Solutions Exercise Sheet 2

Exercise 1 (Transitive Group Actions). Let G be a topological group, X a topological space and $\mu: G \times X \to X$ a continuous transitive group action, i.e. for any two $x, y \in X$ there is $g \in G$ such that $\mu(g, x) = g \cdot x = y$.

- a) Show that if G is compact then X is compact.
- b) Show that if G is connected then X is connected.

Solution. Let $x_0 \in X$ and consider the map

$$\varphi: G \to X,$$

 $g \mapsto \mu(g, x_0).$

Because μ is a continuous action the map φ is continuous too. Further the action μ is transitive, i.e. for every $y \in X$ there is a $g \in G$ such that $\mu(g, x_0) = y$. In other words, φ is surjective.

Part a) follows from the fact that $X = \varphi(G)$ is compact as the image of a compact group.

Part b) follows from the fact that continuous maps send connected components to connected components and again that $\varphi(G) = X$.

Exercise 2 (Examples of Haar Measures). We start with a general remark about the regularity of the measures in the exercise.

Theorem (Thm 7.8 in Folland, Real Analysis: Modern Techniques and Their Applications). Let X be locally compact second countable Hausdorff space. Then every Borel measure on X that is finite on compact sets is regular.

The measures we consider in this exercise are defined on subspaces X of \mathbb{R}^k for some $k \in \mathbb{N}$, which are equipped with the subspace topology. In particular, if $K \subset X$ is compact, then it is compact also in \mathbb{R}^k .

Moreover, these measures (with the exception of part d)) are of the form $f(x)d\mathcal{L}(x)$, where $d\mathcal{L}$ denotes the Lebesgue measure and f is some continuous function on X. Thus they are finite on compact sets and by the above theorem they are regular.

a) Let us consider the three-dimensional Heisenberg group $H = \mathbb{R} \rtimes_{\eta} \mathbb{R}^2$, where $\eta : \mathbb{R} \to \operatorname{Aut}(\mathbb{R}^2)$ is defined by

$$\eta(x) \begin{pmatrix} y \\ z \end{pmatrix} = \begin{pmatrix} y \\ z + xy \end{pmatrix},$$

for all $x, y, z \in \mathbb{R}$. Thus the group operation is given by

$$(x_1, y_1, z_1) * (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2 + x_1y_2)$$

and it is easy to see that it can be identified with the matrix group

$$H \cong \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} : x, y, z \in \mathbb{R} \right\}$$

Verify that the Lebesgue measure is the Haar measure of $\mathbb{R} \rtimes_{\eta} \mathbb{R}^2$ and that the group is unimodular.

Solution. Denote by μ the measure on H induced by the Lebesgue measure on \mathbb{R}^3 . In order to show that μ is unimodular we need to see that

$$\mu(\lambda(h)f) = \mu(f) = \mu(\rho(h)f)$$

for every $f \in C_c(H)$, $h \in H$.

Let $h_1 = (x_1, y_1, z_1) \in H$ and $f \in C_c(H)$. We compute

$$\begin{split} &\int (\lambda(h_1^{-1})f)(x_2,y_2,z_2)dx_2dy_2dz_2\\ &=\int f(x_1+x_2,y_1+y_2,z_1+z_2+x_1y_2)dx_2dy_2dz_2\\ &\overset{\text{Fubini}}{=} \int f(x_1+x_2,y_1+y_2,z_2+(z_1+x_1y_2))dz_2dx_2dy_2\\ &\overset{\text{transl. inv.}}{=} \int f(x_1+x_2,y_1+y_2,z_2)dz_2dx_2dy_2\\ &\overset{\text{F. \& t.i.}}{=} \int f(x_1,y_1+y_2,z_2)dx_2dy_2dz_2\\ &\overset{\text{F. \& t.i.}}{=} \int f(x_1,y_2,z_2)dx_2dy_2dz_2. \end{split}$$

This shows left-invariance.

$$\begin{split} &\int (\rho(h_1)f)(x_2,y_2,z_2)dx_2dy_2dz_2\\ &=\int f(x_2+x_1,y_2+y_1,z_2+z_1+x_2y_1)dx_2dy_2dz_2\\ &\overset{\text{Fubini}}{=}\int f(x_1+x_2,y_1+y_2,z_2+(z_1+x_2y_1))dz_2dx_2dy_2\\ &\overset{\text{transl. inv.}}{=} \int f(x_1+x_2,y_1+y_2,z_2)dz_2dx_2dy_2\\ &\overset{\text{F. \& t.i.}}{=}\int f(x_1,y_1+y_2,z_2)dx_2dy_2dz_2\\ &\overset{\text{F. \& t.i.}}{=}\int f(x_1,y_2,z_2)dx_2dy_2dz_2. \end{split}$$

This shows right-invariance. Therefore μ is a left- and right-invariant Haar measure on H and H is unimodular.

b) Let

$$P = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} : a, b \in \mathbb{R}, a \neq 0 \right\}.$$

Show that $\frac{da}{a^2} db$ is the left Haar measure and da db is the right Haar measure. In particular, P is not unimodular.

