Prof. Dr. A. Tozzi Introduction to Lie Groups HS 2021

Solution Exercise Sheet 5

Exercise 1 (Discrete Subgroups of R™). Let D < R™ be a discrete subgroup. Show that there are
Z1,...,Zk € D such that

® xi,...,x) are linearly independent over R, and
e D=7x1 P D ZLxg, i.e. x1,...,x) generate D as a Z-submodule of R™.

Solution. We will prove this by induction on the dimension n.

Let n =1 and let D < R be a discrete subgroup. Without loss of generality we may assume that
D # {0}. Since D is discrete there is 21 € D \ {0} such that |xz;| = min{|z| : € D\ {0}}. We
claim that D = Zz. Suppose there is y € D \ Zz;. Then there is k € Z such that

k-zp<y<(k+1)-xy.

It follows that y — k-1 € D and |y — k - x1| < |x1| which contradicts the minimality of x;. This
shows that D = Zx; and finishes the proof of the base case n = 1.

Let n € N and assume the statement holds for all discrete subgroups of R*~!. Let D < R" be a
discrete subgroup. Without loss of generality we may assume that D # {0}. There is 21 € D\ {0}
such that ||z1| = min{||z| : x € D\{0}}. Consider the quotient R" /Rz; = R"~! and the projection

7:R" — R"/R-x; 2R
onto it.

We claim that D’ = 7(D) < R*7! is a discrete subgroup. We will see this by showing that
V' := w(B,(0)) is an open neighborhood of 0 € D’ such that V'ND’ = {0} where r := inf{||t-z1—y|| :
teR,y€ D\ Zx}.

First of all, we need to see that r is in fact positive. In order to prove this let us verify that
r=inf{||t-x; —y||:t€eR,y€ D\ Zx1} =inf{|t - 21 —y|| : t €[0,1],y € D\ Zz1 }.

Clearly, the left-hand-side is less than or equal to the right-hand-side. On the other hand, if R > 0
such that there are t € R and y € D \ Zx; satisfying R > ||¢ - 1 — y|| then also

R>|t-a =yl = [t = [t])a1 = (y = [t] z1)

whence there are s :=t — [t| € [0,1] and w := (y — |t] z1) € D\ Zz; such that R > ||s -z — w|.
Therefore, the right-hand-side is also less than or equal to the left-hand-side such that they must be



equal. Because {t-x; : ¢t € [0,1]} C R™ is compact and D\ Zx; is discrete the infimum on the right-
hand-side is in fact a minimum. It is attained at some to-z1 and yo € D\Zxy. If r = |[tg-21—yo|| =0
then yo = tox1 and tg € (0,1) because yo ¢ Zxy. But then |lyo|| = tol|z1] < ||z1|| which contradicts
the minimality of ||«1||; whence r > 0.

Clearly, 7 : R® — R™"! is an open map such that V’ = m(B,(0)) is an open neighborhood of
0 € R*L. Now, let 2 € D'NV’, ie. 2/ = n(u) = n(y) for some u € B,(0), y € D. Then
y—u € Ray, i.e. y—u=t-x; for some t € R. This implies that

ly—t-z1]| =||ul| <r=inf{||ly —t-x1|| : t € R,y € D\ Zx1}.

We deduce that y € Zz; C Ray; whence o’ = w(y) = 0 and V' N D’ = {0}. Therefore, 0 is an
isolated point in D’ such that D’ is a discrete subgroup of R*~! as claimed.

By the induction hypothesis there are z,...,z} € D' < R"™! which are linearly independent
over R and generate D’ as a Z-submodule, i.e. D' = Zxh & --- & Zz},. We choose for every z; a
preimage z; € m *(x}) N D. These x1,2,...,x, € D are linearly independent over R and satisfy

D =7Zx1 &P Zxk. Indeed, let \q,..., \p € R such that

)\1581 +)\2.CC2 ++)\kxk =0. (1)
Then
0= 7T()\15L‘1 + )\21‘2 + -+ )\kxk)
= )\1’/T(IL’1) +>\27T(332) + 4 )\k’fr(l‘k)
=0
= XoZh + -+ A\
Because x5, . .., z}, are linearly independent, A5 = ... = A}, = 0. By (1), \z1 = 0. Finally, since

x1 # 0 also A; = 0.
In order to see that x1, ...,z generate D as a Z-module, let y € D. Then
m(y) = azwy + -+ + apx), = azm(z2) + - + apm(@k)

for some as, ..., ar € Z since x5, ..., z) generate D’ as a Z-module. Considering ¢’ = asxa + -+
apxr € D we obtain

W(y’) = 7r(a2:E2 4t akxk) = a27r(172) 4+t akW(Ik) _ W(y)
by linearity such that y — 3’ € D Nkerm = D N Rx;.

