Solutions Exercise Sheet 1

Exercise 1 (Unitary Operators). Let \mathcal{H} be a Hilbert space and $U(\mathcal{H})$ its group of unitary operators. Show that the weak operator topology coincides with the strong operator topology on $U(\mathcal{H})$.

Solution. Recall that a sequence $(T_n)_{n\in\mathbb{N}}\subset U(\mathcal{H})$ of unitary operators converges to a unitary operator T with respect to the weak operator topology if

$$\lambda(T_n x) \to \lambda(T x) \quad (n \to \infty)$$

for every linear functional $\lambda \in \mathcal{H}^*$ and every $x \in \mathcal{H}$.

A sequence $(T_n)_{n\in\mathbb{N}}\subset U(\mathcal{H})$ of unitary operators converges to a unitary operator T with respect to the *strong operator topology* if

$$T_n x \to T x \quad (n \to \infty)$$

for every $x \in \mathcal{H}$.

In order to show that the weak operator topology coincides with the strong operator topology it will be sufficient to show that a sequence $(T_n)_{n\in\mathbb{N}}\subset U(\mathcal{H})$ converges with respect to the weak operator topology to $T\in U(\mathcal{H})$ if and only if $(T_n)_{n\in\mathbb{N}}$ converges with respect to the strong operator topology to T.

" $\Leftarrow=$ ": Let $T_n \to T$ strongly and let $\lambda \in \mathcal{H}^*, x \in \mathcal{H}$. Then because λ is continuous and $T_n x \to T_x$ we get

$$\lambda(T_n x) \to \lambda(T x)$$

as $n \to \infty$.

" \Longrightarrow ": Let $T_n \to T$ weakly and let $x \in \mathcal{H}$. We need to see that

$$||T_n x - Tx||^2 \to 0 \quad (n \to \infty).$$

We compute

$$||T_{n}x - Tx||^{2} = \langle T_{n}x - Tx, T_{n} - Tx \rangle$$

$$= \langle T_{n}x, T_{n}x \rangle - \langle T_{n}x, Tx \rangle - \langle Tx, T_{n}x \rangle + \langle Tx, Tx \rangle$$

$$= \langle x, x \rangle - \langle T_{n}x, Tx \rangle - \langle Tx, T_{n}x \rangle + \langle x, x \rangle$$

$$= 2||x||^{2} - \left(\langle T_{n}x, Tx \rangle + \overline{\langle T_{n}x, Tx \rangle} \right)$$

$$= 2||x||^{2} - 2\Re\left(\langle T_{n}x, Tx \rangle \right)$$

$$\rightarrow 2||x||^{2} - 2||Tx||^{2} = 2||x||^{2} - 2||x||^{2} = 0 \quad (n \to \infty),$$

where we have used that T_n and T are unitary and that $\langle \cdot, Tx \rangle$ is a continuous linear functional.

Exercise 2 (Compact-Open Topology). Let X, Y, Z be topological space, and denote by $C(Y, X) := \{f : Y \to X \text{ continuous}\}\$ the set of continuous maps from Y to X. The set C(Y, X) can be endowed with the *compact-open topology*, that is generated by the subbasic sets

$$S(K, U) := \{ f \in C(Y, X) \mid f(K) \subseteq U \},\$$

where $K \subseteq Y$ is compact and $U \subseteq X$ is open.

Prove the following useful facts about the compact-open topology.

If Y is locally compact, then:

- a) The evaluation map $e: C(Y,X) \times Y \to X, e(f,y) := f(y)$, is continuous.
- b) A map $f: Y \times Z \to X$ is continuous if and only if the map

$$\hat{f}: Z \to C(Y, X), \hat{f}(z)(y) = f(y, z),$$

is continuous.

- **Solution.** a) For $(f,y) \in C(Y,X) \times Y$ let $U \subset X$ be an open neighborhood of f(y). Since Y is locally compact, continuity of f implies there is a compact neighborhood $K \subset Y$ of y such that $f(K) \subset U$. Then $S(K,U) \times K$ is a neighborhood of (f,y) in $C(Y,X) \times Y$ taken to U by e, so e is continuous at (f,y).
 - b) Suppose $f\colon Y\times Z\to X$ is continuous. To show continuity of \hat{f} it suffices to show that for a subbasic set $S(K,U)\subset C(Y,X)$, the set $\hat{f}^{-1}(S(K,U))=\{z\in Z\,|\,f(K,z)\subset U\}$ is open in Z. Let $z\in \hat{f}^{-1}(S(K,U))$. Since $f^{-1}(U)$ is an open neighborhood of the compact set $K\times\{z\}$, there exist open sets $V\subset Y$ and $W\subset Z$ whose product $V\times W$ satisfies $K\times\{z\}\subset V\times W\subset f^{-1}(U)$. Indeed, $f^{-1}(U)=\cup_{i\in I}V_i\times W_i$ and we can choose a finite family $I'\subset I$ with $K\times\{z\}\subset \cup_{i\in I'}V_i\times W_i$. Then set $W:=\cap_{z\in W_i}W_i$ and $V:=\cup_{z\in W_i}V_i$.