Solution. Let $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \in P$ and $f \in C_c(P)$. We compute

$$\int \left(\lambda \left(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}^{-1} \right) f \right) \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \frac{dx}{x^2} dy$$

$$= \int f \left(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \right) \frac{dx}{x^2} dy$$

$$= \int f \begin{pmatrix} ax & ay + bx^{-1} \\ 0 & a^{-1}x^{-1} \end{pmatrix} a^2 \frac{dx}{(ax)^2} dy = \dots$$

we change coordinates to $\bar{x}=ax, \bar{y}=ay$ which has Jacobi determinant a^2

$$\dots = \int f \begin{pmatrix} \bar{x} & \bar{y} + ab\bar{x}^{-1} \\ 0 & \bar{x}^{-1} \end{pmatrix} \frac{d\bar{x}}{\bar{x}^2} d\bar{y}$$
$$= \int f \begin{pmatrix} \bar{x} & \bar{y} + ab\bar{x}^{-1} \\ 0 & \bar{x}^{-1} \end{pmatrix} d\bar{y} \frac{d\bar{x}}{\bar{x}^2}$$
$$= \int f \begin{pmatrix} \bar{x} & \bar{y} \\ 0 & \bar{x}^{-1} \end{pmatrix} \frac{d\bar{x}}{\bar{x}^2} d\bar{y}.$$

This shows left-invariance for the measure $\frac{dx}{r^2} dy$ as claimed.

We will now see that da db is right-invariant:

$$\int \left(\rho\left(\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}\right) f\right) \begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} dx dy$$

$$= \int f\left(\begin{pmatrix} x & y \\ 0 & x^{-1} \end{pmatrix} \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}\right) dx dy$$

$$= \int f\left(\begin{pmatrix} ax & bx + a^{-1}y \\ 0 & a^{-1}x^{-1} \end{pmatrix}\right) dx dy = \dots$$

we change coordinates to $\bar{x} = ax, \bar{y} = a^{-1}y$ which has Jacobi determinant 1

$$\dots = \int f\left(\begin{pmatrix} \bar{x} & ba^{-1}\bar{x} + \bar{y} \\ 0 & \bar{x}^{-1} \end{pmatrix}\right) d\bar{x}d\bar{y}$$

$$\stackrel{\text{F \& t.i}}{=} \int f\left(\begin{pmatrix} \bar{x} & \bar{y} \\ 0 & \bar{x}^{-1} \end{pmatrix}\right) d\bar{x}d\bar{y}$$

This shows right-invariance. Since both measures clearly do not coincide P is not unimodular.

c) Let $G := \mathrm{GL}_n(\mathbb{R}) \subseteq \mathbb{R}^{n^2}$ denote the group of invertible matrices over \mathbb{R} . Let λ_{n^2} denote the Lebesgue measure on \mathbb{R}^{n^2} . Prove that

$$dm(x) := |\det x|^{-n} d\lambda_{n^2}(x)$$

defines a bi-invariant (i.e. left- and right-invariant) Haar measure on G.

Solution. As $GL_n(\mathbb{R}) = \det^{-1}(\mathbb{R}\setminus\{0\})$ is open in \mathbb{R}^{n^2} , $\lambda_{n^2}|_{GL_n(\mathbb{R})}$ assigns non-zero measure to non-empty open and finite measure to compact subsets of $GL_n(\mathbb{R})$ (if $K \subseteq GL_n(\mathbb{R})$ is compact in $GL_n(\mathbb{R})$ and \mathcal{U} an open cover of K in \mathbb{R}^{n^2} , then $\mathcal{U} \cap GL_n(\mathbb{R}) := \{U \cap GL_n(\mathbb{R}); U \in \mathcal{U}\}$ is an open cover of K in $GL_n(\mathbb{R})$, thus it admits a finite subcover and hence so does \mathcal{U}). As det is continuous and does not vanish on $GL_n(\mathbb{R})$, the above also holds for $dm(g) := |\det g|^{-n} d\lambda_{n^2}(g)$.

It remains to show that m is invariant. To this end we note that for $g \in GL_n(\mathbb{R})$, if $g = (g_1, \ldots, g_n)$ and $h \in GL_n(\mathbb{R})$, then

$$hq = (hq_1, \dots, hq_2) \quad (q \in \operatorname{Mat}_n(\mathbb{R})),$$

so that the left-action of h on $GL_n(\mathbb{R})$ can be viewed as a restriction of a diagonal matrix $\operatorname{diag}(h,\ldots,h)\in\mathbb{R}^{n^2\times n^2}$ acting on a subset of \mathbb{R}^{n^2} . This means that for $F:\operatorname{GL}_n(\mathbb{R})\to\operatorname{GL}_n(\mathbb{R}),g\mapsto F(g)\coloneqq hg$ it holds

$$\det DF(q) = (\det h)^n$$
.

