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Solution Exercise Sheet 5

Exercise 1 (Discrete Subgroups of Rn). Let D < Rn be a discrete subgroup. Show that there are
x1, . . . , xk ∈ D such that

• x1, . . . , xk are linearly independent over R, and

• D = Zx1 ⊕ · · · ⊕ Zxk, i.e. x1, . . . , xk generate D as a Z-submodule of Rn.

Solution. We will prove this by induction on the dimension n.

Let n = 1 and let D < R be a discrete subgroup. Without loss of generality we may assume that
D 6= {0}. Since D is discrete there is x1 ∈ D \ {0} such that |x1| = min{|x| : x ∈ D \ {0}}. We
claim that D = Zx1. Suppose there is y ∈ D \ Zx1. Then there is k ∈ Z such that

k · x1 < y < (k + 1) · x1.

It follows that y − k · x1 ∈ D and |y − k · x1| < |x1| which contradicts the minimality of x1. This
shows that D = Zx1 and finishes the proof of the base case n = 1.

Let n ∈ N and assume the statement holds for all discrete subgroups of Rn−1. Let D < Rn be a
discrete subgroup. Without loss of generality we may assume that D 6= {0}. There is x1 ∈ D \ {0}
such that ‖x1‖ = min{‖x‖ : x ∈ D\{0}}. Consider the quotient Rn/Rx1 ∼= Rn−1 and the projection

π : Rn −→ Rn/R · x1 ∼= Rn−1

onto it.

We claim that D′ = π(D) < Rn−1 is a discrete subgroup. We will see this by showing that
V ′ := π(Br(0)) is an open neighborhood of 0 ∈ D′ such that V ′∩D′ = {0} where r := inf{‖t·x1−y‖ :
t ∈ R, y ∈ D \ Zx1}.

First of all, we need to see that r is in fact positive. In order to prove this let us verify that

r = inf{‖t · x1 − y‖ : t ∈ R, y ∈ D \ Zx1} = inf{‖t · x1 − y‖ : t ∈ [0, 1], y ∈ D \ Zx1}.

Clearly, the left-hand-side is less than or equal to the right-hand-side. On the other hand, if R ≥ 0
such that there are t ∈ R and y ∈ D \ Zx1 satisfying R ≥ ‖t · x1 − y‖ then also

R ≥ ‖t · x1 − y‖ = ‖(t− btc)x1 − (y − btcx1)‖;

whence there are s := t− btc ∈ [0, 1] and w := (y − btcx1) ∈ D \ Zx1 such that R ≥ ‖s · x1 − w‖.
Therefore, the right-hand-side is also less than or equal to the left-hand-side such that they must be

1



equal. Because {t ·x1 : t ∈ [0, 1]} ⊂ Rn is compact and D \Zx1 is discrete the infimum on the right-
hand-side is in fact a minimum. It is attained at some t0 ·x1 and y0 ∈ D\Zx1. If r = ‖t0 ·x1−y0‖ = 0
then y0 = t0x1 and t0 ∈ (0, 1) because y0 /∈ Zx1. But then ‖y0‖ = t0‖x1‖ < ‖x1‖ which contradicts
the minimality of ‖x1‖; whence r > 0.

Clearly, π : Rn → Rn−1 is an open map such that V ′ = π(Br(0)) is an open neighborhood of
0 ∈ Rn−1. Now, let x′ ∈ D′ ∩ V ′, i.e. x′ = π(u) = π(y) for some u ∈ Br(0), y ∈ D. Then
y − u ∈ Rx1, i.e. y − u = t · x1 for some t ∈ R. This implies that

‖y − t · x1‖ = ‖u‖ < r = inf{‖y − t · x1‖ : t ∈ R, y ∈ D \ Zx1}.

We deduce that y ∈ Zx1 ⊂ Rx1; whence x′ = π(y) = 0 and V ′ ∩ D′ = {0}. Therefore, 0 is an
isolated point in D′ such that D′ is a discrete subgroup of Rn−1 as claimed.

By the induction hypothesis there are x′2, . . . , x
′
k ∈ D′ < Rn−1 which are linearly independent

over R and generate D′ as a Z-submodule, i.e. D′ = Zx′2 ⊕ · · · ⊕ Zx′k. We choose for every x′i a
preimage xi ∈ π−1(x′i) ∩D. These x1, x2, . . . , xk ∈ D are linearly independent over R and satisfy
D = Zx1 ⊕ · · · ⊕ Zxk. Indeed, let λ1, . . . , λk ∈ R such that

λ1x1 + λ2x2 + · · ·+ λkxk = 0. (1)

Then

0 = π(λ1x1 + λ2x2 + · · ·+ λkxk)

= λ1π(x1)︸ ︷︷ ︸
=0

+λ2π(x2) + · · ·+ λkπ(xk)

= λ2x
′
2 + · · ·+ λkx

′
k.

Because x′2, . . . , x
′
k are linearly independent, λ′2 = . . . = λ′k = 0. By (1), λ1x1 = 0. Finally, since

x1 6= 0 also λ1 = 0.