So W is a neighborhood of z in $\hat{f}^{-1}(S(K,U))$. (The hypothesis that Y is locally compact is not needed here.)

For the converse of b) note that f is the composition $Y \times Z \to Y \times C(Y, X) \to X$ of $\mathrm{Id} \times \hat{f}$ and the evaluation map, so part a) gives the result.

Exercise 3 (General Linear Group $GL(n,\mathbb{R})$). The general linear group

$$GL(n, \mathbb{R}) := \{ A \in \mathbb{R}^{n \times n} \mid \det A \neq 0 \} \subset \mathbb{R}^{n \times n}$$

is naturally endowed with the subspace topology of $\mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$. However, it can also be seen as a subset of the space of homeomorphisms of \mathbb{R}^n via the injection

$$j \colon \operatorname{GL}(n, \mathbb{R}) \to \operatorname{Homeo}(\mathbb{R}^n),$$

 $A \mapsto (x \mapsto Ax).$

a) Show that $j(GL(n,\mathbb{R})) \subset Homeo(\mathbb{R}^n)$ is a closed subset, where $Homeo(\mathbb{R}^n) \subset C(\mathbb{R}^n,\mathbb{R}^n)$ is endowed with the compact-open topology.

Solution. Note that

$$j(GL(n,\mathbb{R})) = \{ f \in Homeo(\mathbb{R}^n) : f(\lambda x + y) = \lambda f(x) + f(y) \text{ for all } \lambda \in \mathbb{R}, x, y \in \mathbb{R}^n \}.$$

Since evaluation is continuous also the maps

$$F_{\lambda,x,y}: \operatorname{Homeo}(\mathbb{R}^n) \to \mathbb{R}^n$$

 $f \mapsto f(\lambda x + y) - \lambda f(x) + f(y)$

are continuous for all $\lambda \in \mathbb{R}, x, y \in \mathbb{R}^n$.

Thus,

$$j(\mathrm{GL}(n,\mathbb{R})) = \bigcap_{\lambda \in \mathbb{R}, x, y \in X} F_{\lambda, x, y}^{-1}(0) \subset \mathrm{Homeo}(\mathbb{R}^n)$$

is closed as the intersection of closed sets.

b) If we identify $GL(n,\mathbb{R})$ with its image $j(GL(n,\mathbb{R})) \subset Homeo(\mathbb{R}^n)$ we can endow it with the induced subspace topology. Show that this topology coincides with the usual topology coming from the inclusion $GL(n,\mathbb{R}) \subset \mathbb{R}^{n \times n}$. Hint: Exercise 2 can be useful here.

Solution. Consider the inclusions

$$i: \mathrm{GL}(n,\mathbb{R}) \to \mathbb{R}^{n \times n},$$

$$A \mapsto \begin{pmatrix} | & | \\ A\mathbf{e}_1 & \cdots & A\mathbf{e}_n \\ | & | \end{pmatrix},$$

where $\mathbf{e}_1, \dots, \mathbf{e}_n$ denotes the standard basis of $\mathbb{R}^{n \times n}$.

Further, consider the maps

$$\varphi: \mathbb{R}^{n \times n} \to C(\mathbb{R}^n, \mathbb{R}^n),$$

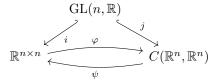
$$\begin{pmatrix} | & | \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ | & | \end{pmatrix} \mapsto (\mathbf{x} \mapsto x_1 \cdot \mathbf{v}_1 + \cdots + x_n \cdot \mathbf{v}_n),$$

and

$$\psi: C(\mathbb{R}^n, \mathbb{R}^n) \to \mathbb{R}^{n \times n},$$

$$f \mapsto \begin{pmatrix} | & | \\ f(\mathbf{e}_1) & \cdots & f(\mathbf{e}_n) \\ | & | \end{pmatrix}.$$

It is easy to verify that these form the following commutative diagram.



