
Prof. Dr. A. Iozzi Introduction to Lie Groups HS 2021

Solutions Exercise Sheet 3

Exercise 1 (Regular Subgroups are closed). Let G be a Lie group, H ≤ G a subgroup that is also
a regular submanifold. Prove that H is a closed subgroup of G.

Solution. Let x ∈ H. As G is clearly first countable, we find (xn)n∈N ∈ HN such that x =
limn→∞ xn. Let V ⊆ W ⊆ W ⊆ U open neighbourhoods of 1 ∈ G with compact closure and
assume that ψ : U → (−1, 1)dimG is a chart as in the definition of a regular submanifold. Assume
furthermore that V is symmetric and V V ⊆W . By assumption, there is N ≥ 1 such that xn ∈ xV
for all n ≥ N , thus x−1N xn ∈ V −1x−1xV = V V ⊆ W for all n ≥ N , and thus x−1N xn ∈ H ∩ V V ⊆
H∩W . We note that H∩W is compact by the choice of U . Indeed, ψ(W ) ⊆ (−1, 1)dimG is compact,
and so is ψ(W )∩{0}dimG−dimH×(−1, 1)dimH . But x−1N xn is convergent and has a limit y in H∩W ;
whence xNy = x ∈ H.

Exercise 2 (Non-closed Subgroup). Give an example of a Lie group G and a subgroup H < G
that is not closed and not a Lie group with the topology induced from G.

Solution. Observe that the rational numbers Q are a countable dense subgroup of R. Therefore,
Q is not a Lie group:

Indeed, suppose Q is a Lie group of dimension n ≥ 0. Then there is a chart ϕ : (−ε, ε) ∩ Q → Rn

about 0 ∈ Q to some Rn which is a homeomorphism onto its open image V = ϕ((−ε, ε)∩Q) ⊂ Rn;
in particular ϕ is a bijection and V and (−ε, ε)∩Q have the same cardinality. If n = 0 then V = {0}
by definition which yields a contradiction to (−ε, ε)∩Q being countably infinite. On the other hand,
if n ≥ 1 then V is uncountably infinite as an open subset of Rn which again yields a contradiction
to (−ε, ε) ∩Q being countably infinite.
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Exercise 3 (Differential of det). We consider the determinant function det : GL(n,R)→ R∗. Show
that its differential at the identity matrix I is the trace function

DIdet = tr.

Solution. Let A ∈ Rn×n ∼= TI GL(n,R). We compute

DIdet(A) =
d

dt

∣∣∣∣
t=0

∣∣∣∣∣∣∣∣∣∣
1 + ta1,1 ta1,2 · · · ta1,n

ta2,1 1 + ta2,2
. . .

...
...

. . .
. . . tan−1,n

tan,1 · · · tan,n−1 1 + tan,n

∣∣∣∣∣∣∣∣∣∣
(∗)
=

d

dt

∣∣∣∣
t=0

(1 + ta1,1)

∣∣∣∣∣∣∣∣∣∣
1 + ta2,2 ta2,3 · · · ta2,n

ta3,2 1 + ta3,3
. . .

...
...

. . .
. . . tan−1,n

tan,2 · · · tan,n−1 1 + tan,n

∣∣∣∣∣∣∣∣∣∣


+

n∑
j=2

(−1)j+1 d

dt

∣∣∣∣
t=0

(
ta2,j

∣∣∣∣ta1,2 · · · ta1,n
∗

∣∣∣∣)

(∗∗)
=

a1,1
∣∣∣∣∣∣∣
1 0

. . .

0 1

∣∣∣∣∣∣∣+
d

dt

∣∣∣∣
t=0

∣∣∣∣∣∣∣∣∣∣
1 + ta2,2 ta2,3 · · · ta2,n

ta3,2 1 + ta3,3
. . .

...
...