Let $f \in C_c(\operatorname{GL}_n(\mathbb{R}))$, then

$$\int_{\mathrm{GL}_{n}(\mathbb{R})} f(hg) |\det g|^{-n} d\lambda_{n^{2}}(g) = \int_{\mathrm{GL}_{n}(\mathbb{R})} f(hg) |\det hg|^{-n} |\det h|^{n} d\lambda_{n^{2}}(g)$$

$$(\varphi(x) = f(x) |\det x|^{-n}) = \int_{\mathrm{GL}_{n}(\mathbb{R})} \varphi(F(g)) |\det DF(g)|^{n} d\lambda_{n^{2}}(g)$$
(change of variables)
$$= \int_{F(\mathrm{GL}_{n}(\mathbb{R}))} \varphi(y) d\lambda_{n^{2}}(y)$$

$$= \int_{h \cdot \mathrm{GL}_{n}(\mathbb{R})} f(y) |\det y|^{-n} d\lambda_{n^{2}}(y)$$

$$= \int_{\mathrm{GL}_{n}(\mathbb{R})} f(y) |\det y|^{-n} d\lambda_{n^{2}}(y).$$

This proves that m is a left Haar measure on $GL_n(\mathbb{R})$. The measure is also right-invariant, because the map

$$g \mapsto \left(\begin{array}{c} g_1 h \\ \vdots \\ g_n h \end{array}\right)$$

does also have Jacobian $|\det h|^n$ (for example because $gh = (h^t g^t)^t$ and the Jacobian of transposition – being an idempotent map – is equal to 1). Thus $GL_n(\mathbb{R})$ is unimodular.

d) Let $G = \mathrm{SL}_n(\mathbb{R})$ denote the group of matrices of determinant 1 in $\mathbb{R}^{n \times n}$. For a Borel subset $B \subseteq \mathrm{SL}_n(\mathbb{R})$ define

$$m(B) := \lambda_{n^2} (\{tq; q \in B, t \in [0, 1]\}).$$

Show that m is a well-defined bi-invariant Haar measure on $\mathrm{SL}_n(\mathbb{R})$.

Solution. To check well-definedness we have to check that for any Borel subset $B \subseteq \mathrm{SL}_n(\mathbb{R})$ the cone

$$C(B) = \{tb : b \in B, t \in [0, 1]\}$$

is a Borel subset of \mathbb{R}^{n^2} . To this end we note first that

$$\mathcal{C}(B) = \mathcal{C}'(B) \cup \{0\},\$$

where

$$C'(B) = \{tb : b \in B, t \in (0,1]\}.$$

It clearly suffices to show that C'(B) is Borel. To this end let

$$\operatorname{GL}_n^{\pm 1}(\mathbb{R}) = \{ g \in \operatorname{GL}_n(\mathbb{R}); |\det g| = 1 \}.$$

Note that $\mathrm{GL}_n^{\pm 1}(\mathbb{R})$ is homeomorphic to a disjoint union of two copies of $\mathrm{SL}_n(\mathbb{R})$, in particular B is Borel in $\mathrm{GL}_n^{\pm 1}(\mathbb{R})$. (As groups $\mathrm{GL}_n^{\pm 1}(\mathbb{R}) \cong \mathrm{SL}_n(\mathbb{R}) \rtimes C_2$, where C_2 is the group with two elements.) Define

$$\Psi: \mathrm{GL}_n(\mathbb{R}) \to \mathrm{GL}_n^{\pm 1}(\mathbb{R}), \quad g \mapsto \frac{1}{\sqrt[n]{|\det q|}}g.$$

This is a Borel map and therefore

$$C'(B) = \Psi^{-1}(B) \cap \det^{-1}(0,1]$$

is measurable.

- \subseteq Let $t \in (0,1]$, and $b \in B$. Then x = tb satisfies $\det(x) = t^n \det(b) = t^n \in (0,1]$ and $\Psi(x) = \Psi(tb) = \frac{tb}{\sqrt[n]{t^n}} = b \in B$. Thus $tb \in \Psi^{-1}(B) \cap \det^{-1}(0,1]$.
- \supseteq Let $x \in \Psi^{-1}(B)$ with $\det(x) \in (0,1]$ and let $b \in B$ be such that $\Psi(x) = \frac{x}{\sqrt[n]{|\det x|}} = b$. Then $x = \sqrt[n]{|\det x|}b = tb$ with $t = \sqrt[n]{|\det x|} \in (0,1]$.

Thus we have $\lambda_{n^2}(\mathcal{C}'(B))$ is well-defined and we only have to check that $m(B) = \lambda_{n^2}(\mathcal{C}'(B))$ defines a measure which is finite on compact sets. But this follows directly from the fact that $B \mapsto \mathcal{C}'(B)$ preserves intersections, unions, disjoint unions and compact sets.