Since both topologies under consideration on $GL(n,\mathbb{R})$ come from pulling back the topologies of $\mathbb{R}^{n\times n}$ resp. $C(\mathbb{R}^n,\mathbb{R}^n)$ via i resp. j they will coincide if we can show that the maps φ and ψ are continuous¹.

The map ψ is continuous because it is the product of the evaluation maps

$$\operatorname{ev}_{\mathbf{e}_i}: C(\mathbb{R}^n, \mathbb{R}^n) \to \mathbb{R}^n, \operatorname{ev}_{\mathbf{e}_i}(f) = f(\mathbf{e}_i)$$

$$(i=1,\ldots,n).$$

Further, observe that the map

$$\operatorname{ev} \circ (\varphi \times \operatorname{Id}) : \mathbb{R}^{n \times n} \times \mathbb{R}^n \to \mathbb{R}^n, (A, x) \mapsto Ax$$

is continuous. This implies that φ is continuous.

Exercise 4 (Isometry Group Iso(X)). Let (X,d) be a *compact* metric space. Recall that the isometry group of X is defined as

$$Iso(X) = \{ f \in Homeo(X) : d(f(x), f(y)) = d(x, y) \text{ for all } x, y \in X \}.$$

Show that $Iso(X) \subset Homeo(X)$ is compact with respect to the compact-open topology.

<u>Hint:</u> Use the fact that the compact-open topology is induced by the metric of uniform-convergence and apply Arzelà–Ascoli's theorem.

Solution. The compact-open topology on Homeo(X) coincides with the topology induced by the metric of uniform convergence

$$d_{\infty}(f,g) = \sup\{d(f(x),g(x)) : x \in X\}.$$

Note that by Arzelà–Ascoli (Theorem A.1 in the lecture notes) a family $\mathcal{F} \subseteq C(X, X)$ of continuous maps is compact if and only if \mathcal{F} is equicontinuous, and \mathcal{F} is closed.

Equicontinuity of $\mathcal{F} := \text{Iso}(X)$ is clear, because we are dealing with isometries. We check that Iso(X) is closed.

Let $f \in C(X,X)$ and let $(f_n)_{n \in \mathbb{N}} \subset \mathrm{Iso}(X)$ be a sequence converging to it. Let $x,y \in X$ then

$$0 \le |d(f(x), f(y)) - d(x, y)|$$

$$= |d(f(x), f(y)) - d(f_n(x), f_n(y))|$$

$$\le |d(f(x), f(y)) - d(f_n(x), f(y))| + |d(f_n(x), f(y)) - d(f_n(x), f_n(y))|$$

$$\le d(f(x), f_n(x)) + d(f(y), f_n(y)) \to 0 \quad (n \to \infty).$$

Hence, f is an isometry as wished for. Because f was arbitrary this shows that $Iso(X) \subseteq C(X,X)$ is closed.

$$j = \varphi \circ i : (GL(n, \mathbb{R}), \tau_i) \to C(\mathbb{R}^n, \mathbb{R}^n)$$

is continuous, thus $\tau_i \subset \tau_i$. Analogously, if ψ is continuous, then $\tau_i \subset \tau_j$ and so the two topologies coincide.

¹Let τ_i, τ_j denote the topologies, so that τ_i is the smallest topology on $\mathrm{GL}(n,\mathbb{R})$ such that i is continuous and τ_j is the smallest such that j is continuous. If φ is continuous, then

Exercise 5 (p-adic Integers \mathbb{Z}_p). Let $p \in \mathbb{N}$ be a prime number. Recall that the p-adic integers \mathbb{Z}_p can be seen as the subspace

$$\left\{ (a_n)_{n \in \mathbb{N}} \in \prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z} : a_{n+1} \equiv a_n \pmod{p^n} \right\}$$

of the infinite product $\prod_{n\in\mathbb{N}} \mathbb{Z}/p^n\mathbb{Z}_p$ carrying the induced topology. Note that each $\mathbb{Z}/p^n\mathbb{Z}$ carries the discrete topology and $\prod_{n\in\mathbb{N}} \mathbb{Z}/p^n\mathbb{Z}$ is endowed with the resulting product topology.

a) Show that the image of \mathbb{Z} via the embedding

$$\iota: \mathbb{Z} \to \mathbb{Z}_p,$$

 $x \mapsto (x \pmod p^n)_{n \in \mathbb{N}}$

is dense. In particular, \mathbb{Z}_p is a compactification of \mathbb{Z} .

