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Solutions Exercise Sheet 6

Exercise 1 (Isomorphism theorems for Lie algebras). Let g be a Lie algebra.

2)

Let h < g be an ideal. Show that
[X+b,Y +b]:=[X,Y]+b
defines a Lie algebra structure on g/b.

Solution. All we need to show is that the bracket defined above is well-defined. All the Lie
algebra properties will then be inherited from g. Now let X, X', Y,Y’ € g and U,V € § such
that X' =X 4+U and Y/ =Y + V. Then

(X' +5,Y' +bh]=[X+UY +V]+¥b
= [XaY] + [Xa V] + [U7Y]+ [va] +h

€h

= [Xv Y] +b.
This proves that the Lie bracket is well-defined.
Show that if ¢ : g — b is a Lie algebra homomorphism then

g/kerp & imgp
as Lie algebras.

Solution. Let us first see that kere is an ideal in g whence g/kerp has indeed a Lie algebra
structure. Let X € kerp and let Y € g. Then

([X,Y]) = [p(X),p(Y)] = [0,0(Y)] =0

whence [X,Y] € kery. This shows that kery < g is an ideal.
Clearly, imp < b is a Lie subalgebra. We claim that v : g/kerp — im¢p defined by

(X + kerp) = p(X)
is a well-defined Lie algebra isomorphism. We have

X +kerp=Y +kerp < X —Y €kerp <= ¢(X) =)
= Y(X) =)



for all X|Y € g. This proves that v is well-defined and injective. Surjectivity is immediate
from the definition. Finally, 1 is a Lie algebra homomorphism since

Y([X + kerp, Y + kerg]) = ([ X, Y] + kerp) = ¢([X,Y])

= [p(X), p(Y)]
= [W(X + kerp), ¥(Y + kerp)]

for all X,Y € g.
c) Let h C J be ideals of g. Show that

J/bdg/b and (g/h)/(3/h) =g/

Solution. Observe that because h < g also h < J. Consider the homomorphism ¢ : g/h —
g/7 given by
(X +h)=X+7.

This is a well-defined homomorphism since h < J. Let X + § € keryp. Then
J=p(X+h)=X+T = Xe7,

i.e. kerp = J/h. As we have seen in part a) kernels of Lie algebra homomorphisms are ideals
whence J/h < g/b and again by part a)

(9/b)/(3/h) = g/3.
d) Let h and J be ideals of g. Show that h + T and h NT are ideals in g, and that
b/(hNn3J)=(h+7)/3.
Solution. Observe that J <+ J because J Jg. Let X € h, Y € Jand Z € g. Then
Z,X+Y]|=[ZX]+[Z,Y]eh+7.

This proves that h +J < g is an ideal
Consider the map ¢ : h — (h + J)/T given by

p(X)=X+7.
We have
Xekerp «<— X+T=7 <<= X e€Tnp,

whence kerp = I N . Therefore TNk is an ideal in bh.
Finally, ¢ is surjective: Let X +Y +J € (h+J)/3. Then

X+Y+3=X+7€imp.

Exercise 2 (Solvable Lie algebras).  a) Show that Lie subalgebras and homomorphic images of
solvable Lie algebras are solvable.



b)

c)

Solution. Let g be a solvable Lie algebra. Recall that g is called solvable if
grgVe. =g =0
for some n € N where g(® := g and inductively
gttt =g, "] = spang {[X, Y] : X,Y € gV}

for every i € N.
First, let h < g be a Lie subalgebra. Then h(® =§ < g = g(» and inductively

B+ = [0, 5] € g0, g] = g+

for every i € N. Hence, if g(™) = 0 then also h(™) = 0 and b is solvable.
g

Let ¢ : g — a be a Lie algebra homomorphism. We need to see that imy < a is solvable.
Because ¢ is a Lie algebra homomorphism we have that

(imp) @ = p(g) = o(g™) (1)

for every i € N. From (??) it follows that (imp)™ = ¢(g(™) = 0 because g™ = 0 for some
n € N whence im¢ is solvable.

Show that if h and J are solvable ideals of a Lie algebra g then h 4 J is a solvable ideal.

Hint: Use exercise 77. ?77.

Solution. By ?? we have that

(b+3)/3=b/(bN7). (2)

Since b is solvable so is h/(hN7T) as the image of the quotient homomorphism 7 : h — §/(hN7T).
By the isomorphism (?7?) we know that (h + J)/J is solvable and

0=((0+3)/9)" =p(h+3)™ L p((+3)")
for some n € N, where p: h + T — (h + J)/7 is the quotient homomorphism. Therefore
(h+3)™ C kerp = 7.
Because J is solvable there is m € N such that 3(™) = 0. Tt follows that
(h+ j)(n+m) _ ((f) + j)(n)>(m) C 5(m) —
whence h + T is solvable.

Deduce that every Lie algebra contains a unique maximal solvable ideal.



Solution. Let g be a Lie algebra and let
G C...CarC...

be an increasing sequence of solvable ideals of g. Note that every aj is a linear subspace of
aix+1 whence the sequence {ax} has at most n = dim g different elements. Thus every such
sequence has a maximal element and by Zorn’s lemma there is a maximal solvable ideal s < g.

