Solutions Exercise Sheet 3

Exercise 1 (Regular Subgroups are closed). Let G be a Lie group, $H \leq G$ a subgroup that is also a regular submanifold. Prove that H is a closed subgroup of G.

Solution. Let $x \in \bar{H}$. As G is clearly first countable, we find $\left(x_{n}\right)_{n \in \mathbb{N}} \in H^{\mathbb{N}}$ such that $x=$ $\lim _{n \rightarrow \infty} x_{n}$. Let $V \subseteq W \subseteq \bar{W} \subseteq U$ open neighbourhoods of $1 \in G$ with compact closure and assume that $\psi: U \rightarrow(-1, \overline{1})^{\operatorname{dim} \bar{G}}$ is a chart as in the definition of a regular submanifold. Assume furthermore that V is symmetric and $V V \subseteq W$. By assumption, there is $N \geq 1$ such that $x_{n} \in x V$ for all $n \geq N$, thus $x_{N}^{-1} x_{n} \in V^{-1} x^{-1} x V=V V \subseteq W$ for all $n \geq N$, and thus $x_{N}^{-1} x_{n} \in H \cap V V \subseteq$ $H \cap \bar{W}$. We note that $H \cap \bar{W}$ is compact by the choice of U. Indeed, $\psi(\bar{W}) \subseteq(-1,1)^{\operatorname{dim} G}$ is compact, and so is $\psi(\bar{W}) \cap\{0\}^{\operatorname{dim} G-\operatorname{dim} H} \times(-1,1)^{\operatorname{dim} H}$. But $x_{N}^{-1} x_{n}$ is convergent and has a limit y in $H \cap \bar{W}$; whence $x_{N} y=x \in H$.

Exercise 2 (Non-closed Subgroup). Give an example of a Lie group G and a subgroup $H<G$ that is not closed and not a Lie group with the topology induced from G.

Solution. Observe that the rational numbers \mathbb{Q} are a countable dense subgroup of \mathbb{R}. Therefore, \mathbb{Q} is not a Lie group:

Indeed, suppose \mathbb{Q} is a Lie group of dimension $n \geq 0$. Then there is a chart $\varphi:(-\varepsilon, \varepsilon) \cap \mathbb{Q} \rightarrow \mathbb{R}^{n}$ about $0 \in \mathbb{Q}$ to some \mathbb{R}^{n} which is a homeomorphism onto its open image $V=\varphi((-\varepsilon, \varepsilon) \cap \mathbb{Q}) \subset \mathbb{R}^{n}$; in particular φ is a bijection and V and $(-\varepsilon, \varepsilon) \cap \mathbb{Q}$ have the same cardinality. If $n=0$ then $V=\{0\}$ by definition which yields a contradiction to $(-\varepsilon, \varepsilon) \cap \mathbb{Q}$ being countably infinite. On the other hand, if $n \geq 1$ then V is uncountably infinite as an open subset of \mathbb{R}^{n} which again yields a contradiction to $(-\varepsilon, \varepsilon) \cap \mathbb{Q}$ being countably infinite.

Exercise 3 (Differential of det). We consider the determinant function det : GL $(n, \mathbb{R}) \rightarrow \mathbb{R}^{*}$. Show that its differential at the identity matrix I is the trace function

$$
D_{I} \text { det }=\operatorname{tr} .
$$

Solution. Let $A \in \mathbb{R}^{n \times n} \cong T_{I} \mathrm{GL}(n, \mathbb{R})$. We compute