The final claim now follows immediately from the argument in part c), which realizes the action of an element $g \in \mathrm{SL}_n(\mathbb{R})$ on \mathbb{R}^{n^2} as a diagonal action of n copies of g, together with the fact that $\Phi_*\lambda_{n^2} = |\det \Phi| \lambda_{n^2}$ for linear Φ , $\det g = 1$, $\mathcal{C}(gB) = g\mathcal{C}(B)$ and $\mathcal{C}(Bg) = \mathcal{C}(B)g$ for all $g \in \mathrm{SL}_n(\mathbb{R})$ and $B \subseteq \mathrm{SL}_n(\mathbb{R})$ Borel.

e) Let G denote the ax + b group defined as

$$G = \left\{ \begin{pmatrix} a & b \\ & 1 \end{pmatrix}; a \in \mathbb{R}^{\times}, b \in \mathbb{R} \right\}$$

Note that every element in G can be written in a unique fashion as a product of the form:

$$\left(\begin{array}{cc} a & b \\ & 1 \end{array}\right) = \left(\begin{array}{cc} \alpha & \\ & 1 \end{array}\right) \left(\begin{array}{cc} 1 & \beta \\ & 1 \end{array}\right)$$

where $\alpha \in \mathbb{R}^{\times}$ and $\beta \in \mathbb{R}$, which yields a coordinate system $\mathbb{R}^{\times} \times \mathbb{R} \leftrightarrow G$. Prove that

$$dm(\alpha, \beta) = \frac{1}{|\alpha|} d\alpha d\beta$$

defines a left Haar measure on G. Calculate $\Delta_G(\alpha, \beta)$ for $\alpha \in \mathbb{R}^\times$ and $\beta \in \mathbb{R}$.

Solution. We use the coordinate system $\varphi: \mathrm{Aff}_1(\mathbb{R}) \ni (a,b) \mapsto (a,a^{-1}b) \in \mathbb{R}^\times \times \mathbb{R}$. On $\mathbb{R}^\times \times \mathbb{R}$ we define the measure $d\nu(\alpha,\beta) := \frac{1}{|\alpha|} d\alpha d\beta$ and we claim that $(\varphi^{-1})_*\nu$ is a left-Haar measure on $\mathrm{Aff}_1(\mathbb{R})$.

For $g \in G$ we denote as in the lecture $\lambda(g)$, $\rho(g)$ the left, resp. right, action of g on $C_c(G)$.

Let $f \in C_c(\operatorname{Aff}_1(\mathbb{R}))$ and let $g = \begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} \in \operatorname{Aff}_1(\mathbb{R})$. Then a computation shows

$$g\varphi^{-1}(\alpha,\beta) = \begin{pmatrix} x\alpha & x\alpha\beta + y \\ 0 & 1 \end{pmatrix} = \varphi^{-1}(x\alpha,\beta + (x\alpha)^{-1}y). \tag{1}$$

and also

$$\varphi^{-1}(\alpha,\beta)g = \begin{pmatrix} x\alpha & \alpha y + \alpha \beta \\ 0 & 1 \end{pmatrix} = \varphi^{-1}(\alpha x, x^{-1}y + x^{-1}\beta). \tag{2}$$

We check left-invariance:

$$\lambda^*(g)(\varphi_*^{-1}\nu)(f) \stackrel{def}{=} (\varphi_*^{-1}\nu)(\lambda(g^{-1})f) \stackrel{def}{=} \nu \left((\lambda(g^{-1})f) \circ \varphi^{-1} \right)$$

$$\stackrel{def}{=} \int_{\mathbb{R}^\times} \int_{\mathbb{R}} (\lambda(g^{-1})f) \circ \varphi^{-1}(\alpha,\beta) d\nu(\alpha,\beta)$$

$$\stackrel{def}{=} \int_{\mathbb{R}^\times} \left(\int_{\mathbb{R}} \frac{f(g \cdot \varphi^{-1}(\alpha,\beta)}{|\alpha|} d\beta \right) d\alpha$$

$$\stackrel{(1)}{=} \int_{\mathbb{R}^\times} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(x\alpha,\beta + (x\alpha)^{-1}y)}{|\alpha|} d\beta \right) d\alpha$$

$$\stackrel{(1)}{=} \int_{\mathbb{R}^\times} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(x\alpha,\beta)}{|\alpha|} d\beta \right) d\alpha$$
change of variables $\psi(z,w) = (x^{-1}z,w) \to \int_{\mathbb{R}^\times} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z,w)}{|x^{-1}z|} |x^{-1}| dw \right) dz$

$$= \int_{\mathbb{R}^\times} \left(\int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z,w)}{|z|} dw \right) dz$$

$$\stackrel{def}{=} \int_{\mathbb{R}^\times} \int_{\mathbb{R}} f \circ \varphi^{-1}(z,w) d\nu(z,w) \stackrel{def}{=} (\varphi_*^{-1}\nu)(f)$$

