
Prof. Dr. A. Iozzi Introduction to Lie Groups HS 2021

Solution Exercise Sheet 4

Exercise 1 (Related Vector Fields). Let M , N be smooth manifolds and let ϕ : M → N be a
smooth map. Recall that two vector fields X ∈ Vect(M), X ′ ∈ Vect(N) are called ϕ-related if

dpϕ(Xp) = X ′ϕ(p)

for every p ∈M .

Show that [X,Y ] is ϕ-related to [X ′, Y ′] if X ∈ Vect(M) is ϕ-related to X ′ ∈ Vect(N) and Y ∈
Vect(M) is ϕ-related to Y ′ ∈ Vect(N).

Solution. Let f ∈ C∞(N) be a smooth function on N and X,X ′, Y, Y ′ vector fields on M and N
as above.

Let p ∈M . We compute

[X ′, Y ′]ϕ(p)f = X ′ϕ(p)(Y
′f)− Y ′ϕ(p)(X

′f)

= (dpϕ(Xp))(Y
′f)− (dpϕ(Yp))(X

′f)

= Xp((Y
′f) ◦ ϕ)− Yp((X ′f) ◦ ϕ).

Now, note that

(Y ′f)(ϕ(q)) = Y ′ϕ(q)f = (dqϕ(Yq))f = Yq(f ◦ ϕ), ∀q ∈M,

because Y and Y ′ are ϕ-related and analogously

(X ′f)(ϕ(q)) = X ′ϕ(q)f = (dqϕ(Xq))f = Xq(f ◦ ϕ), ∀q ∈M.

Therefore

Xp((Y
′f) ◦ ϕ)− Yp((X ′f) ◦ ϕ) = Xp(Y (f ◦ ϕ))− Yp(X(f ◦ ϕ))

= [X,Y ]p(f ◦ ϕ)

= dpϕ([X,Y ])f.

This shows that
dpϕ([X,Y ]) = [X ′, Y ′]ϕ(p),

i.e. [X,Y ] and [X ′, Y ′] are ϕ-related.
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Exercise 2 (Leibniz Rule). Let A,B : (−ε, ε)→ Rn×n be smooth curves and define ϕ : (−ε, ε)→
Rn×n as the product ϕ(t) := A(t)B(t). Show that

ϕ′(t) = A′(t)B(t) +A(t)B′(t)

for every t ∈ (−ε, ε).

Solution. Note that the ij-entry of ϕ(t) is

ϕij(t) =

n∑
k=1

Aik(t)Bkj(t)

for every t ∈ (−ε, ε).

Differentiating each entry yields

ϕ′ij(t) =

n∑
k=1

A′ik(t)Bkj(t) +

n∑
k=1

Aik(t)B′kj(t)

= (A′(t)B(t))ij + (A(t)B′(t))ij ∀t ∈ (−ε, ε)

such that
ϕ′(t) = A′(t)B(t) +A(t)B′(t)

as claimed.

Exercise 3 (Some Lie Algebras). (a) Let M , N be smooth manifolds and let f : M → N be a
smooth map of constant rank r. By the constant rank theorem we know that the level set
L = f−1(q) is a regular submanifold of M of dimension dimM − r for every q ∈ N . Show
that one may canonically identify

TpL ∼= kerdpf

for every p ∈ L = f−1(q).

Solution. Since L = f−1(q) is a regular submanifold of M we may think of the tangent space
TpL as a subspace of the tangent space TpM . We will first show that TpL ⊆ kerdpf . Let
v ∈ TpL and let γ : (−ε, ε) → L = f−1(q) be a smooth curve in L such that γ(0) = p and
γ′(0) = v. Then f(γ(t)) = q for all t ∈ (−ε, ε), i.e. f ◦ γ is the constant curve. It follows that

dpf(v) = dγ(0)f(γ′(0)) =
d

dt

∣∣∣∣
t=0

f(γ(t)) = 0.

In particular, v ∈ kerdpf as claimed.

Finally, note that kerdpf is a subspace of TpM of dimension

dim kerdpf = dimTpM − rank dpf = dimM − r = dimL = dimTpL.

Therefore TpL is a linear subspace of kerdpf of maximal dimension such that TpL = kerdpf .