$$
\begin{aligned}
& D_{I} \operatorname{det}(A)=\left.\frac{d}{d t}\right|_{t=0}\left|\begin{array}{cccc}
1+t a_{1,1} & t a_{1,2} & \cdots & t a_{1, n} \\
t a_{2,1} & 1+t a_{2,2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & t a_{n-1, n} \\
t a_{n, 1} & \cdots & t a_{n, n-1} & 1+t a_{n, n}
\end{array}\right| \\
& \left.\stackrel{(*)}{=} \frac{d}{d t}\right|_{t=0}\left(\left(1+t a_{1,1}\right)\left|\begin{array}{cccc}
1+t a_{2,2} & t a_{2,3} & \cdots & t a_{2, n} \\
t a_{3,2} & 1+t a_{3,3} & \ddots & \vdots \\
\vdots & \ddots & \ddots & t a_{n-1, n} \\
t a_{n, 2} & \cdots & t a_{n, n-1} & 1+t a_{n, n}
\end{array}\right|\right) \\
& +\left.\sum_{j=2}^{n}(-1)^{j+1} \frac{d}{d t}\right|_{t=0}\left(t a_{2, j} \left\lvert\, \begin{array}{ccc}
t a_{1,2} & \cdots & t a_{1, n} \\
& * &
\end{array}\right.\right) \\
& \stackrel{(* *)}{=}\left(a_{1,1}\left|\begin{array}{ccc}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right|+\left.\frac{d}{d t}\right|_{t=0}\left|\begin{array}{cccc}
1+t a_{2,2} & t a_{2,3} & \cdots & t a_{2, n} \\
t a_{3,2} & 1+t a_{3,3} & \ddots & \vdots \\
\vdots & \ddots & \ddots & t a_{n-1, n} \\
t a_{n, 2} & \cdots & t a_{n, n-1} & 1+t a_{n, n}
\end{array}\right|\right) \\
& +\sum_{j=2}^{n}(-1)^{j+1}\left(a_{2, j} \left\lvert\, \begin{array}{ccc}
0 \cdot a_{1,2} & \cdots & 0 \cdot a_{1, n} \\
& * &
\end{array}+0 \cdot *\right.\right) \\
& =a_{1,1}+\left.\frac{d}{d t}\right|_{t=0} \operatorname{det}\left(I_{2 \times n, 2 \times n}+t A_{2 \times n, 2 \times n}\right) \\
& =\cdots=a_{1,1}+\cdots+a_{n, n}=\operatorname{tr}(A),
\end{aligned}
$$

where we have developed the first column in $(*)$ and applied the product rule in $(* *)$.

Exercise 4 (The Matrix Lie Groups $O(p, q)$ and $U(p, q))$. Let $p, q \in \mathbb{N}$ and $n=p+q$.
a) We define the (indefinite) symmetric bilinear form $\langle\cdot, \cdot\rangle_{p, q}$ of signature (p, q) on \mathbb{R}^{n} to be

$$
\langle v, w\rangle_{p, q}:=v_{1} w_{1}+\cdots+v_{p} w_{p}-v_{p+1} w_{p+1}-\cdots-v_{p+q} w_{p+q}
$$

for all $v=\left(v_{1}, \ldots, v_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$. As the orthogonal group $O(n)$ is defined to be the group of matrices that preserve the standard Euclidean inner product we may now define $O(p, q)$ to be the group of matrices that preserve the above bilinear form:

$$
O(p, q):=\left\{A \in \mathrm{GL}(n, \mathbb{R}):\langle A v, A w\rangle_{p, q}=\langle v, w\rangle_{p, q} \quad \forall v, w \in \mathbb{R}^{n}\right\}
$$

Show that $O(p, q)$ is a Lie group using the inverse function theorem/constant rank theorem. What is its dimension?