The modular function is determined by $\Delta_G(g)(\varphi_*^{-1}\nu)(f) = (\varphi_*^{-1}\nu)(\rho(g)f)$. So for $f \in C_c(G), g = \begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix}$ we compute

$$(\varphi_*^{-1}\nu)(\rho(g)f) = \nu\left(\rho(g)f \circ \varphi^{-1}\right)$$

$$\stackrel{def}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{(\rho(g)f) \circ \varphi^{-1}(\alpha,\beta)}{|\alpha|} d\beta d\alpha$$

$$\stackrel{def}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f(\varphi^{-1}(\alpha,\beta)g)}{|\alpha|} d\beta d\alpha$$

$$\stackrel{(2)}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(\alpha x, x^{-1}y + x^{-1}\beta)}{|\alpha|} d\beta d\alpha$$

$$\stackrel{(2)}{=} \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(\alpha x, x^{-1}y + x^{-1}\beta)}{|\alpha|} d\beta d\alpha$$
change of variables $\eta(z,w) = (x^{-1}z,xw) \rightarrow = \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z,w)}{|x^{-1}z|} dw dz$

$$= |x| \int_{\mathbb{R}^{\times}} \int_{\mathbb{R}} \frac{f \circ \varphi^{-1}(z,w)}{|z|} dw dz$$

$$\stackrel{def}{=} |x| (\varphi_*^{-1}\nu)(f)$$

Therefore $\Delta_{\mathrm{Aff}_1(\mathbb{R})}\begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} = |x|.$

Exercise 3 (Haar Measure and Transitive Actions). Let G be a locally compact Hausdorff group and let X be a topological space. Suppose that G acts on X continuously and transitively. Let $o \in X$, and denote $\pi \colon G \to X, g \mapsto g \cdot o$. Further, let

$$H := \operatorname{Stab}(o) = \{ h \in G \mid h \cdot o = o \}$$

be the stabilizer of o.

Suppose there is a continuous section $\sigma: X \to G$ of π , i.e. $\pi \circ \sigma = \mathrm{Id}_X$.

a) Show that $\psi \colon X \times H \to G, (x,h) \mapsto \sigma(x)h$ is a homeomorphism.

Hint: Find a continuous inverse!

Solution. We define $\varphi \colon G \to X \times H$ via

$$\varphi(g) := (\pi(g), \sigma(\pi(g))^{-1}g)$$

for all $g \in G$.

Note that

$$\sigma(\pi(g)) \cdot o = \pi(\sigma(\pi(g))) = \pi(g) = g \cdot o,$$

whence $\sigma(\pi(g))^{-1}g \cdot o = o$ and $\sigma(\pi(g))^{-1}g \in H = \operatorname{Stab}(o)$. This shows that φ is well-defined. Moreover, φ is continuous as a composition of continuous functions.

We will now show that φ is the inverse of ψ , i.e. $\psi \circ \varphi = \operatorname{Id}_G$ and $\varphi \circ \psi = \operatorname{Id}_{X \times H}$.

Let $g \in G$. We compute:

$$\psi(\varphi(g)) = \psi(\pi(g), \sigma(\pi(g))^{-1}g)$$
$$= \sigma(\pi(g))\sigma(\pi(g))^{-1}g = g.$$

Let $x \in X, h \in H$. We compute:

$$\begin{split} \varphi(\psi(x,h)) &= \varphi(\sigma(x)h) \\ &= (\pi(\sigma(x)h), \sigma(\pi(\sigma(x)h))^{-1}\sigma(x)h) \\ &= (\sigma(x)h \cdot o, \sigma(\sigma(x)h \cdot o)^{-1}\sigma(x)h) \\ &= (\sigma(x) \cdot o, \sigma(\sigma(x) \cdot o)^{-1}\sigma(x)h) \\ &= (x, \sigma(x)^{-1}\sigma(x)h) \\ &= (x, h). \end{split}$$

b) Suppose there is a (left) Haar measure ν on H and suppose there is a left G-invariant Borel regular measure λ on X.

Show that the push-forward measure $\psi_*(\lambda \otimes \nu)$ is a (left) Haar measure on G.

Solution. All we need to see is that the push-forward measure $\mu = \psi_*(\lambda \otimes \nu)$ is left G-invariant.

Let $f \in C_c(G)$ and $g_0 \in G$. We compute:

$$\int_{G} f(g_{0}g) d\mu(g) = \int_{X \times H} f(g_{0}\psi(x,h)) d(\lambda \otimes \nu)(x,h)$$

$$(\text{Fubini}) = \int_{X} \int_{H} f(g_{0}\sigma(x)h) d\nu(h) d\lambda(x)$$

$$= \int_{X} \int_{H} f(\sigma(g_{0} \cdot x) \underbrace{\sigma(g_{0} \cdot x)^{-1} g_{0}\sigma(x)}_{\in H} h) d\nu(h) d\lambda(x)$$

$$(\text{left invariance of } \nu) = \int_{X} \int_{H} f(\sigma(g_{0} \cdot x)h) d\nu(h) d\lambda(x)$$

$$(\text{left G-invariance of } \lambda) = \int_{X} \int_{H} f(\sigma(x)h) d\nu(h) d\lambda(x)$$

$$= \int_{G} f(g) d\mu(g)$$

c) Find a Haar measure on $Iso(\mathbb{R}^2)$.