In order to see that x1, . . . , xk generate D as a Z-module, let y ∈ D. Then

π(y) = a2x
′
2 + · · ·+ akx

′
k = a2π(x2) + · · ·+ akπ(xk)

for some a2, . . . , ak ∈ Z since x′2, . . . , x
′
k generate D′ as a Z-module. Considering y′ = a2x2 + · · ·+

akxk ∈ D we obtain

π(y′) = π(a2x2 + · · ·+ akxk) = a2π(x2) + · · ·+ akπ(xk) = π(y)

by linearity such that y − y′ ∈ D ∩ kerπ = D ∩ Rx1.

We claim that D ∩ kerπ = Zx1. It is immediate that Zx1 ⊆ D ∩ kerπ. To see the other inclusion
suppose that there is t · x1 ∈ D for some t ∈ R \ Z. Then w = (t− btc) · x1 ∈ D \ {0} and

‖w‖ = (t− btc) · ‖x1‖ < ‖x1‖

in contradiction to the minimality of x1.
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Therefore, y − y′ ∈ Zx1 and there exists a1 ∈ Z such that

y = a1x1 + y′ = a1x1 + a2x2 + · · ·+ akxk.

Hence, D = Zx1 ⊕ · · · ⊕ Zxk.

Exercise 2 (Surjectivity of the matrix exponential). a) Show that the exponential map of GL(2,C)
is surjective.

Solution. Let A ∈ GL(2,C). By the Jordan Normal Form theorem there is an invertible
matrix P such that PAP−1 =: J is in Jordan Normal Form. That is, J is either diagonal or

J =

(
z 1
0 z

)
for some z ∈ C. We have seen that expGL(2,C) = Exp is the matrix exponential.

It follows directly from the definition that for anyX ∈ gl(2,C): Exp(PXP−1) = P Exp(X)P−1.
Thus it suffices to show that any J as above is in the image of the exponential map.

If J is diagonal, J =

(
z1 0
0 z2

)
, then there are w1, w2 ∈ C such that ew1 = z1, ew2 = z2 and

Exp

(
w1 0
0 w2

)
=

∞∑
j=0

1

j!

(
w1 0
0 w2

)j
=

∞∑
j=0

(
1
j!w

j
1 0

0 1
j!w

j
2

)
=

(
ew1 0
0 ew2

)
= J

To find a preimage of J =

(
z 1
0 z

)
we compute Exp

(
a b
0 a

)
. By induction one shows that(

a b
0 a

)j
=

(
aj baj−1

0 aj

)
and therefore an analogous computation as above shows that

Exp

(
a b
0 a

)
=

(
ea bea

0 ea

)

Let w ∈ C be such that ew = z, then Exp

(
w e−w

0 w

)
= J .

b) Show that the exponential map of U(n) is surjective.

Solution. Let K = U(n) and k = Lie U(n) = {X ∈ gl(n,C) : X +X∗ = 0}. Consider g ∈ K.

Then it can be unitarily diagonalized, that is, there is h ∈ K with hgh∗ =

ξ1 0
. . .

0 ξn


and |ξi| = 1, i = 1, . . . , n. Write ξi = eixi , xi ∈ R, so that hgh∗ = Exp

ix1 0
. . .

0 ixn

.

Thus

g = Exp(h∗

ix1 0
. . .

0 ixn

h).
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And also,

(h∗

ix1 0
. . .

0 ixn

h)∗ = h∗

−ix1 0
. . .

0 −ixn

h = −h∗

ix1 0
. . .

0 ixn

h

c) Show that the exponential map of SO(2,R) is surjective.

Solution. The Lie algebra of SO(2,R) is so(2,R) = o(2,R) = {X ∈ gl(2,R) : Xt +X = 0}.

Recall that any element of SO(2,R) is of the form

(
cos t − sin t
sin t cos t

)
for some t. Moreover,

Exp

(
0 −t
t 0

)
=

(
cos t − sin t
sin t cos t

)
.

Exercise 3 (Abstract Subgroups as Lie Subgroups). Let H be an abstract subgroup of a Lie group
G and let h be a subspace of the Lie algebra g of G. Further let U ⊆ g be an open neighborhood of
0 ∈ g and let V ⊆ G be an open neighborhood of e ∈ G such that the exponential map exp : U → V
is a diffeomorphism satisfying exp(U ∩ h) = V ∩H. Show that the following statements hold:

a) H is a Lie subgroup of G with the induced relative topology;

b) h is a Lie subalgebra of g;

c) h is the Lie algebra of H.

Solution. We will first show that H is an embedded submanifold of G. For that it is enough to
check that there are slice charts about every point h ∈ H. For h = e choose any linear isomorphism
E : g→ Rm that sends h to Rk where dimG = dim g = m and dim h = k. The composite map

ϕ = E ◦ exp−1 : expU = V −→ Rm

is then a smooth chart for G, and

ϕ((exp(U) ∩H) = E(U ∩ h)

is the slice obtained by setting the last m − k coordinates equal to zero. Moreover, if h ∈ H is
arbitrary, the left translation map Lh is a diffeomorphism from exp(U) to a neighborhood of h.
Since H is a subgroup, Lh(H) = H, and so

Lh((expU) ∩H) = Lh(expU) ∩H,

and ϕ ◦L−1h is easily seen to be a slice chart for H in a neighborhood of h. Thus H is an embedded
submanifold of G.