Solution. Let $(x_n) \in \mathbb{Z}_p$. A neighborhood basis of (x_n) is given by the sets

$$B_m((x_n)) = \{(y_n) \in \mathbb{Z}_p : x_1 = y_1, \dots, x_m = y_m\}, \quad m \in \mathbb{N}.$$

Let $m \in \mathbb{N}$. We want to construct an integer $x \in \mathbb{Z}$ such that $\iota(x) \in B_m((x_n))$. It suffices to take a preimage $x \in \mathbb{Z}$ of $x_m \in \mathbb{Z}/p^m\mathbb{Z}$ under $\pi_m : \mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$. Then we clearly obtain

$$x_m \equiv x \pmod{p^m},$$

 $x_{m-1} \equiv x_m \pmod{p^{m-1}} \equiv x \pmod{p^{m-1}},$
 \vdots
 $x_1 \equiv x \pmod{p}.$

That is $\iota(x) \in B_m((x_n))$.

b) Show that the 2-adic integers \mathbb{Z}_2 are homeomorphic to the "middle thirds" cantor set

$$C = \left\{ \sum_{n=1}^{\infty} \varepsilon_n 3^{-n} : \varepsilon_n \in \{0, 2\} \text{ for each } n \in \mathbb{N} \right\} \subset [0, 1].$$

Solution. We will prove that the map

$$\varphi: C \to \mathbb{Z}_2,$$

$$\sum_{n=1}^{\infty} \varepsilon_n 3^{-n} \mapsto \left(\sum_{k=1}^n \frac{\varepsilon_k}{2} \cdot 2^{k-1}\right)_{n \in \mathbb{N}}$$

is a homeomorphism.

 φ is well-defined because

$$\varphi\left(\sum_{n=1}^{\infty}\varepsilon_n3^{-n}\right)_n\equiv\sum_{k=1}^n\frac{\varepsilon_k}{2}\cdot2^{k-1}+\frac{\varepsilon_{n+1}}{2}\cdot2^n\equiv\varphi\left(\sum_{n=1}^{\infty}\varepsilon_n3^{-n}\right)_{n+1}\ (\mathrm{mod}\ 2^n).$$

By uniqueness of 2-adic expansions φ is injective.

 φ is surjective because for every $(x_n)_{n\in\mathbb{N}}\in\mathbb{Z}_2$ we can find 2-adic expansions

$$x_n = a_0^{(n)} + a_1^{(n)} \cdot 2 + \dots + a_{n-1}^{(n)} \cdot 2^{n-1}, \quad n \in \mathbb{N},$$

with unique $a_i^{(n)} \in \{0,1\}$. By the compatibility condition in \mathbb{Z}_2

$$x_n \equiv x_{n+1} \pmod{2^n}$$

we get that $a_i^{(n)} = a_i^{(n+1)}$ for every i < n. Hence, we can write

$$x_n = a_0 + a_1 \cdot 2 + \dots + a_{n-1} \cdot 2^{n-1}, \quad n \in \mathbb{N},$$

with unique $a_i \in \{0, 1\}$. Thus,

$$\varphi\left(\sum_{n=1}^{\infty} 2a_n 3^{-n}\right) = (x_n)_{n \in \mathbb{N}},$$

i.e. φ is surjective.

In order to prove that φ is continuous and open we first need to deduce the following neat relation: For every $c = \sum_{n=1}^{\infty} \varepsilon_n 3^{-n}, d = \sum_{n=1}^{\infty} \delta_n 3^{-n} \in C$

$$-\log_3|d-c| \le \min\{k \in \mathbb{N} : \varepsilon_k \ne \delta_k\} \le -\log_3|d-c| + 1.$$

Indeed, let $m = \min\{k \in \mathbb{N} : \varepsilon_k \neq \delta_k\}$. Then

$$|d-c| = \left| (\delta_m - \varepsilon_m) \cdot 3^{-m} + \sum_{n=m+1}^{\infty} (\delta_n - \varepsilon_n) \cdot 3^{-n} \right|$$

$$\geq \left| \underbrace{|\delta_m - \varepsilon_m|}_{=2} \cdot 3^{-m} - \left| \sum_{n=m+1}^{\infty} (\delta_n - \varepsilon_n) \cdot 3^{-n} \right| \right|$$

$$\geq \frac{2}{3^m} - \sum_{n=m+1}^{\infty} |\delta_n - \varepsilon_n| \cdot 3^{-n}$$

$$\geq \frac{2}{3^m} - \sum_{n=m+1}^{\infty} 2 \cdot 3^{-n} = \frac{2}{3^m} - \frac{1}{3^m} = 3^{-m}.$$