Solution. We define

$$
I_{p, q}:=\operatorname{diag}(\underbrace{1, \ldots, 1}_{p \text {-times }}, \underbrace{-1, \ldots,-1}_{q \text {-times }})
$$

to be the diagonal matrix that has +1 in the first p entries along the diagonal and -1 in the last q entries. It is easy to see that

$$
O(p, q):=\left\{A \in \mathrm{GL}(n, \mathbb{R}): A^{T} I_{p, q} A=I_{p, q}\right\}
$$

Now, define

$$
f: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathbb{R}^{n \times n}, A \mapsto A^{T} I_{p, q} A
$$

such that $O(p, q)=f^{-1}\left(I_{p, q}\right)$. The map f is smooth as every entry of $f(A)$ is a polynomial in the entries of $A \in \mathrm{GL}(n, \mathbb{R})$.
We proceed by showing that f has constant rank. Let $X \in T_{A} \operatorname{GL}(n, \mathbb{R}) \cong \mathbb{R}^{n \times n}, A \in$ $\mathrm{GL}(n, \mathbb{R})$. We compute directly

$$
\begin{aligned}
D_{A} f(X) & =\left.\frac{d}{d t}\right|_{t=0}(A+t X)^{T} I_{p, q}(A+t X) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(A^{T} I_{p, q} A+t \cdot X^{T} I_{p, q} A+t \cdot A^{T} I_{p, q} X+t^{2} \cdot X^{T} I_{p, q} X\right) \\
& =X^{T} I_{p, q} A+A^{T} I_{p, q} X=\left(A^{T} I_{p, q} X\right)^{T}+A^{T} I_{p, q} X
\end{aligned}
$$

We claim that the image consists of all symmetric matrices $\operatorname{Sym}_{n}(\mathbb{R}) \subset \mathbb{R}^{n \times n}$ and that $D_{A} f: T_{A} \mathrm{GL}(n, \mathbb{R}) \cong \mathbb{R}^{n \times n} \rightarrow \operatorname{Sym}_{n}(\mathbb{R})$ is onto. For that consider the projection

$$
\begin{aligned}
p: \mathbb{R}^{n \times n} & \rightarrow \operatorname{Sym}_{n}(\mathbb{R}), \\
X & \mapsto \frac{1}{2}\left(X+X^{T}\right) .
\end{aligned}
$$

It is easy to check that $p \circ p=p$ and $\left.p\right|_{\operatorname{Sym}_{n}(\mathbb{R})}=\mathrm{Id}$, such that p is onto. Since,

$$
D_{A} f(X)=2 \cdot p\left(A^{T} I_{p, q} X\right)
$$

and A is invertible, $D_{A} f$ is also onto. Therefore, f has constant rank $\operatorname{dim} \operatorname{Sym}_{n}(\mathbb{R})$.
It follows that $O(p, q)$ is a Lie group as multiplication $m: \operatorname{GL}(n, \mathbb{R}) \times \operatorname{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R})$ and inversion $i: \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R})$ are smooth maps and hence restrict to smooth maps on the regular submanifold $O(p, q) \subset \mathrm{GL}(n, \mathbb{R})$.
Every symmetric matrix is uniquely determined by its entries above and on the diagonal such that

$$
\operatorname{dim} \operatorname{Sym}_{n}(\mathbb{R})=n+(n-1)+\cdots+1=\frac{n(n+1)}{2}
$$

The constant rank theorem then yields

$$
\begin{aligned}
\operatorname{dim} O(p, q) & =\operatorname{dim} f^{-1}\left(I_{p, q}\right)=\operatorname{dim} \mathrm{GL}(n, \mathbb{R})-\operatorname{rank} D_{A} f \\
& =n^{2}-\frac{n(n+1)}{2}=\frac{n(n-1)}{2}
\end{aligned}
$$

b) Similarly we may define the following symmetric sesquilinear form on \mathbb{C}^{n}

$$
\langle w, z\rangle_{p, q}:=\bar{w}_{1} z_{1}+\cdots+\bar{w}_{p} z_{p}-\bar{w}_{p+1} z_{p+1}-\cdots-\bar{w}_{p+q} z_{p+q}
$$

for all $w=\left(w_{1}, \ldots, w_{n}\right), z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, and

$$
U(p, q)=\left\{A \in \mathrm{GL}(n, \mathbb{C}):\langle A w, A z\rangle_{p, q}=\langle w, z\rangle_{p, q} \quad \forall w, z \in \mathbb{C}^{n}\right\}
$$

Show that $U(p, q)$ is a (real) Lie group using the inverse function theorem/constant rank theorem. What is its (real) dimension?