. . .
. . . tan−1,n

tan,2 · · · tan,n−1 1 + tan,n

∣∣∣∣∣∣∣∣∣∣


+

n∑
j=2

(−1)j+1

(
a2,j

∣∣∣∣0 · a1,2 · · · 0 · a1,n
∗

∣∣∣∣+ 0 · ∗
)

= a1,1 +
d

dt

∣∣∣∣
t=0

det(I2×n,2×n + tA2×n,2×n)

= · · · = a1,1 + · · ·+ an,n = tr(A),

where we have developed the first column in (∗) and applied the product rule in (∗∗).
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Exercise 4 (The Matrix Lie Groups O(p, q) and U(p, q)). Let p, q ∈ N and n = p+ q.

a) We define the (indefinite) symmetric bilinear form 〈·, ·〉p,q of signature (p, q) on Rn to be

〈v, w〉p,q := v1w1 + · · ·+ vpwp − vp+1wp+1 − · · · − vp+qwp+q

for all v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Rn. As the orthogonal group O(n) is defined to be
the group of matrices that preserve the standard Euclidean inner product we may now define
O(p, q) to be the group of matrices that preserve the above bilinear form:

O(p, q) := {A ∈ GL(n,R) : 〈Av,Aw〉p,q = 〈v, w〉p,q ∀v, w ∈ Rn} .

Show that O(p, q) is a Lie group using the inverse function theorem/constant rank theorem.
What is its dimension?

Solution. We define
Ip,q := diag(1, . . . , 1︸ ︷︷ ︸

p-times

,−1, . . . ,−1︸ ︷︷ ︸
q-times

)

to be the diagonal matrix that has +1 in the first p entries along the diagonal and −1 in the
last q entries. It is easy to see that

O(p, q) :=
{
A ∈ GL(n,R) : AT Ip,qA = Ip,q

}
.

Now, define
f : GL(n,R)→ Rn×n, A 7→ AT Ip,qA,

such that O(p, q) = f−1(Ip,q). The map f is smooth as every entry of f(A) is a polynomial
in the entries of A ∈ GL(n,R).

We proceed by showing that f has constant rank. Let X ∈ TA GL(n,R) ∼= Rn×n, A ∈
GL(n,R). We compute directly

DAf(X) =
d

dt

∣∣∣∣
t=0

(A+ tX)T Ip,q(A+ tX)

=
d

dt

∣∣∣∣
t=0

(
AT Ip,qA+ t ·XT Ip,qA+ t ·AT Ip,qX + t2 ·XT Ip,qX

)
= XT Ip,qA+AT Ip,qX = (AT Ip,qX)T +AT Ip,qX.

We claim that the image consists of all symmetric matrices Symn(R) ⊂ Rn×n and that
DAf : TA GL(n,R) ∼= Rn×n → Symn(R) is onto. For that consider the projection

p : Rn×n → Symn(R),

X 7→ 1
2

(
X +XT

)
.

It is easy to check that p ◦ p = p and p|Symn(R) = Id, such that p is onto. Since,

DAf(X) = 2 · p(AT Ip,qX)
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and A is invertible, DAf is also onto. Therefore, f has constant rank dim Symn(R).

It follows that O(p, q) is a Lie group as multiplication m : GL(n,R)×GL(n,R) → GL(n,R)
and inversion i : GL(n,R) → GL(n,R) are smooth maps and hence restrict to smooth maps
on the regular submanifold O(p, q) ⊂ GL(n,R).

Every symmetric matrix is uniquely determined by its entries above and on the diagonal such
that

dim Symn(R) = n+ (n− 1) + · · ·+ 1 =
n(n+ 1)

2
.

The constant rank theorem then yields

dimO(p, q) = dim f−1(Ip,q) = dim GL(n,R)− rankDAf

= n2 − n(n+ 1)

2
=
n(n− 1)

2
.

b) Similarly we may define the following symmetric sesquilinear form on Cn

〈w, z〉p,q := w̄1z1 + · · ·+ w̄pzp − w̄p+1zp+1 − · · · − w̄p+qzp+q

for all w = (w1, . . . , wn), z = (z1, . . . , zn) ∈ Cn, and

U(p, q) = {A ∈ GL(n,C) : 〈Aw,Az〉p,q = 〈w, z〉p,q ∀w, z ∈ Cn}.