Applying the logarithm to base 3 on both sides yields the first inequality. The second inequality follows from the following easier computation.

$$|d-c| = \left| \sum_{n=m}^{\infty} (\delta_n - \varepsilon_n) \cdot 3^{-n} \right| \le \sum_{n=m}^{\infty} 2 \cdot 3^{-n} = \frac{1}{3^{m-1}}$$
$$\implies \log_3 |d-c| \le -m+1.$$

Now, let $c = \sum_{n=1}^{\infty} \varepsilon_n 3^{-n} \in C$ and consider a neighborhood $B_m(\varphi(c))$. Then

$$d = \sum_{n=1}^{\infty} \delta_n 3^{-n} \in \varphi^{-1}(B_m(\varphi(c)))$$

$$\iff \sum_{k=1}^{l} \frac{\varepsilon_k}{2} \cdot 2^{k-1} = \sum_{k=1}^{l} \frac{\delta_k}{2} \cdot 2^{k-1}, \quad \forall 1 \le l \le m$$

$$\iff \varepsilon_k = \delta_k, \quad \forall k = 1, \dots, m$$

$$\iff \min\{k \in \mathbb{N} : \varepsilon_k \ne \delta_k\} \ge m+1$$

By the previously deduced relation this readily implies

$$B_{m+1}(\varphi(c)) \subset \varphi(C \cap (-3^{-m} + c, c + 3^{-m})) \subset B_m(\varphi(c)).$$

It follows that φ is continuous and open.

Exercise† **6** (Homeomorphism Group Homeo(X)). a) Let X be a *compact* Hausdorff space. Show that (Homeo(X), \circ) is a topological group when endowed with the compact-open topology.

Solution. Denote by $m: \operatorname{Homeo}(X) \times \operatorname{Homeo}(X) \to \operatorname{Homeo}(X)$ the composition $m(f,g) = f \circ g$ and by $i: \operatorname{Homeo}(X) \to \operatorname{Homeo}(X)$ the inversion $i(f) = f^{-1}$. We need to see that m and i are continuous.

i) m is continuous: We want to show that m is continuous at any tuple $(f,g) \in \operatorname{Homeo}(X) \times \operatorname{Homeo}(X)$. Thus let $S(K,U) \ni f \circ g$ be a subbasis neighborhood of $f \circ g$, i.e. $K \subset X$ is compact and $U \subset X$ is open such that $f(g(K)) \subset U$. Observe that g(K) is compact and is contained in $f^{-1}(U)$ which is open. Because X is (locally) compact we may find an open set $V \subset X$ with compact closure \overline{V} such that

$$g(K) \subset V \subset \overline{V} \subset f^{-1}(U)$$
.

It is now easy to verify that $W := S(\overline{V}, U) \times S(K, V)$ is an open neighborhood of (f, g) such that $m(W) \subset S(K, U)$. Indeed, (f, g) is by construction of V contained in W and for any $(h_1, h_2) \in W$ we get

$$h_2(K) \subset V \subset \overline{V} \subset h_1^{-1}(U).$$

Hence, m is continuous at every point of $\operatorname{Homeo}(X) \times \operatorname{Homeo}(X)$.

ii) i is continuous: Let $f \in \text{Homeo}(X)$, $K \subset X$ compact and $U \subset X$ open. Then

$$i(f) \in S(K,U) \iff f^{-1}(K) \subset U \iff K \subset f(U)$$
$$\iff f(U^c) = f(U)^c \subset K^c \iff f \in S(U^c,K^c).$$

Observe that U^c is compact as a closed subset of the compact space X and that K^c is open as the complement of a (compact) closed set.

This shows that $i^{-1}(S(K,U)) = S(U^c,K^c)$ for every element S(K,U) of a subbasis for the compact-open topology on $\operatorname{Homeo}(X)$, whence i is continuous.

b) Let $\mathbb{S}^1 \subset \mathbb{C} \setminus \{0\}$ denote the circle. Show that $\operatorname{Homeo}(\mathbb{S}^1)$ is not locally compact. Remark: In fact, $\operatorname{Homeo}(M)$ is not locally compact for any manifold M.