Solution. We want to apply part b).

Note that $\operatorname{Iso}(\mathbb{R}^2)$ acts continuously and transitively on \mathbb{R}^2 . Indeed, any translation $T_x \colon \mathbb{R}^2 \to \mathbb{R}^2$, $y \mapsto x + y \ (x \in \mathbb{R}^2)$ is a Euclidean isometry, that maps 0 to x. The stabilizer of $0 \in \mathbb{R}^2$ is $\operatorname{Stab}(0) = O(2, \mathbb{R})$.

Moreover, translations give a continuous section $\sigma \colon \mathbb{R}^2 \to \mathrm{Iso}(\mathbb{R}^2), x \mapsto T_x$.

We would like to apply b) with $G = \text{Iso}(\mathbb{R}^2)$, $X = \mathbb{R}^2$, $H = O(2, \mathbb{R})$. For this, we need invariant Haar measures on \mathbb{R} and on $O(2, \mathbb{R})$.

- The Lebesgue measure λ on \mathbb{R}^2 is $\mathrm{Iso}(\mathbb{R}^2)$ -invariant.
- To find an invariant Haar measure on $O(2,\mathbb{R})$ we apply part b) again. Observe that $O(2,\mathbb{R})$ acts transitively on the group with two elements $\{\pm 1\}$ via

$$k * \varepsilon := \det(k) \cdot \varepsilon$$
 for every $k \in O(2, \mathbb{R}), \varepsilon \in \{\pm 1\}$.

We obtain a surjective map $\pi' = \det : O(2, \mathbb{R}) \to \{\pm 1\}, k \mapsto \det(k) \cdot 1 = \det(k)$. A section $\sigma' : \{\pm 1\} \to O(2, \mathbb{R})$ of det is given by

$$\sigma'(\varepsilon) = \begin{pmatrix} 1 & 0 \\ 0 & \varepsilon \end{pmatrix},$$

which is continuous because $\{\pm 1\}$ carries the discrete topology. The stabilizer of 1 is then $\det^{-1}(1) \cap O(2,\mathbb{R}) = \mathrm{SO}(2,\mathbb{R})$ and the usual Lebesgue measure on $[0,2\pi) \simeq \mathbb{R}/2\pi\mathbb{Z}$ pushes-forward to a left Haar measure $\xi = \varphi_*(\lambda|_{[0,2\pi)})$ on $\mathrm{SO}(2,\mathbb{R})$ via the isomorphism

$$\varphi \colon \mathbb{R}/2\pi\mathbb{Z} \longrightarrow \mathrm{SO}(2,\mathbb{R}),$$

$$\theta \longmapsto \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Clearly, an invariant measure on $\{\pm 1\}$ is given by the counting measure. Applying b) to

$$G' = O(2, \mathbb{R}),$$

 $H' = SO(2, \mathbb{R})$ with $\varphi_* \lambda|_{[0,2\pi)},$ and $X' = \{\pm 1\}$ with counting measure μ

we obtain a left Haar measure ν on $O(2,\mathbb{R})$ given by

$$\begin{split} \int_{O(2,\mathbb{R})} f(k) \, d\nu(k) &= \int_{\{\pm 1\} \times SO(2,\mathbb{R})} f(\psi(\varepsilon,s) d\mu \otimes \varphi_* \lambda(\varepsilon,s) \\ &= \int_{\{\pm 1\}} \int_{SO(2,\mathbb{R})} f(\sigma'(\varepsilon) \cdot s) d\varphi_* \lambda(s) d\mu(\varepsilon) \\ &= \sum_{\varepsilon = \pm 1} \int_0^{2\pi} f(\sigma'(\varepsilon) \cdot \varphi(\theta)) d\lambda(\theta) \\ &= \sum_{\varepsilon = \pm 1} \int_0^{2\pi} f\left(\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \varepsilon \sin(\theta) & \varepsilon \cos(\theta) \end{pmatrix} \right) \, d\theta \end{split}$$

for every $f \in C_c(O(2, \mathbb{R}))$.

Putting everything together we obtain

$$\int_{\mathrm{Iso}(\mathbb{R}^2)} f(g) \, d\mu(g) = \int_{\mathbb{R}^2} \int_{O(2,\mathbb{R})} f(T_x k) \, d\nu(k) \, dx$$
$$= \int_{\mathbb{R}^2} \sum_{\varepsilon = \pm 1} \int_0^{2\pi} f\left(T_x \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \varepsilon \sin(\theta) & \varepsilon \cos(\theta) \end{pmatrix}\right) \, d\theta \, dx$$

Exercise 4 (Aut(\mathbb{R}^n , +) \cong GL(n, \mathbb{R})). For a topological group G, we denote by Aut(G) the group of bijective, continuous homomorphisms of G with continuous inverse. Consider the locally compact Hausdorff group $G = (\mathbb{R}^n, +)$ where $n \in \mathbb{N}_0$.

a) Show that $\operatorname{Aut}(G)$, i.e. the group of bijective homomorphisms which are homeomorphisms as well, is given by $\operatorname{GL}_n(\mathbb{R})$.