Solution. This is almost the same proof as for part a). It is easy to see that

$$
U(p, q):=\left\{A \in \operatorname{GL}(n, \mathbb{C}): A^{*} I_{p, q} A=I_{p, q}\right\}
$$

Now, define

$$
f: \mathrm{GL}(n, \mathbb{C}) \rightarrow \mathbb{C}^{n \times n}, A \mapsto A^{*} I_{p, q} A
$$

such that $U(p, q)=f^{-1}\left(I_{p, q}\right)$. The map f is smooth as every entry of $f(A)$ is a polynomial in the entries of $A \in \operatorname{GL}(n, \mathbb{C})$.
We proceed by showing that f has constant rank. Let $X \in T_{A} \operatorname{GL}(n, \mathbb{C}) \cong \mathbb{R}^{n \times n}, A \in$ $\mathrm{GL}(n, \mathbb{C})$. We compute directly

$$
\begin{aligned}
D_{A} f(X) & =\left.\frac{d}{d t}\right|_{t=0}(A+t X)^{*} I_{p, q}(A+t X) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(A^{*} I_{p, q} A+t \cdot X^{*} I_{p, q} A+t \cdot A^{*} I_{p, q} X+t^{2} \cdot X^{*} I_{p, q} X\right) \\
& =X^{*} I_{p, q} A+A^{*} I_{p, q} X=\left(A^{*} I_{p, q} X\right)^{*}+A^{*} I_{p, q} X
\end{aligned}
$$

We claim that the image consists of all Hermitian matrices $\operatorname{Herm}_{n}(\mathbb{C}) \subset \mathbb{C}^{n \times n}$ and that $D_{A} f: T_{A} \mathrm{GL}(n, \mathbb{C}) \cong \mathbb{C} \mathbb{C}^{n \times n} \rightarrow \operatorname{Herm}_{n}(\mathbb{C})$ is onto. For that consider the projection

$$
\begin{aligned}
p: \mathbb{C}^{n \times n} & \rightarrow \operatorname{Herm}_{n}(\mathbb{C}), \\
X & \mapsto \frac{1}{2}\left(X+X^{*}\right) .
\end{aligned}
$$

It is easy to check that $p \circ p=p$ and $\left.p\right|_{\operatorname{Herm}_{n}(\mathbb{C})}=\mathrm{Id}$, such that p is onto. Since

$$
D_{A} f(X)=2 \cdot p\left(A^{T} I_{p, q} X\right)
$$

and A is invertible, $D_{A} f$ is also onto. Therefore f has constant rank $\operatorname{dim}_{\mathbb{R}} \operatorname{Herm}_{n}(\mathbb{C})$.
It follows that $U(p, q)$ is a Lie group as multiplication $m: \operatorname{GL}(n, \mathbb{C}) \times \operatorname{GL}(n, \mathbb{C}) \rightarrow \operatorname{GL}(n, \mathbb{C})$ and inversion $i: \mathrm{GL}(n, \mathbb{C}) \rightarrow \mathrm{GL}(n, \mathbb{C})$ are smooth maps and hence restrict to smooth maps on the regular submanifold $U(p, q) \subset \mathrm{GL}(n, \mathbb{C})$.
Every Hermitian matrix is uniquely determined by its entries above and on the diagonal. In contrast to $O(p, q)$ the entries above the diagonal can be any complex number which amounts to two real dimension for each entry. However, an entry z on the diagonal can only take on real values as $z=\bar{z}$ has to hold. Therefore, these amount to one real dimension each. All in all, we get

$$
\operatorname{dim} \operatorname{Herm}_{n}(\mathbb{C})=n+2(n-1)+2(n-2)+\cdots+2 \cdot 1=n+2 \cdot \frac{n(n-1)}{2}=n^{2}
$$