We claim that D Nkerm = Zx;. It is immediate that Zx; € D Nkerw. To see the other inclusion
suppose that there is ¢t - 1 € D for some ¢t € R\ Z. Then w = (¢ — |t]) - z1 € D\ {0} and

[wl = (&= [t]) - lzafl < fl]]

in contradiction to the minimality of x.



Therefore, y — y' € Zx1 and there exists a; € Z such that
y=az1 +y = a1+ asxs + - + apTy.
Hence, D = Zx1 & - - - & Zxy.

Exercise 2 (Surjectivity of the matrix exponential).  a) Show that the exponential map of GL(2,C)
is surjective.

Solution. Let A € GL(2,C). By the Jordan Normal Form theorem there is an invertible
matrix P such that PAP~! = J is in Jordan Normal Form. That is, J is either diagonal or

for some z € C. We have seen that expgy,o,c) = Exp is the matrix exponential.

It follows directly from the definition that for any X € gl(2,C): Exp(PXP~!) = PExp(X)P~ L.
Thus it suffices to show that any J as above is in the image of the exponential map.

If J is diagonal, J = <'%1 3), then there are wy,ws € C such that e*! = 21, e%2 = 29 and
2
o) J 00 1,0
w1 0 B l w1 0 N ﬁwl 0 o ewt 0 B
EXp<0 w2>_zoj!(0 w2> _Z()(O %wj L0 e =7
j= j= !

a

To find a preimage of J = (8 i) we compute Exp (0

2). By induction one shows that

a b’ al bal! .
= ; and therefore an analogous computation as above shows that

0 a 0 a’
a b e* be?
Exp (0 a> - <0 e? )

Let w € C be such that e = z, then Exp (16} e;} ) =J.

b) Show that the exponential map of U(n) is surjective.

Solution. Let K = U(n) and ¢ = LieU(n) = {X € gl(n,C) : X + X* = 0}. Consider g € K.

&1 0
Then it can be unitarily diagonalized, that is, there is h € K with hgh* = .
0 &n
i.fL‘l 0
and |&] = 1,4 = 1,...,n. Write & = €™ x; € R, so that hgh* = Exp
0 1Ty,
Thus
z'xl 0
g = Exp(h* h).
0 1Ty,



il’l 0 —il’l 0 il’l 0

0 1Ty, 0 —1Ty, 0 1Ty,

¢) Show that the exponential map of SO(2,R) is surjective.

Solution. The Lie algebra of SO(2,R) is s0(2,R) = 0(2,R) = {X € gl(2,R) : X! + X = 0}.
cost —sint
sint  cost

Ex 0 —t\ (cost —sint
P\t 0) 7 \sint cost )°

Exercise 3 (Abstract Subgroups as Lie Subgroups). Let H be an abstract subgroup of a Lie group
G and let b be a subspace of the Lie algebra g of G. Further let U C g be an open neighborhood of
0 € g and let V C G be an open neighborhood of e € G such that the exponential map exp : U — V
is a diffeomorphism satisfying exp(U Nh) = V N H. Show that the following statements hold:

Recall that any element of SO(2,R) is of the form ( for some ¢t. Moreover,

a) H is a Lie subgroup of G with the induced relative topology;
b) b is a Lie subalgebra of g;
¢) b is the Lie algebra of H.