Solution. Let $\varphi \in \operatorname{Aut}(\mathbb{R}^n)$, then φ is in particular additive and thus $\varphi(kv) = k\varphi(v)$ for all $v \in \mathbb{R}^n$, for all $k \in \mathbb{Z}$. Let $m \in \mathbb{Z}$, $n \in \mathbb{N}$ and $q = \frac{m}{n} \in \mathbb{Q}$, then

$$n\varphi(qv) = \varphi(nqv) = \varphi(mv) = m\varphi(v) \implies \varphi(q)\varphi(v) = q\varphi(v)$$

and φ is \mathbb{Q} -linear. \mathbb{R} -linearity follows from continuity of φ and thus $\varphi \in \operatorname{End}_{\mathbb{R}}(\mathbb{R}^n)$. As φ is invertible, any choice of basis realizes φ as an element in $\operatorname{GL}_n(\mathbb{R})$. It is clear that for such a choice of a basis, any $g \in \operatorname{GL}_n(\mathbb{R})$ defines an element in $\operatorname{Aut}(\mathbb{R}^n)$ and that the correspondence is 1-1 and obeys the various group structures (on $\operatorname{Aut}(G)$ and $\operatorname{GL}_n(\mathbb{R})$).

b) Show that mod : $\operatorname{Aut}(G) \to \mathbb{R}_{>0}$ is given by $\alpha \mapsto |\det \alpha|$.

Remark. By the definition given in the lecture $\operatorname{mod}(\alpha)$ is the unique positive real number such that $m(\alpha \cdot f) = \operatorname{mod}(\alpha)m(f)$ for all $f \in C_c(G)$, m left-Haar measure on G. This definitions may differ by an inverse from other definitions in the literature.

Solution. The *n*-dimensional Lebesgue measure λ_n on \mathbb{R}^n clearly is a Haar measure for \mathbb{R}^n : it is translation invariant and

$$\lambda_n\big(B_r(v)\big) = \frac{(\sqrt{\pi}r)^n}{\Gamma(\frac{n}{2} + 1)} \in (0, \infty) \quad (r > 0, v \in \mathbb{R}^n),$$

showing that it is positive on open and finite on compact subsets of \mathbb{R}^n . Let $f \in C_c(\mathbb{R}^n)$, $g \in GL_n(\mathbb{R})$. We check that $\lambda_n(g^{-1} \cdot f) = |\det g|^{-1} \lambda_n(f)$:

$$\lambda_n(g^{-1}f) = \int_{\mathbb{R}^n} f(gv) \, d\lambda_n(v) = \frac{1}{|\det g|} \int_{\mathbb{R}^n} f(gv) \, |\det g| \, d\lambda_n(v)$$
 change of variables $\to = |\det g|^{-1} \int_{\mathbb{R}^n} f(v) \, d\lambda_n(v)$
$$= |\det g|^{-1} \lambda_n(f).$$

c) Prove that there exists a discontinuous, bijective homomorphism from the additive group $(\mathbb{R},+)$ to itself.

Solution. Using Zorn's lemma, construct a \mathbb{Q} -basis of \mathbb{R} containing 1. Denote this basis by $\{x_i; i \in I\}$ for any infinite index set I containing 0 such that $x_0 = 1$ (I is infinite as otherwise \mathbb{R} would be algebraic over \mathbb{Q}). Fix $i, j \in I \setminus \{0\}$ such that $i \neq j$ and define a linear map $\varphi : \mathbb{R} \to \mathbb{R}$ by \mathbb{Q} -linear extension of

$$\forall k \in I : \varphi(x_k) = \begin{cases} x_j & \text{if } k = i, \\ x_i & \text{if } k = j, \\ x_k & \text{else.} \end{cases}$$

Then φ is a homomorphism by definition and is the identity on \mathbb{Q} . Since every real number is the limit of a \mathbb{Q} -Cauchy sequence¹, let $(q_n)_{n\in\mathbb{N}}\in\mathbb{Q}^{\mathbb{N}}$ Cauchy such that $\lim_{n\to\infty}q_n=x_i$, then

$$\lim_{n \to \infty} \varphi(q_n) = \lim_{n \to \infty} q_n = x_i \neq x_j = \varphi(x_i) = \varphi(\lim_{n \to \infty} q_n).$$

Exercise 5 (Iterated Quotient Measures). Let G be a locally compact Hausdorff group. Show that if $H_1 \leq H_2 \leq G$ are closed subgroups and H_1, H_2, G are all unimodular then there exist invariant measures dx, dy, dz on $G/H_1, G/H_2$ and H_2/H_1 respectively such that

$$\int_{G/H_1} f(x)dx = \int_{G/H_2} \left(\int_{H_2/H_1} f(yz)dz \right) dy$$

for all $f \in C_c(G/H_1)$

¹For example: given $x \in \mathbb{R}$ take $q_n := \frac{\lfloor nx \rfloor}{n} \in \mathbb{Q}$, so that $\frac{nx-1}{n} \leq q_n \leq \frac{nx}{n}$.

