}\cap\mathfrak{I})\cong(\mathfrak{h}+\mathfrak{I})/\mathfrak{I}$$

- **Exercise 2** (Solvable Lie algebras). a) Show that Lie subalgebras and homomorphic images of solvable Lie algebras are solvable.
 - b) Show that if \mathfrak{h} and \mathfrak{I} are solvable ideals of a Lie algebra \mathfrak{g} then $\mathfrak{h} + \mathfrak{I}$ is a solvable ideal. <u>Hint:</u> Use exercise 1. d).
 - c) Deduce that every Lie algebra contains a unique maximal solvable ideal.

Exercise 3 (Quotients of Lie groups). Let G be a Lie group and let $K \leq G$ be a closed normal subgroup.

Show that G/K can be equipped with a Lie group structure such that the quotient map $\pi: G \to G/K$ is a surjective Lie group homomorphism with kernel K.

Exercise 4 (Common eigenvectors). Let G be a connected Lie group and let $\pi: G \to GL(V)$ be a finite-dimensional complex representation.

A common eigenvector of $\{\pi(g) : g \in G\}$ is a vector $v \in V$ such that there is a smooth homomorphism $\chi : G \to \mathbb{C}$ with $\pi(g)v = \chi(g) \cdot v$ for all $g \in G$. Similarly, a common eigenvector of $\{d_e\pi(X) : X \in \mathfrak{g}\}$ is a vector $v \in V$ such that there is a linear functional $\lambda : \mathfrak{g} \to \mathbb{C}$ with $d_e\pi(X)v = \lambda(X) \cdot v$ for all $X \in \mathfrak{g}$.

Show that a vector $v \in V$ is a common eigenvector of $\{d_e \pi(X) : X \in \mathfrak{g}\}$ if and only if it is a common eigenvector of $\{\pi(g) : g \in G\}$. Moreover, show that $\chi(\exp(X)) = e^{\lambda(X)}$ for all $X \in \mathfrak{g}$ (with $\chi: G \to \mathbb{C}$ and $\lambda: \mathfrak{g} \to \mathbb{C}$ as above).

Exercise 5 (Weight spaces and ideals). Let \mathfrak{g} be a Lie algebra, let $\mathfrak{h} \leq \mathfrak{g}$ be an ideal and let $\pi: \mathfrak{g} \to \mathfrak{gl}(V)$ a finite-dimensional complex representation. For a given linear functional $\lambda: \mathfrak{h} \to \mathbb{C}$ consider its weight space

$$V_{\lambda}^{\mathfrak{h}} \coloneqq \{ v \in V \, | \, \pi(X)v = \lambda(X)v \quad \forall X \in \mathfrak{h} \}.$$

Show that every weight space $V_{\lambda}^{\mathfrak{h}}$ is invariant under $\pi(\mathfrak{g})$, i.e. $\pi(Y)V_{\lambda}^{\mathfrak{h}} \subseteq V_{\lambda}^{\mathfrak{h}}$ for every $\lambda \in \mathfrak{h}^*, Y \in \mathfrak{g}$.

Exercise 6 (Lie's theorem for Lie algebras). Let \mathfrak{g} be a solvable Lie algebra and let $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$ be a finite-dimensional complex representation.

Show that $\rho(\mathfrak{g})$ stabilizes a flag $V = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_n = 0$, with $\operatorname{codim} V_i = i$, i.e. $\rho(X)V_i \subseteq V_i$ for every $X \in V_i$, $i = 1, \ldots, n$.

Hint: Use exercise 5.