Show that U(p, q) is a (real) Lie group using the inverse function theorem/constant rank
theorem. What is its (real) dimension?

Solution. This is almost the same proof as for part a). It is easy to see that

U(p, q) := {A ∈ GL(n,C) : A∗Ip,qA = Ip,q} .

Now, define
f : GL(n,C)→ Cn×n, A 7→ A∗Ip,qA,

such that U(p, q) = f−1(Ip,q). The map f is smooth as every entry of f(A) is a polynomial
in the entries of A ∈ GL(n,C).

We proceed by showing that f has constant rank. Let X ∈ TA GL(n,C) ∼= Rn×n, A ∈
GL(n,C). We compute directly

DAf(X) =
d

dt

∣∣∣∣
t=0

(A+ tX)∗Ip,q(A+ tX)

=
d

dt

∣∣∣∣
t=0

(
A∗Ip,qA+ t ·X∗Ip,qA+ t ·A∗Ip,qX + t2 ·X∗Ip,qX

)
= X∗Ip,qA+A∗Ip,qX = (A∗Ip,qX)∗ +A∗Ip,qX.

We claim that the image consists of all Hermitian matrices Hermn(C) ⊂ Cn×n and that
DAf : TA GL(n,C) ∼= Cn×n → Hermn(C) is onto. For that consider the projection

p : Cn×n → Hermn(C),

X 7→ 1
2 (X +X∗) .
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It is easy to check that p ◦ p = p and p|Hermn(C) = Id, such that p is onto. Since

DAf(X) = 2 · p(AT Ip,qX)

and A is invertible, DAf is also onto. Therefore f has constant rank dimR Hermn(C).

It follows that U(p, q) is a Lie group as multiplication m : GL(n,C)×GL(n,C) → GL(n,C)
and inversion i : GL(n,C) → GL(n,C) are smooth maps and hence restrict to smooth maps
on the regular submanifold U(p, q) ⊂ GL(n,C).

Every Hermitian matrix is uniquely determined by its entries above and on the diagonal. In
contrast to O(p, q) the entries above the diagonal can be any complex number which amounts
to two real dimension for each entry. However, an entry z on the diagonal can only take on
real values as z = z̄ has to hold. Therefore, these amount to one real dimension each. All in
all, we get

dim Hermn(C) = n+ 2(n− 1) + 2(n− 2) + · · ·+ 2 · 1 = n+ 2 · n(n− 1)

2
= n2.

The constant rank theorem then yields

dimU(p, q) = dim f−1(Ip,q) = dim GL(n,C)− rankDAf

= 2n2 − n2 = n2.

Exercise 5 (Dimension of O(n,R)). Show that the dimension of O(n,R) is n(n− 1)/2.

Solution. The proof is the same as in exercise 4 for O(p, q) when p = n and q = 0.

Exercise 6 (One- and two-dimensional Lie Algebras). Classify the one- and two-dimensional real
Lie algebras up to Lie algebra isomorphism and realize them as Lie subalgebras of some glnR =
gl(Rn).

Hint: In dimension two one can show that if the Lie algebra is non-abelian then there is a basis
X,Y such that [X,Y ] = Y .

Solution. Let (a, [·, ·]) be a real Lie algebra.

We will first deal with the one-dimensional case. Suppose dim a = 1 and let X be a basis vector for
a. Due to the anti-symmetry of the Lie bracket we have

[X,X] = −[X,X] = 0,

i.e. every one-dimensional Lie algebra is abelian. We claim that the linear map ϕ : (a, [·, ·]) →
(R, [·, ·]) given by ϕ(X) = 1 is a Lie algebra isomorphism where the Lie bracket on R vanishes
everywhere. Clearly, ϕ is an isomorphism of vector spaces and

[ϕ(X), ϕ(X)] = 0 = ϕ([X,X]︸ ︷︷ ︸
=0

)

such that ϕ is indeed a Lie algebra isomorphism.
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In order to realize a as a Lie subalgebra of some glnR we need to find a one-dimensional subalgebra
of some glnR on which the commutator [·, ·] in glnR vanishes. Consider

b =

{(
x 0
0 0

)
: x ∈ R

}
⊆ gl2R.