The constant rank theorem then yields

$$
\begin{aligned}
\operatorname{dim} U(p, q) & =\operatorname{dim} f^{-1}\left(I_{p, q}\right)=\operatorname{dim} \mathrm{GL}(n, \mathbb{C})-\operatorname{rank} D_{A} f \\
& =2 n^{2}-n^{2}=n^{2}
\end{aligned}
$$

Exercise 5 (Dimension of $\mathrm{O}(n, \mathbb{R})$). Show that the dimension of $\mathrm{O}(n, \mathbb{R})$ is $n(n-1) / 2$.
Solution. The proof is the same as in exercise 4 for $O(p, q)$ when $p=n$ and $q=0$.
Exercise 6 (One- and two-dimensional Lie Algebras). Classify the one- and two-dimensional real Lie algebras up to Lie algebra isomorphism and realize them as Lie subalgebras of some $\mathfrak{g l} \mathbb{R}_{n}=$ $\mathfrak{g l}\left(\mathbb{R}^{n}\right)$.

Hint: In dimension two one can show that if the Lie algebra is non-abelian then there is a basis X, Y such that $[X, Y]=Y$.

Solution. Let $(\mathfrak{a},[\cdot, \cdot])$ be a real Lie algebra.
We will first deal with the one-dimensional case. Suppose $\operatorname{dim} \mathfrak{a}=1$ and let X be a basis vector for \mathfrak{a}. Due to the anti-symmetry of the Lie bracket we have

$$
[X, X]=-[X, X]=0
$$

i.e. every one-dimensional Lie algebra is abelian. We claim that the linear map $\varphi:(\mathfrak{a},[\cdot, \cdot]) \rightarrow$ $(\mathbb{R},[\cdot, \cdot])$ given by $\varphi(X)=1$ is a Lie algebra isomorphism where the Lie bracket on \mathbb{R} vanishes everywhere. Clearly, φ is an isomorphism of vector spaces and

$$
[\varphi(X), \varphi(X)]=0=\varphi([\underbrace{X, X]}_{=0})
$$

such that φ is indeed a Lie algebra isomorphism.

In order to realize \mathfrak{a} as a Lie subalgebra of some $\mathfrak{g l}_{n} \mathbb{R}$ we need to find a one-dimensional subalgebra of some $\mathfrak{g l}_{n} \mathbb{R}$ on which the commutator $[\cdot, \cdot]$ in $\mathfrak{g l}_{n} \mathbb{R}$ vanishes. Consider

$$
\mathfrak{b}=\left\{\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right): x \in \mathbb{R}\right\} \subseteq \mathfrak{g l}_{2} \mathbb{R}
$$

Clearly, \mathfrak{b} is a linear subspace of $\mathfrak{g l} \mathbb{R}_{2}$. Further, note that

$$
\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
y & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
x \cdot y & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
y & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)
$$

for all $x, y \in \mathbb{R}$, such that $[X, Y]=0$ for all $X, Y \in \mathfrak{b}$. Therefore the vector space isomorphism $\psi: \mathbb{R} \rightarrow \mathfrak{b}$ given by

$$
\psi(x)=\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right)
$$

is also a Lie algebra isomorphism. Thus, $\psi \circ \varphi: \mathfrak{a} \hookrightarrow \mathfrak{g l}_{2}(\mathbb{R})$ realizes \mathfrak{a} as a Lie subalgebra of $\mathfrak{g l} \mathbb{R}$. Suppose $\operatorname{dim} \mathfrak{a}=2$ and let $\{X, Y\}$ be a basis of \mathfrak{a}. Suppose \mathfrak{a} is abelian, i.e. $[X, Y]=0$. Consider

$$
\mathfrak{c}:=\left\{\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right): x, y \in \mathbb{R}\right\} \subset \mathfrak{g l}_{2} \mathbb{R}
$$

and the vector space isomorphism $\varphi: \mathfrak{a} \rightarrow \mathfrak{c}$ given by

$$
\varphi(X)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=: E_{11}, \quad \varphi(Y)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=: E_{22} .
$$