(b) Use part a) to compute the Lie algebras of the Lie groups O(n,R), O(p, q), U(n), Sp(2n,C),
B(n) and N(n) where B(n) is the group of real invertible upper triangular matrices and N(n)
is the subgroup of B(n) with only ones on the diagonal.
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Solution. Note that all of the listed Lie groups are subgroups of GL(n,K) that are also
regular submanifolds (K = R or C). In particular the inclusion maps yield injective Lie
algebra homomorphisms. This implies that the corresponding Lie algebras can be canonically
identified with Lie subalgebras of glnK. Hence the Lie bracket will be given by the ambient
Lie bracket [·, ·] of glnK. Identifying glnK ∼= TI GL(n,K) ∼= Kn×n the Lie bracket is given by
the commutator

[A,B] = AB −BA
as was proved in the lecture.

(i) O(n,R): Consider the function f1 : GL(n,R)→ Rn×n given by

f1(A) = ATA

for every A ∈ GL(n,R). It is easy to check that f1 has constant rank and that

O(n) = f−11 (I).

By part a)
o(n) := Lie(O(n)) ∼= TIO(n) ∼= kerdIf1 < glnR.

Let X ∈ Rn×n ∼= TI GL(n,R). We compute

dIf1(X) =
d

dt

∣∣∣∣
t=0

(I + tX)t(I + tX)

= Xt +X

where we have used exercise 2 in the last equality. Therefore

o(n) = {X ∈ glnR : Xt +X = 0}.

(ii) O(p, q): Consider the function f2 : GL(n,R)→ Rn×n given by

f2(A) = AT Ip,qA

for every A ∈ GL(n,R), where

Ip,q = diag(1, . . . , 1︸ ︷︷ ︸
p-times

,−1, . . . ,−1︸ ︷︷ ︸
q-times

).

It is easy to check that f2 has constant rank and that

O(p, q) = f−12 (Ip,q).

By part a)
o(p, q) := Lie(O(p, q)) ∼= TIO(p, q) ∼= kerdIf2 < glnR.

Let X ∈ Rn×n ∼= TI GL(n,R). We compute

dIf2(X) =
d

dt

∣∣∣∣
t=0

(I + tX)tIp,q(I + tX)

= XtIp,q + Ip,qX

where we have used exercise 2 in the last equality. Therefore

o(p, q) = {X ∈ glnR : XtIp,q + Ip,qX = 0}.
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(iii) U(n): Consider the function f3 : GL(n,C)→ Cn×n given by

f3(A) = A∗A

for every A ∈ GL(n,C). It is easy to check that f3 has constant rank and that

U(n) = f−13 (I).

By part a)
u(n) := Lie(U(n)) ∼= TIU(n) ∼= kerdIf3 < glnC.

Let X ∈ Cn×n ∼= TI GL(n,C). We compute

dIf3(X) =
d

dt

∣∣∣∣
t=0

(I + tX)∗(I + tX)

= X∗ +X

where we have used exercise 2 in the last equality. Therefore

u(n) = {X ∈ glnC : X∗ +X = 0}.

(iv) Sp(2n,C): Consider the function f4 : GL(n,C)→ Cn×n given by

f4(A) = AtFA

for every A ∈ GL(n,C) where

F =

(
0 I
−I 0

)
.

It is easy to check that f4 has constant rank and that

Sp(2n,C) = f−14 (F ).

By part a)

sp(2n,C) := Lie(Sp(2n,C)) ∼= TI Sp(2n,C) ∼= kerdIf4 < glnC.

Let X ∈ Cn×n ∼= TI GL(n,C). We compute

dIff (X) =
d

dt

∣∣∣∣
t=0

(I + tX)tF (I + tX)

= XtF + FX

where we have used exercise 2 in the last equality. Therefore

sp(2n,C) = {X ∈ glnC : XtF + FX = 0}.

(v) B(n): Consider the function f5 : GL(n,R)→ Rn×n given by

f5(A) =


0 · · · · · · 0

A21
. . .

...
...

. . .
. . .

...
An1 · · · An,n−1 0


4



for every A ∈ GL(n,R). It is easy to check that f5 has constant rank and that

B(n) = f−15 (0).

By part a)
b(n) := Lie(B(n)) ∼= TIB(n) ∼= kerdIf5 < glnR.

Let X ∈ Rn×n ∼= TI GL(n,R). We compute

dIf5(X) =
d

dt

∣∣∣∣
t=0

f5(I + tX)

=


0 · · · · · · 0

X21
. . .