Clearly, b is a linear subspace of gl2R. Further, note that(
x 0
0 0

)(
y 0
0 0

)
=

(
x · y 0

0 0

)
=

(
y 0
0 0

)(
x 0
0 0

)
for all x, y ∈ R, such that [X,Y ] = 0 for all X,Y ∈ b. Therefore the vector space isomorphism
ψ : R→ b given by

ψ(x) =

(
x 0
0 0

)
is also a Lie algebra isomorphism. Thus, ψ ◦ ϕ : a ↪→ gl2(R) realizes a as a Lie subalgebra of gl2R.

Suppose dim a = 2 and let {X,Y } be a basis of a. Suppose a is abelian, i.e. [X,Y ] = 0. Consider

c :=

{(
x 0
0 y

)
: x, y ∈ R

}
⊂ gl2R

and the vector space isomorphism ϕ : a→ c given by

ϕ(X) =

(
1 0
0 0

)
=: E11, ϕ(Y ) =

(
0 0
0 1

)
=: E22.

Note that
E11 · E22 = 0 = E22 · E11,

such that
ϕ([X,Y ]) = ϕ(0) = 0 = [E11, E22] = [ϕ(X), ϕ(Y )].

Therefore, ϕ : a → c ⊂ gl2R is a Lie algebra isomorphism. This realizes a as the subalgebra c of
gl2R and shows that every real abelian Lie algebra is isomorphic to c.

Finally, suppose that a is non-abelian such that

[X,Y ] = αX + βY 6= 0 (?)

for some α, β ∈ R. By (?) not both α and β are zero such that

βλ− αµ = 1

for some λ, µ ∈ R. Define

X ′ := λX + µY, Y ′ := αX + βY = [X,Y ].

Observe that the base change from {X,Y } to {X ′, Y ′} is given by the matrix(
λ α
µ β

)
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with determinant λβ − αµ = 1 such that {X ′, Y ′} is again a basis of a. Further,

[X ′, Y ′] = [λX + µY, αX + βY ]

= λβ[X,Y ] + µα[Y,X]

= (βλ− αµ)[X,Y ]

= Y ′.

Consider the vector subspace d ⊂ gl2R generated by the matrices

A :=

(
1
2 0
0 − 1

2

)
, C :=

(
0 1
0 0

)
.

In fact, d is a Lie subalgebra:

[A,C] =

(
1
2 0
0 − 1

2

)(
0 1
0 0

)
−
(

0 1
0 0

)(
1
2 0
0 − 1

2

)
=

(
0 1

2
0 0

)
−
(

0 − 1
2

0 0

)
=

(
0 1
0 0

)
= C.

This computation also shows that the linear map ϕ : a→ d given by

ϕ(X ′) = A, ϕ(Y ′) = C

is a Lie algebra isomorphism (it is easily seen to be an isomorphism of vector spaces). Therefore, a
can be realized as the subalgebra d of gl2R. This also proves that any real, non-abelian Lie algebra
a is isomorphic to d.

Remark: Notice that the map Φ : gl2R ↪→ glnR given by

Φ(A) =

(
A 0
0 0

)
is an injective Lie algebra homomorphism such that the discussed realizations of a as subalgebras
of gl2R also amount to realizations of a in any glnR.
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Exercise 7 (The adjoint representation ad). Let V be a vector space over a field k.

a) Show that the vector space of endomorphisms

gl(V ) := {A : V → V linear}

is a Lie algebra with the Lie bracket given by the commutator

[A,B] := AB −BA

for all A,B ∈ gl(V ).

Solution. One immediately verifies that gl(V ) is an algebra with respect to the Lie bracket.
What is left to check is that the commutator satisfies the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for all X,Y, Z ∈ gl(V ).