Note that

$$
E_{11} \cdot E_{22}=0=E_{22} \cdot E_{11}
$$

such that

$$
\varphi([X, Y])=\varphi(0)=0=\left[E_{11}, E_{22}\right]=[\varphi(X), \varphi(Y)]
$$

Therefore, $\varphi: \mathfrak{a} \rightarrow \mathfrak{c} \subset \mathfrak{g l}_{2} \mathbb{R}$ is a Lie algebra isomorphism. This realizes \mathfrak{a} as the subalgebra \mathfrak{c} of $\mathfrak{g l}_{2} \mathbb{R}$ and shows that every real abelian Lie algebra is isomorphic to \mathfrak{c}.

Finally, suppose that \mathfrak{a} is non-abelian such that

$$
[X, Y]=\alpha X+\beta Y \neq 0
$$

for some $\alpha, \beta \in \mathbb{R}$. By (\star) not both α and β are zero such that

$$
\beta \lambda-\alpha \mu=1
$$

for some $\lambda, \mu \in \mathbb{R}$. Define

$$
X^{\prime}:=\lambda X+\mu Y, \quad Y^{\prime}:=\alpha X+\beta Y=[X, Y]
$$

Observe that the base change from $\{X, Y\}$ to $\left\{X^{\prime}, Y^{\prime}\right\}$ is given by the matrix

$$
\left(\begin{array}{ll}
\lambda & \alpha \\
\mu & \beta
\end{array}\right)
$$

with determinant $\lambda \beta-\alpha \mu=1$ such that $\left\{X^{\prime}, Y^{\prime}\right\}$ is again a basis of \mathfrak{a}. Further,

$$
\begin{aligned}
{\left[X^{\prime}, Y^{\prime}\right] } & =[\lambda X+\mu Y, \alpha X+\beta Y] \\
& =\lambda \beta[X, Y]+\mu \alpha[Y, X] \\
& =(\beta \lambda-\alpha \mu)[X, Y] \\
& =Y^{\prime} .
\end{aligned}
$$

Consider the vector subspace $\mathfrak{d} \subset \mathfrak{g l}_{2} \mathbb{R}$ generated by the matrices

$$
A:=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right), \quad C:=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

In fact, \mathfrak{d} is a Lie subalgebra:

$$
\begin{aligned}
{[A, C] } & =\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & \frac{1}{2} \\
0 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & -\frac{1}{2} \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=C
\end{aligned}
$$

This computation also shows that the linear map $\varphi: \mathfrak{a} \rightarrow \mathfrak{d}$ given by

$$
\varphi\left(X^{\prime}\right)=A, \quad \varphi\left(Y^{\prime}\right)=C
$$

is a Lie algebra isomorphism (it is easily seen to be an isomorphism of vector spaces). Therefore, \mathfrak{a} can be realized as the subalgebra \mathfrak{d} of $\mathfrak{g l}_{2} \mathbb{R}$. This also proves that any real, non-abelian Lie algebra \mathfrak{a} is isomorphic to \mathfrak{d}.
$\underline{\text { Remark: }}$ Notice that the map $\Phi: \mathfrak{g l}_{2} \mathbb{R} \hookrightarrow \mathfrak{g l}_{n} \mathbb{R}$ given by

$$
\Phi(A)=\left(\begin{array}{c|c}
A & 0 \\
\hline 0 & 0
\end{array}\right)
$$

is an injective Lie algebra homomorphism such that the discussed realizations of \mathfrak{a} as subalgebras of $\mathfrak{g l}_{2} \mathbb{R}$ also amount to realizations of \mathfrak{a} in any $\mathfrak{g l}_{n} \mathbb{R}$.