...
...

. . .
. . .

...
Xn1 · · · Xn,n−1 0

 .

Therefore

b(n) =


X11 · · · X1n

. . .
...

0 Xnn

 ∈ Rn×n

 .

(vi) N(n): Consider the function f6 : GL(n,R)→ Rn×n given by

f6(A) =

X11 0
...

. . .

Xn1 · · · Xnn


for every A ∈ GL(n,R). It is easy to check that f6 has constant rank and that

N(n) = f−16 (I).

By part a)
n(n) := Lie(N(n)) ∼= TIN(n) ∼= kerdIf6 < glnR.

Let X ∈ Rn×n ∼= TI GL(n,R). We compute

dIf6(X) =
d

dt

∣∣∣∣
t=0

f6(I + tX)

=

X11 0
...

. . .

Xn1 · · · Xnn

 .

Therefore

n(n) =


0 ∗ ∗

...
. . . ∗

0 · · · 0

 ∈ Rn×n

 .
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Exercise 4 (Easy Direction of Frobenius’ Theorem). Let M be a smooth manifold and let D be a
distribution on M . Show that D is involutive if it is completely integrable.

Solution. Let U ⊂M be an open set and {X1, . . . , Xn} a local basis of D defined on U . Further,
let q ∈ U and suppose q is contained in an integral submanifold ϕ : N ↪→ M of D such that
dpϕ(TpN) = Dp for every p ∈ N , where ϕ : N ↪→M is an injective immersion. Let p ∈ ϕ−1(q) and
choose open neighborhoods V ′ ⊂ N about p and U ′ ⊂ U about q such that ϕ|V ′ : V ′ → U ′ is a
smooth embedding. By using a local slice chart it is easy to see that the vector fields {Y1, . . . , Yn}
defined via

dp′ϕ(Yi) = (Xi)ϕ(p′) ∀p′ ∈ V ′ ∀i = 1, . . . , n (??)

are smooth vector fields on V ′ ⊂ N . Here we have used that {(X1)ϕ(p′), . . . , (Xn)ϕ(p′)} is a basis of
Dϕ(p′) = dp′ϕ(Tp′N) and that the differential of dp′ϕ is injective for every p′ ∈ V ′. Note that (??)
means that Yi is ϕ-related to Xi for every i = 1, . . . , n. By exercise 1 also [Yi, Yj ] is ϕ-related to
[Xi, Xj ], i.e.

[Xi, Xj ]ϕ(p′) = dp′ϕ[Yi, Yj ]p′ ,

for every i, j = 1, . . . , n. Because {Y1, . . . , Yn} are smooth vector fields on V ′ ⊂ N also [Yi, Yj ]p′ is
a smooth vector field on V ′ ⊂ N . This implies that [Xi, Xj ]ϕ(p′) ∈ dp′ϕ(Tp′N) = Dϕ(p′) for every
p′ ∈ V ′; in particular [Xi, Xj ]q ∈ Dq. Therefore D is involutive.

Exercise 5 (Distributions and Lie Subalgebras). a) LetM be a smooth manifold, X,Y ∈ Vect(M)
vector fields on M , and f, g ∈ C∞(M) smooth functions. Show that

[fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X.

Solution. Let h ∈ C∞(M) and p ∈M . We compute

([fX, gY ]ph) = f(p)Xp(g(Y h))− g(p)Yp(f(Xh))

= f(p)(Xpg)(Yph) + f(p)g(p)Xp(Y h)

− g(p)(Ypf)(Xph)− g(p)f(p)Yp(Xh)

= f(p)g(p)([X,Y ]ph) + f(p)(Xpg)(Yph)− g(p)(Ypf)(Xph).

b) Show that the Lie algebra h of a Lie subgroup H of a Lie group G determines a left-invariant
involutive distribution.

Remark: Part a) is not necessarily needed for part b).

Solution. Let ι : H ↪→ G be a Lie subgroup and let X1, . . . , Xn be a basis of TeH ∼= h. We
define smooth left-invariant vector fields Y1, . . . , Yn on G via

(Yi)g = deLg(deιXi)

for every g ∈ G, i = 1, . . . , n. These clearly define a global basis of the left-invariant distribu-
tion D = span{Y1, . . . , Yn} ⊂ TG on G.