We leave this computation to the reader.

b) Let g be a Lie algebra over k. The adjoint representation

ad: g→ gl(g)

is defined as ad(X)(Y ) := [X,Y ] for all X,Y ∈ g. Show that ad is a Lie algebra homomor-
phism.

Solution. It is easy to check that ad: g → gl(g) is linear. Thus, we only need to check that
it preserves the Lie bracket.

We compute

[ad(X), ad(Y )](Z) = (ad(X) ◦ ad(Y )− ad(Y ) ◦ ad(X))(Z)

= [X, [Y,Z]]− [Y, [X,Z]]

= [X, [Y,Z]] + [Y, [Z,X]]

(Jacobi identity) = −[Z, [X,Y ]]

= [[X,Y ], Z] = ad([X,Y ])(Z)

for all X,Y, Z ∈ g.
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Exercise 8 (Quaternions). Let H := R + Ri + Rj + Rk and define – in addition to the R vector
space structure – a multiplication on H by requiring:

ij =k = −ji,
jk =i = −kj,
ki =j = −ik,
i2 =j2 = k2 = −1.

The resulting skew-field is called the Hamiltonian quaternions.

a) Prove that there is a ring isomorphism:

H ∼=
{(

a −b̄
b ā

) ∣∣∣∣ a, b ∈ C
}
.

Solution. Define

Φ(a+ bi + cj + dk) :=

(
a− bi c− di
−c− di a+ bi

)
,

where i denotes the imaginary unit in C. The map Φ is clearly R-linear. In order to show that
Φ is a homomorphism of rings, it suffices to show that Φ obeys the definition of the product
on the generators {1, i, j,k}. We leave this formal and tedious check to the reader. It is clear
that the map is a bijection and hence the claim follows. For convenience, we write down the
image of the generators under Φ:

Φ(1) =

(
1

1

)
, Φ(i) =

(
−i

i

)
,

Φ(j) =

(
1

−1

)
, Φ(k) =

(
−i

−i

)
.

b) Define a Lie bracket on H by [u, v] := uv − vu. Show that V = Ri + Rj + Rk is a Lie ideal
in H and that the Lie subalgebra (V, [·, ·]) is isomorphic to the Lie algebra R3 with the cross
product

x× y = (x2y3 − y2x3, x3y1 − y3x1, x1y2 − y1x2) ∀x, y ∈ R3

as a Lie bracket.

Remark: A Lie ideal in a Lie algebra g is a Lie subalgebra i ⊆ g such that [X,Y ] ∈ i for all
X ∈ g, Y ∈ i.

Solution. By multilinearity again, it suffices to check the ideal property on generators only.
That is, we show that

Φ(x)Φ(y)− Φ(y)Φ(x) ∈ 〈Φ(i),Φ(j),Φ(k)〉R =: V
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for all x, y ∈ {1, i, j,k} with y 6= 1. Denoting by [ ·, ·] the commutator on C2×2, one calculates

[Φ(1),Φ(i)] = [Φ(1),Φ(j)] = [Φ(1),Φ(k)]

= [Φ(i),Φ(i)] = [Φ(j),Φ(j)]

= [Φ(k),Φ(k)] = 0

[Φ(i),Φ(j)] = 2Φ(k)

[Φ(i),Φ(k)] = −2Φ(j)

[Φ(j),Φ(k)] = 2Φ(i)

This proves that V is an ideal and also shows (V, [ ·, ·]) ∼= (R3,×) by linear extension of:

Φ(i) 7→ e1

Φ(j) 7→ e2

Φ(k) 7→ e3

In order to complete the exercise, we show that any Lie algebra (E, [ ·, ·]E) over a field K is
isomorphic to (E, c[ ·, ·]E) for c ∈ K×. Define Ψ : E → E by Ψv := c−1v. Using bilinearity, we
calculate

c[Ψv,Ψw]E = c−1[v, w]E = Ψ[v, w]E

so that Ψ : (E, [ ·, ·]E) → (E, c[ ·, ·]E) preserves the Lie bracket. It is clear that Ψ is an
isomorphism of vector spaces and thus Ψ becomes an isomorphism of Lie algebras.
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