We will now make use of the following Lemma:

Lemma: Let G be a Lie group, and suppose H ⊆ G is a subgroup that is also an embedded
submanifold. Then H is a Lie subgroup.
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Proof: We need only check that multiplication m : H × H → H and inversion i : H → H are
smooth maps. Because multiplication is a smooth map from G × G to G its restriction is clearly
smooth from H ×H to G. Because H is a subgroup, multiplication takes H ×H to H. Using local
slice charts for H in G it follows easily that m : H ×H → H is smooth. The same argument works
for inversion.

This proves a). We will prove b) and c) in one go:

Denote by ι : H → G the embedding from H into G and let b ⊆ g be a complementary subspace of
h such that g = h⊕ b. This yields the following commutative diagram:

Lie(H) g = h⊕ b

H G

deι

exp exp

ι

By construction of the slice charts of H it is immediate that deι is an isomorphism of vector spaces
from Lie(H) to h. Furthermore, ι is a Lie group homomorphism whence its differential deι induces
a Lie algebra homomorphism. Therefore deι is a Lie algebra isomorphism from Lie(H) to h. Under
the identification H ∼= ι(H) ≤ G we get Lie(H) ∼= h. This proves b) and c).

Exercise 4 (Lie Group homomorphisms and their differentials). Let G be a connected Lie group,
let H be a Lie group and let ϕ,ψ : G→ H be Lie group homomorphisms.

Show that ϕ = ψ if and only if dϕ = dψ.

Solution. If ϕ = ψ then clearly dϕ = dψ. Thus it suffices to prove the converse direction.

Assume that dϕ = dψ. We consider the set

A := {g ∈ G |ϕ(g) = ψ(g)},

and we need to show that A = G. Note that A is closed and contains the identity element e ∈ A.
Because G is connected we are left to show that A is open.

Let g0 ∈ A. Recall that there is an open neighborhood 0 ∈ V ⊆ TeG ∼= g and an open neighborhood
e ∈ U ⊆ G such that exp: U → V is a diffeomorphism. Let g = g0v ∈ g0V with v = exp(X) for
some X ∈ U . Then

ϕ(g) = ϕ(g0)ϕ(exp(X))

= ϕ(g0) exp(dϕ(X))

= ψ(g0) exp(dψ(X))

= ψ(g0)ψ(exp(X)) = ψ(g),

whence g0V ⊆ A.

Because g0 was arbitrary, A is open.
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Exercise 5 (Multiplication and exp). Let G be a Lie group with Lie algebra g. Show that for all
X,Y ∈ g and small enough t ∈ R

exp(tX) exp(tY ) = exp(t(X + Y ) +O(t2))

where O(t2) is a differentiable g-valued function such that O(t2)
t2 is bounded as t→ 0.

Solution. Let X,Y ∈ g. Let U ⊆ g be an open neighborhood about 0 and V ⊆ G be an open
neighborhood about e ∈ G such that exp : U → V is a diffeomorphism. Choose ε > 0 such that
exp(tX) exp(tY ) ∈ V for all t ∈ (−ε, ε).

Because exp(tX) exp(tY ) ∈ V , for all |t| < ε, and exp : U → V is a diffeomorphism, we find a
smooth g-valued function Z : (−ε, ε)→ g such that

exp(tX) exp(tY ) = exp(Z(t))

for all |t| < ε.

By Taylor’s theorem we may write

Z(t) = Z(0) + tZ ′(0) +O(t2)

where O(t2) is a smooth g-valued function such that O(t2)
t2 is bounded as t→ 0. Setting t = 0 yields

exp(0) = e = exp(0 ·X) exp(0 · Y ) = exp(Z(0))

and because exp : U → V is bijective we have Z(0) = 0.

Let f ∈ C∞(G). Then by the chain rule

d

dt

∣∣∣∣
t=0

f(exp(tX) exp(tY )) =
d

dt

∣∣∣∣
t=0

f(exp(tX) exp(0 · Y )) +
d

dt

∣∣∣∣
t=0

f(exp(0 ·X) exp(tY ))

=
d

dt

∣∣∣∣
t=0

f(exp(tX)) +
d

dt

∣∣∣∣
t=0

f(exp(tY ))

= Xf + Y f,

and

d

dt

∣∣∣∣
t=0

f(exp(tX) exp(tY )) =
d

dt

∣∣∣∣
t=0

f(exp(Z(t))

= Z ′(0)f

identifying g ∼= T0g. Therefore Z ′(0) = X + Y ∈ g and

exp(tX) exp(tY ) = exp(Z(t)) = exp(tZ ′(0) +O(t2)) = exp(t(X + Y ) +O(t2))

for all |t| < ε.
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