We need to see that D is involutive. Observe that Yi is Lg-related to itself for every g ∈ G by
definition. By exercise 1 also [Yi, Yj ] is Lg-related to itself such that

[Yi, Yj ]g = [Yi, Yj ]Lg(e) = deLg([Yi, Yj ]e)
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for every g ∈ G. Further Yi is ι-related to Xi by definition. Therefore also [Yi, Yj ] is ι-related
to [Xi, Xj ] such that

[Yi, Yj ]e = [Yi, Yj ]ι(e) = deι[Xi, Xj ]e ∈ De.

Hence,
[Yi, Yj ]g = deLg([Yi, Yj ]e) ∈ deLg(De) = Dg

by left-invariance. This shows that D is involutive.

Exercise 6 (Functions with values in immersed submanifolds). Let M ′,M,N be smooth manifolds
and let ι : N ↪→M be an injective immersion, i.e. ι is an injective smooth map whose differential is
injective. Further, let f : M ′ →M be a smooth map with f(M) ⊆ ι(N).

Show that ι−1 ◦ f : M ′ → N is smooth if it is continuous.

Solution. Let x ∈M ′, let y = f(x) ∈M and let z = ι−1(y) ∈ N . Because ι is an immersion there
are open neighborhoods W ⊆ N,V ⊆M about z, y resp. and charts ξ : W → Rk, ψ : V → Rn such
that ι(W ) ⊆ V and

j(x1, . . . , xk) := (ψ ◦ ι ◦ ξ−1)(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0) ∈ Rk × {0} ⊆ Rn

for all (x1, . . . , xk) ∈ Rk, i.e. there is a slice chart for N .

Moreover, consider the open set (ι−1 ◦ f)−1(W ) = f−1(ι(W )) ⊆ M ′ which contains an open
neighborhood U of x ∈M ′ with a chart ϕ : U → Rm. Because f(U) ⊆ ι(W ) ⊆ V , we have

W V U

Rk Rk × {0} Rm,

ι|W

ξ ψ

f |U

ϕ

j

π

where π : Rn → Rk is the projection on the first k-coordinates. This shows that ι−1 ◦ f |U is smooth
in local charts about x and z = ι−1(f(x)). Because x ∈ M ′ was arbitrary, this shows that ι−1 ◦ f
is smooth.

Exercise 7 (Covering maps of Lie Groups). Let G be a Lie group, let H be a simply connected
topological space and let p : H → G be a covering map.

a) Show that there is a unique Lie group structure on H such that p is a smooth covering and
a group homomorphism. Show also that the kernel of p is a discrete subgroup of H.

Recall: p : H → G is a smooth covering if it is a topological covering which is smooth and
such that each point in G has a neighbourhood U such that each component of p−1(U) is
mapped diffeomorphically onto U by p.
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Solution. Existence:

We equip H with a smooth structure such that p becomes a smooth covering map. Let U ⊂ H
be an open set such that p|U : U → p(U) is a homeomorphism and let (V, ψ) be a chart of G
with V ⊂ p(U). Up to shrinking U assume that U = p−1(V ). Then (U,ψ ◦ p|U )) is a chart of
H. If two such charts ψ1 ◦ p|U1

, ψ2 ◦ p|U2
overlap, then the transition map is ψ1 ◦ ψ−12 , which

is smooth.

Let U ⊂ H be such that p|U : U → p(U) is a homeomorphism and let (V, ψ ◦ p|V ) be a chart
in U and (W, ψ̃) be a chart in p(U) such that p(V ) ⊂W . Then

ψ̃ ◦ p|V ◦ (ψ ◦ p|V )−1 = ψ̃ ◦ ψ−1

is smooth. This shows that p|U is smooth and hence p is smooth. Analogously, let (W, ψ̃) be
a chart in p(U) and (V, ψ ◦ p|V ) be a chart in U such that p|−1U (W ) ⊂ V . Then

(ψ ◦ p|V ) ◦ p|−1V ◦ ψ̃
−1 = ψ ◦ ψ̃−1

is smooth. This shows that p|−1U is smooth, hence p is smooth covering map.

It is not hard to verify that with p : H → G also p× p : H ×H → G×G is a smooth covering
map. In particular, since H is simply connected also H × H is simply connected such that
p × p : H × H → G × G is a universal covering. We will now lift the multiplication and
inversion maps to H and show that they define a group structure on H.