Solution. We will first show that H is an embedded submanifold of G. For that it is enough to
check that there are slice charts about every point h € H. For h = e choose any linear isomorphism
E : g — R™ that sends h to R*¥ where dim G = dim g = m and dim b = k. The composite map

p=FEoexp !:expU=V —R™
is then a smooth chart for G, and
e((exp(U) N H) = E{UND)

is the slice obtained by setting the last m — k coordinates equal to zero. Moreover, if h € H is
arbitrary, the left translation map Lj is a diffeomorphism from exp(U) to a neighborhood of h.
Since H is a subgroup, L,(H) = H, and so

Ly((expU)NH) = Lp(expU) N H,

and @ o L;l is easily seen to be a slice chart for H in a neighborhood of h. Thus H is an embedded
submanifold of G.

We will now make use of the following Lemma;:

Lemma: Let G be a Lie group, and suppose H C G is a subgroup that is also an embedded
submanifold. Then H is a Lie subgroup.



Proof: We need only check that multiplication m : H x H — H and inversion i : H — H are
smooth maps. Because multiplication is a smooth map from G x G to G its restriction is clearly
smooth from H x H to G. Because H is a subgroup, multiplication takes H x H to H. Using local
slice charts for H in G it follows easily that m : H x H — H is smooth. The same argument works
for inversion. [J

This proves a). We will prove b) and ¢) in one go:

Denote by ¢ : H — G the embedding from H into G and let b C g be a complementary subspace of
b such that g = h @ b. This yields the following commutative diagram:

Lie(H) —%5 g=hd b
exp lexp
H—*t G

By construction of the slice charts of H it is immediate that d.¢ is an isomorphism of vector spaces
from Lie(H) to h. Furthermore, ¢ is a Lie group homomorphism whence its differential d.¢ induces
a Lie algebra homomorphism. Therefore dec is a Lie algebra isomorphism from Lie(H) to h. Under
the identification H 2 «(H) < G we get Lie(H) = h. This proves b) and c).

Exercise 4 (Lie Group homomorphisms and their differentials). Let G be a connected Lie group,
let H be a Lie group and let ¢, : G — H be Lie group homomorphisms.

Show that ¢ = ¢ if and only if dy = di).
Solution. If ¢ = 1 then clearly dp = di. Thus it suffices to prove the converse direction.
Assume that dyp = diyp. We consider the set

A={g€Glp(g) =9},

and we need to show that A = G. Note that A is closed and contains the identity element e € A.
Because G is connected we are left to show that A is open.

Let go € A. Recall that there is an open neighborhood 0 € V' C T,G = g and an open neighborhood

e € U C G such that exp: U — V is a diffeomorphism. Let g = gov € goV with v = exp(X) for
some X € U. Then

whence goV C A.

Because gg was arbitrary, A is open.



Exercise 5 (Multiplication and exp). Let G be a Lie group with Lie algebra g. Show that for all
X,Y € g and small enough ¢t € R

exp(tX) exp(tY) = exp(t(X +Y) 4+ O(t?))

o(t?)
12

where O(t?) is a differentiable g-valued function such that is bounded as ¢t — 0.

Solution. Let X,Y € g. Let U C g be an open neighborhood about 0 and V' C G be an open
neighborhood about e € G such that exp : U — V is a diffeomorphism. Choose € > 0 such that
exp(tX)exp(tY) € V for all t € (—¢,¢).

Because exp(tX)exp(tY) € V, for all |t| < e, and exp : U — V is a diffeomorphism, we find a
smooth g-valued function Z : (—¢,e) — g such that

exp(tX) exp(tY) = exp(Z(t))
for all t| <e.
By Taylor’s theorem we may write

Z(t) = Z(0) +tZ'(0) + O(?)

o(t?)
12

where O(t?) is a smooth g-valued function such that is bounded as ¢ — 0. Setting ¢ = 0 yields
exp(0) = e = exp(0- X)exp(0-Y) = exp(Z(0))
and because exp : U — V is bijective we have Z(0) = 0.

Let f € C*°(G). Then by the chain rule

41 FlexpX)exp(ty) = 5| Flexp(tX) exp(0-Y)) +

f(exp(0- X) exp(tY))

dt],—o dt]i=o =0
d
= G| S+ Gl sy
= Xf+YF,
and
|, feptX)e(y) = G| fle(z()
= 7(0)f

identifying g = Tpg. Therefore Z'(0) = X +Y € g and
exp(tX) exp(tY) = exp(Z(t)) = exp(tZ'(0) + O(t?)) = exp(t(X + V) + O(t?))

for all [t] < e.