Solution. We will prove a more general fact, namely that $\operatorname{Homeo}(M)$ is not locally compact for any compact manifold M. Note that we can think of M as a compact metric space (M,d) by Urysohn's metrization theorem. In the case when M is a smooth manifolds this is even easier to see by endowing it with a Riemannian metric. This puts us now in the favorable position of being able to identify the compact-open topology on $\operatorname{Homeo}(X)$ with the topology of uniform convergence.

We denote by

$$d_{\infty}(f,g) := \sup\{d(f(x),g(x)) : x \in M\}$$

the metric of uniform convergence on $\operatorname{Homeo}(M)$. Further denote by $B_f^{\infty}(r)$ the ball of radius r>0 about a homeomorphism $f\in\operatorname{Homeo}(M)$. In order to show that $\operatorname{Homeo}(M)$ is not locally compact we will construct in every $\varepsilon>0$ ball about the identity $B_{\operatorname{Id}}^{\infty}(\varepsilon)$ a sequence of homeomorphisms $(f_k)_{k\in\mathbb{N}}$ with no convergent subsequence.

Let $\varepsilon > 0$ and denote $B = B_{\mathrm{Id}}^{\infty}(\varepsilon)$. Further, let $x_0 \in M$ and choose a coordinate chart $\varphi : U \subset B_{\varepsilon/2}(x_0) \to \mathbb{R}^n$ centered at x_0 (i.e. $\varphi(x_0) = 0$) contained in the $\varepsilon/2$ -ball $B_{\varepsilon/2}(x_0)$ about x_0 in M. Consider the homeomorphisms

$$\psi_k : \overline{B_1}(0) \to \overline{B_1}(0), x \mapsto ||x||^k x$$

on the closed unit ball $\overline{B_1}(0)$ in \mathbb{R}^n which fix $0 \in \mathbb{R}^n$ and the boundary *n*-sphere pointwise. Note that the sequence $(\psi_k)_{k \in \mathbb{N}}$ converges pointwise to

$$\psi_{\infty} = \begin{cases} x, & \text{if } x \in \partial B_1(0), \\ 0, & \text{if } x \in B_1(0). \end{cases}$$

Now, define

$$f_k(x) := \begin{cases} x, & \text{if } x \notin \varphi^{-1}(B_1(0)), \\ \varphi^{-1}(\psi_k(\varphi(x))), & \text{if } x \in \varphi^{-1}(B_1(0)). \end{cases}$$

It is easy to see that the maps $f_k: M \to M$ are indeed homeomorphisms: $f_k|_{\varphi^{-1}(\overline{B_1}(0))^c} = \mathrm{Id}: \varphi^{-1}(\overline{B_1}(0))^c \to \varphi^{-1}(\overline{B_1}(0))^c$ is a homeomorphism, $\varphi^{-1} \circ \psi_k \circ \varphi : \varphi^{-1}(\overline{B_1}(0)) \to \varphi^{-1}(\overline{B_1}(0))$ is a homeomorphism and both coincide on $\varphi^{-1}(\partial B_1(0))$.

Further, the homeomorphisms f_k map the $\varepsilon/2$ -ball $B_{\varepsilon/2}(x_0)$ to itself and fix x_0 . Therefore,

$$d(f_k(x), x) \le d(f_k(x), \underbrace{f_k(x_0)}_{=x_0}) + d(x_0, x) < \varepsilon,$$

for every $x \in B_{\varepsilon/2}(x_0)$, and clearly $f_k(x) = x$ for every $x \notin B_{\varepsilon/2}(x_0)$. Hence, the sequence $(f_k)_{k \in \mathbb{N}}$ is in $B_{\varepsilon}^{\infty}(\mathrm{Id})$.

However, the sequence $(f_k)_{k\in\mathbb{N}}$ converges pointwise to

$$f_{\infty}(x) = \begin{cases} x, & \text{if } x \notin \varphi^{-1}(B_1(0)), \\ x_0, & \text{if } x \in \varphi^{-1}(B_1(0)), \end{cases}$$

If there were a subsequence $(f_{k_l})_{l\in\mathbb{N}}$ converging to some $f\in \operatorname{Homeo}(M)$ uniformly then this sequence would also converge pointwise to f, i.e. f needs to coincide with f_{∞} . But f_{∞} is not even continuous which contradicts our assumption of $f\in \operatorname{Homeo}(M)$. Therefore $(f_k)_{k\in\mathbb{N}}\subset B_{\varepsilon}^{\infty}(\operatorname{Id})$ has no uniformly convergent subsequences.