Let m : G × G → G and i : G → G denote the multiplication and inversion maps of G,
respectively, and let ẽ be an arbitrary element of the fiber p−1(e) ⊆ H. Since p×p : H×H →
G×G is a universal covering the map m◦(p×p) : H×H → G has a unique lift m̃ : H×H → H
satisfying m̃(ẽ, ẽ) = ẽ and p ◦ m̃ = m ◦ (p× p):

H ×H H

G×G G

m̃

p×p p

m

Because p is a local diffeomorphism and p ◦ m̃ = m ◦ (p × p) is smooth also m̃ is smooth.
By the same reasoning, i ◦ p : H → G has a smooth lift ĩ : H → G satisfying ĩ(ẽ) = ẽ and
p ◦ ĩ = i ◦ p:

H H

G G

ĩ

p p

i

We define multiplication and inversion in H by xy = m̃(x, y) and x−1 = ĩ(x). By the above
commutative diagrams we obtain

p(xy) = p(x)p(y), p(x−1) = p(x)−1.
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It remains to show that H is a group with these operations, for then it is a Lie group because
m̃ and ĩ are smooth and the above relations imply that p is a homomorphism.

First we show that ẽ is an identity for multiplication in H. Consider the map f : H → H
definbed by f(x) = ẽx. Then

p(f(x)) = p(ẽ)p(x) = ep(x) = p(x),

so f is a lift of p : H → G. The identity map IdH is another lift of p, and it agrees with f at
a point because f(ẽ) = m̃(ẽ, ẽ) = ẽ, so the unique lifting property of covering maps implies
that f = IdH , or equivalently, ẽx = x for all x ∈ H. The same argument shows that xẽ = x.

Next, to show that multiplication in H is associative, consider the two maps αL, αR : H ×
H ×H → H defined by

αL(x, y, z) = (xy)z, αR(x, y, z) = x(yz).

Then
p(αL(x, y, z)) = (p(x)p(y))p(z) = p(x)(p(y)p(z)) = p(αR(x, y, z)),

so αL and αR are both lifts of the same map α(x, y, z) = p(x)p(y)p(z). Because αL and αR
agree at (ẽ, ẽ, ẽ), they are equal. A similar argument shows that x−1x = xx−1 = ẽ, so G̃ is a
group.

Finally, we need to see that kerp is a discrete subgroup. To this end choose an open neigh-
borhood U ⊆ G of e ∈ G such that p−1(U) is the disjoint union of open subsets {Vi}i∈I and
p|Vi : Vi → U is a diffeomorphism. In particular, kerp = p−1(e) ⊆

⊔
i∈I Vi and every x ∈ kerp

is contained in only one of the Vi. Hence, ẽ ∈ Vi0 for some i0 ∈ I and (kerp \ {ẽ}) ∩ Vi0 = ∅
such that ẽ is an isolated point in kerp. This implies that kerp is a discrete subgroup of H.

Uniqueness:

We first show uniqueness of the smooth structure. To this end suppose that H is equipped
with a Lie group structure such that p : H → G is a smooth covering and a group homomor-
phism. Let (V, ϕ) be a chart in a smooth atlas of H and, up to shrinking V , suppose that
p|V : V → p(V ) is a diffeomorphism. Then (p(V ), ϕ ◦ p|−1V ) is a smooth chart of G. Hence ϕ
comes form a chart (U,ψ) of G, in the sense that ψ = ϕ ◦ p (with ϕ = ϕ ◦ p|−1V ).
We now show that the group structure is unique. Let H ′ be the topological space H equipped
with another Lie group structure such that p = p′ : H ′ → G is a smooth covering homomor-
phism. Because both H and H ′ are simply connected they are both universal coverings of G.
Therefore there is a diffeomorphism ϕ : H → H ′ sending the neutral element e of H to the
neutral element e′ of H ′ such that the following diagram commutes.

H H ′

G

ϕ

∼
p

p′

We will now show that ϕ : H → H ′ is indeed a homomorphism such that H and H ′ are
isomorphic Lie groups. To this end consider the set

A = {(h, g) ∈ H ×H : ϕ(hg−1) = ϕ(h)ϕ(g)−1}.
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Clearly, (e, e) ∈ A whence A 6= ∅. Further A is closed since multiplication, inversion and ϕ
are all continuous maps. If we can prove that A is open then A = H ×H because H ×H is
connected, i.e. ϕ is a homomorphism.