Exercise 7 (The adjoint representation ad). Let V be a vector space over a field k.
a) Show that the vector space of endomorphisms

$$
\mathfrak{g l}(V):=\{A: V \rightarrow V \text { linear }\}
$$

is a Lie algebra with the Lie bracket given by the commutator

$$
[A, B]:=A B-B A
$$

for all $A, B \in \mathfrak{g l}(V)$.
Solution. One immediately verifies that $\mathfrak{g l}(V)$ is an algebra with respect to the Lie bracket. What is left to check is that the commutator satisfies the Jacobi identity

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

for all $X, Y, Z \in \mathfrak{g l}(V)$.
We leave this computation to the reader.
b) Let \mathfrak{g} be a Lie algebra over k. The adjoint representation

$$
\operatorname{ad}: \mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})
$$

is defined as $\operatorname{ad}(X)(Y):=[X, Y]$ for all $X, Y \in \mathfrak{g}$. Show that ad is a Lie algebra homomorphism.

Solution. It is easy to check that ad: $\mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})$ is linear. Thus, we only need to check that it preserves the Lie bracket.
We compute

$$
\begin{aligned}
{[\operatorname{ad}(X), \operatorname{ad}(Y)](Z) } & =(\operatorname{ad}(X) \circ \operatorname{ad}(Y)-\operatorname{ad}(Y) \circ \operatorname{ad}(X))(Z) \\
& =[X,[Y, Z]]-[Y,[X, Z]] \\
& =[X,[Y, Z]]+[Y,[Z, X]] \\
(\text { Jacobi identity }) & =-[Z,[X, Y]] \\
& =[[X, Y], Z]=\operatorname{ad}([X, Y])(Z)
\end{aligned}
$$

for all $X, Y, Z \in \mathfrak{g}$.

Exercise 8 (Quaternions). Let $\mathbb{H}:=\mathbb{R}+\mathbb{R} \mathbf{i}+\mathbb{R} \mathbf{j}+\mathbb{R} \mathbf{k}$ and define - in addition to the \mathbb{R} vector space structure - a multiplication on \mathbb{H} by requiring:

$$
\begin{aligned}
\mathbf{i} \mathbf{j} & =\mathbf{k}=-\mathbf{j} \mathbf{i} \\
\mathbf{j} \mathbf{k} & =\mathbf{i}=-\mathbf{k} \mathbf{j} \\
\mathbf{k i} & =\mathbf{j}=-\mathbf{i} \mathbf{k} \\
\mathbf{i}^{2} & =\mathbf{j}^{2}=\mathbf{k}^{2}=-1
\end{aligned}
$$

The resulting skew-field is called the Hamiltonian quaternions.
a) Prove that there is a ring isomorphism:

$$
\mathbb{H} \cong\left\{\left.\left(\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right) \right\rvert\, a, b \in \mathbb{C}\right\} .
$$

Solution. Define

$$
\Phi(a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}):=\left(\begin{array}{cc}
a-b \mathrm{i} & c-d \mathrm{i} \\
-c-d \mathrm{i} & a+b \mathrm{i}
\end{array}\right)
$$

where i denotes the imaginary unit in \mathbb{C}. The map Φ is clearly \mathbb{R}-linear. In order to show that Φ is a homomorphism of rings, it suffices to show that Φ obeys the definition of the product on the generators $\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$. We leave this formal and tedious check to the reader. It is clear that the map is a bijection and hence the claim follows. For convenience, we write down the image of the generators under Φ :