Solution. We will use the existence of quotient measures here extensively. Note that H_1, H_2 and G are unimodular such that the necessary and sufficient condition for the existence of quotient measures is always met.

Let dg be a Haar measure on G and dh_1 a Haar measure on H_1 . We have $\Delta_G|_{H_1} \equiv 1 \equiv \Delta_{H_1}$ such that there is a left-invariant measure dx on G/H_1 satisfying

$$\int_{G} F(g)dg = \int_{G/H_1} \int_{H_1} F(xh_1)dh_1dx,$$

for every $F \in C_c(G)$.

Let dh_2 be a Haar measure on H_2 . We have $\Delta_{H_2}|_{H_1} \equiv 1 \equiv \Delta_{H_1}$ such that there is a left-invariant measure dz on H_2/H_1 satisfying

$$\int_{H_2} F(h_2)dh_2 = \int_{H_2/H_1} \int_{H_1} F(zh_1)dh_1dz,$$

for every $F \in C_c(H_2)$.

Finally, we have $\Delta_G|_{H_2} \equiv 1 \equiv \Delta_{H_2}$ such that there is a left-invariant measure dy on G/H_2 satisfying

$$\int_{G} F(g)dg = \int_{G/H_2} \int_{H_2} F(yh_2)dh_2dy,$$

for every $F \in C_c(G)$.

We claim that these measures satisfy the hypothesis.

Let $f \in C_c(G/H_1)$. By a lemma from the lecture we may find an $F \in C_c(G)$ such that

$$f(gH_1) = \int_{H_1} F(gh_1)dh_1.$$

We compute

$$\begin{split} \int_{G/H_1} f(x) dx &= \int_{G/H_1} \int_{H_1} F(x h_1) dh_1 dx \\ &= \int_G F(g) dg \\ &= \int_{G/H_2} \int_{H_2} F(y h_2) dh_2 dy \\ &= \int_{G/H_2} \int_{H_2/H_1} \int_{H_1} F(y z h_1) dh_1 dz dy \\ &= \int_{G/H_2} \int_{H_2/H_1} f(y z) dz dy. \end{split}$$

Exercise 6 (No $SL_2(\mathbb{R})$ -invariant Measure on $SL_2(\mathbb{R})/P$). Let $G = SL_2(\mathbb{R})$ and P be the subgroup of upper triangular matrices. Show directly that there is no (non-trivial) finite G-invariant measure on G/P.

<u>Hint:</u> Identify $G/P \cong \mathbb{S}^1 \cong \mathbb{R} \cup \{\infty\}$ with the unit circle and consider a rotation

$$\begin{pmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{pmatrix}$$

and a translation

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$
.

Solution. Recall that $G = \mathrm{SL}(2,\mathbb{R})$ acts on the upper half plane $\mathbb{H} = \{z \in \mathbb{C} \mid \Im z > 0\} \subset \hat{\mathbb{C}}$ and its boundary $\partial \mathbb{H} = \mathbb{R} \cup \{\infty\} \subset \hat{\mathbb{C}}$ via Möbius transformations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . z = \frac{az+b}{cz+d}.$$

Note that $SL(2,\mathbb{R})$ acts transitively on $\partial \mathbb{H}$ and the stabilizer of ∞ is the subgroup of upper triangular matrices P. We may therefore identify $G/P \cong \mathbb{R} \cup \{\infty\}$.

Suppose there is a finite G-invariant measure m on $G/P \cong \mathbb{R} \cup \{\infty\}$. Consider the restriction $\mu = m|_{\mathbb{R}}$ of this measure to the real line. Observe that G acts on the real line via translations

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} . \xi = \xi + t, \qquad \xi, t \in \mathbb{R},$$

such that μ is in particular a translation invariant measure on \mathbb{R} , i.e. μ is a Haar measure on \mathbb{R} . By uniqueness of Haar measures μ must be a multiple of the Lebesgue measure on \mathbb{R} . Since m is finite μ is the zero measure. That means that m is a positive multiple of the dirac measure at ∞ , i.e. $m = \lambda \cdot \delta_{\infty}$ for some $\lambda > 0$. Now consider the rotation

$$i(z) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} . z = -\frac{1}{z}$$

that sends ∞ to 0. By G-invariance we must have

$$\lambda \cdot \delta_{\infty} = i_*(\lambda \cdot \delta_{\infty}) = \lambda \cdot \delta_0$$

such that $\lambda = 0$; in contradiction to our assumption.