Let (h0, g0) ∈ A. Further, let U ′ ⊆ H ′ be an open neighborhood about ϕ(h0g
−1
0 ) =

ϕ(h0)ϕ(g0)−1 such that p′|U ′ is a diffeomorphism. Let U ⊆ H × H be an open neighbor-
hood about (h0, g0) such that ϕ(hg−1) ∈ U ′ and ϕ(h)ϕ(g)−1 ∈ U ′ for all (h, g) ∈ U ; this is
possible because all maps are again continuous. Then

p′(ϕ(hg−1)) = p(hg−1) = p(h)p(g)−1 = p′(ϕ(h))p′(ϕ(g))−1

= p′(ϕ(h)ϕ(g)−1)

for all h, g ∈ U where we have used that p and p′ are homomorphisms. By construction
ϕ(hg−1), ϕ(h)ϕ(g)−1 ∈ U ′ and since p′|U ′ is bijective we get ϕ(hg−1) = ϕ(h)ϕ(g)−1 for all
h, g ∈ U . Hence, (h0, g0) ∈ U ⊆ A and A is open because (h0, g0) ∈ A were arbitrary.

It follows that ϕ : H → H ′ is a Lie group isomorphism.

b) Show that p is a local isomorphism of Lie groups and that dp is an isomorphism of Lie algebras
when H is equipped with the Lie group structure from part a).

Solution. Note that dp is a Lie algebra homomorphism since p is a smooth homomorphism.
Because p is additionally a smooth covering map there are open neighborhoods U ⊆ G of e
and V ⊆ H of ẽ such that p|V : V → U is a diffeomorphism. In particular, dp : TẽH ∼= h →
TeG ∼= g is bijective such that dp is a Lie algebra isomorphism.

c) Let H, G be arbitrary Lie groups and let G be connected. Further, let ϕ : H → G be a
Lie group homomorphism. Show that ϕ is a covering map if and only if dϕ : h → g is an
isomorphism.

Solution. First suppose that ϕ is a covering map. The same proof as for part b) applies here
such that dϕ is indeed an isomorphism.

Now, assume that ϕ : H → G is a smooth homomorphism such that dϕ : h → g is an
isomorphism. This means that dẽϕ : TẽH → TeG is invertible such that by the inverse
function theorem there are open neighborhoodes U ⊆ G about e ∈ G and V ⊆ H about
ẽ ∈ H such that ϕ|V : V → U is a diffeomorphism. Because G is connected the open
neighborhood U about e ∈ G generates G and it follows easily that ϕ : H → G is surjective.

Now, choose a symmetric open neighborhood W ⊆ V about ẽ ∈ H such that W 2 ⊆ V .
Consider the open subset U ′ := ϕ(W ) ⊆ U . We claim that ϕ−1(U ′) =

⊔
h∈kerϕWh and

ϕ|Wh : Wh → U ′ is a diffeomorphism for all h ∈ kerϕ. Because h ∈ kerϕ we have that
ϕ ◦ Rh = ϕ. Further ϕ : W → U ′ is a diffeomorphism such that also ϕ : Wh → U ′ is a
diffeomorphism. Also,

x ∈ ϕ−1(U ′) = ϕ−1(ϕ(W )) ⇐⇒ ϕ(x) ∈ ϕ(W )

⇐⇒ ∃w ∈W : ϕ(x) = ϕ(w) ⇐⇒ ∃w ∈W : ϕ(w−1x) = e

⇐⇒ ∃w ∈W : w−1x ∈ kerϕ ⇐⇒ x ∈
⋃

h∈kerϕ

Wh,
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such that ϕ−1(U ′) =
⋃
h∈kerϕWh. Finally, if Wh∩Wh′ 6= ∅ for some h, h′ ∈ kerϕ then there

are w,w′ ∈ W such that wh = w′h′, i.e. h−1h′ ∈ W 2 ⊆ V . Because ϕ|V : V → U is injective
and also ϕ(h−1h′) = ϕ(h−1)ϕ(h′) = e it follows that h−1h′ = ẽ, or equivalently h = h′. Thus,⋃
h∈kerϕWh is a disjoint union as claimed.

Using this together with the fact that ϕ is a homomorphism proves that ϕ is a covering map.
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