$$
\begin{aligned}
& \Phi(1)=\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right), \quad \Phi(\mathbf{i})=\left(\begin{array}{ll}
-\mathrm{i} & \\
& \mathrm{i}
\end{array}\right) \\
& \Phi(\mathbf{j})=\left(\begin{array}{ll}
& 1 \\
-1 &
\end{array}\right), \quad \Phi(\mathbf{k})=\left(\begin{array}{ll}
& -\mathrm{i} \\
-\mathrm{i} &
\end{array}\right) .
\end{aligned}
$$

b) Define a Lie bracket on \mathbb{H} by $[u, v]:=u v-v u$. Show that $V=\mathbb{R} \mathbf{i}+\mathbb{R} \mathbf{j}+\mathbb{R} \mathbf{k}$ is a Lie ideal in \mathbb{H} and that the Lie subalgebra $(V,[\cdot, \cdot])$ is isomorphic to the Lie algebra \mathbb{R}^{3} with the cross product

$$
x \times y=\left(x_{2} y_{3}-y_{2} x_{3}, x_{3} y_{1}-y_{3} x_{1}, x_{1} y_{2}-y_{1} x_{2}\right) \quad \forall x, y \in \mathbb{R}^{3}
$$

as a Lie bracket.
 $X \in \mathfrak{g}, Y \in \mathfrak{i}$.

Solution. By multilinearity again, it suffices to check the ideal property on generators only. That is, we show that

$$
\Phi(x) \Phi(y)-\Phi(y) \Phi(x) \in\langle\Phi(\mathbf{i}), \Phi(\mathbf{j}), \Phi(\mathbf{k})\rangle_{\mathbb{R}}=: V
$$

for all $x, y \in\{1, \mathbf{i}, \mathbf{j}, \mathbf{k}\}$ with $y \neq 1$. Denoting by $[\cdot, \cdot]$ the commutator on $\mathbb{C}^{2 \times 2}$, one calculates

$$
\begin{aligned}
{[\Phi(1), \Phi(\mathbf{i})] } & =[\Phi(1), \Phi(\mathbf{j})]=[\Phi(1), \Phi(\mathbf{k})] \\
& =[\Phi(\mathbf{i}), \Phi(\mathbf{i})]=[\Phi(\mathbf{j}), \Phi(\mathbf{j})] \\
& =[\Phi(\mathbf{k}), \Phi(\mathbf{k})]=0 \\
{[\Phi(\mathbf{i}), \Phi(\mathbf{j})] } & =2 \Phi(\mathbf{k}) \\
{[\Phi(\mathbf{i}), \Phi(\mathbf{k})] } & =-2 \Phi(\mathbf{j}) \\
{[\Phi(\mathbf{j}), \Phi(\mathbf{k})] } & =2 \Phi(\mathbf{i})
\end{aligned}
$$

This proves that V is an ideal and also shows $(V,[\cdot, \cdot]) \cong\left(\mathbb{R}^{3}, \times\right)$ by linear extension of:

$$
\begin{aligned}
\Phi(\mathbf{i}) & \mapsto e_{1} \\
\Phi(\mathbf{j}) & \mapsto e_{2} \\
\Phi(\mathbf{k}) & \mapsto e_{3}
\end{aligned}
$$

In order to complete the exercise, we show that any Lie algebra ($E,[\cdot, \cdot]_{E}$) over a field \mathbb{K} is isomorphic to $\left(E, c[\cdot, \cdot]_{E}\right)$ for $c \in \mathbb{K}^{\times}$. Define $\Psi: E \rightarrow E$ by $\Psi v:=c^{-1} v$. Using bilinearity, we calculate

$$
c[\Psi v, \Psi w]_{E}=c^{-1}[v, w]_{E}=\Psi[v, w]_{E}
$$

so that $\Psi:\left(E,[\cdot, \cdot]_{E}\right) \rightarrow\left(E, c[\cdot, \cdot]_{E}\right)$ preserves the Lie bracket. It is clear that Ψ is an isomorphism of vector spaces and thus Ψ becomes an isomorphism of Lie algebras.