Let s and s’ be two maximal solvable ideals of g. By part b) s + s’ is also a solvable ideal of
g and by the maximality of s and s’ we get

This proves uniqueness.
The so obtained unique maximal solvable ideal of g is called its radical.

Exercise 3 (Quotients of Lie groups). Let G be a Lie group and let K < G be a closed normal
subgroup.

Show that G/K can be equipped with a Lie group structure such that the quotient map 7: G —
G/K is a surjective Lie group homomorphism with kernel K.

Solution. From the lecture we know that there exists a suitable neighborhood U C g of the
origin such that exp |y : U — exp(U) is a diffeomorphism. Denote by ¢ = Lie(K) the Lie algebra
associated to K. Choose any complement [ such that g =€ @ [ as vector spaces. Define

V:=UnNnL

Since V N ¢ = {0} it is immediate to verify that 7 oexp|y : V — G/K is a homeomorphism onto
the image. This gives us a local chart around the point K € G/K. We can get an atlas by suitably
translating this chart by the natural action of G on G/K. This gives us back an atlas such that
each change of coordinate charts is smooth (since the multiplication in G is smooth).

Note that multiplication and inversion are defined on G/K by passing to the quotient, i.e. the
following diagrams commute:

GxG—"— G G —+ @

ek k

G/K xG/K ----- » G/K G/K ----- » G/K

By definition, the quotient map 7: G — G/K is a smooth submersion with respect to this smooth
structure. Thus, it follows from the constant rank theorem that multiplication and inversion are
smooth, and G/K is a Lie group. Moreover, it is clear from the construction that K is the kernel
of .

For more details see Theorem 21.26 in John M. Lee, “Intorduction to Smooth Manifolds”, Springer
(2013)



Exercise 4 (Common eigenvectors). Let G be a connected Lie group and let 7: G — GL(V) be a
finite-dimensional complex representation.

A common eigenvector of {m(g) : g € G} is a vector v € V such that there is a smooth ho-
momorphism x: G — C with 7(g)v = x(g) - v for all g € G. Similarly, a common eigenvector
of {dem(X): X € g} is a vector v € V such that there is a linear functional A\: g — C with
dem(X)v = A(X) v for all X €g.

Show that a vector v € V is a common eigenvector of {d.m(X) : X € g} if and only if it is a
common eigenvector of {r(g) : g € G}. Moreover, show that x(exp(X)) = e*¥) for all X € g
(with x: G — C and A: g — C as above).

Solution. Let G, := {g € G : m(g)Cv = Cuv} be the stabilizer of the line Cv. Then G, is a closed
subgroup of G and hence a Lie group whose Lie algebra is

Lie(Gy) = {X € g: exp(tX) € G, for all t € R}
={X eg: m(expa(tX))Cv = Cv for all t € R}
={X € g: expgr(v)(tdem(X))Cv = Cuv for all t € R}.

Now observe that if A € End(V), then
exparv)(t4)Cv & Cv & A(Cv) C Co.

In fact (<) is immediate by the exponential series and (=) follows from the fact that A =

. expar vy (tA)—Id
lim;_g +

Thus
Lie(G,) = {X € g: dn(X)(Cv) CCv} =g

by hypothesis. Since G s connected, this implies that G,, = G. Thus for all g € G there is a well
defined x(g) € C* with 7(g)v = x(g)v and since g — 7(g)v is smooth, so is . Finally,

x(expg(X))v = m(expg(X))v = eXpGL(V)(deW(X))U =Xy,

Exercise 5 (Weight spaces and ideals). Let g be a Lie algebra, let h < g be an ideal and let
7m: g — gl(V) a finite-dimensional complex representation. For a given linear functional A: h — C
consider its weight space

V;’ ={veV|rn(X)v=XX)v VX €b}.

Show that every weight space V;’ is invariant under 7 (g), i.e. W(Y)V)f] C V)f’ for every A € h*)Y € g.

Solution. Let A e h*, let Y € g, let X € h and let v € V/\h. Then



Thus, we are left to prove that A([X,Y]) = 0.
Consider the increasing sequence of subspaces

Wh =, 7(Y)v,...,7(Y)™0) <V, m>0.
Because V is finite-dimensional this sequence stabilizes for some N € N:

WNaa s Wy =Wny1=--

We claim that for all m > 0, W, is invariant under 7 (h) and furthermore
7(X)m(Y)"0 = MY)m(X) v € Wp,—q VX €b. (3)

We will prove this by induction on m. It holds for m = 0 because v € V/\h. So let’s assume it holds
for m — 1. We compute:

By induction hypothesis, we have that
w = m(X)m(Y)" o = AMY)7(X)" o € Wa,

and 7(Y)w € Wy,_1 by construction of the W;’2. Moreover, § is an ideal, so that [7(X),7(Y)] €
7(h) and, by induction hypothesis,

[7T(X), 7(V)]7m(Y)™ tv € Wi, _1.
Thus,
7(X)m(Y)" = MX)w(Y)"v € Wi,—1.

We know that Wy is invariant for both 7(Y") and 7(X). In particular, (??) shows that 7(X) acts

on Wy as an upper triangular matrix in the basis {v,7(Y)v,...,7(Y)Nov}:
A(X) *
0 AX)
Therefore,

trwy ([m(X), 7(Y)]) = 0 = trw, (7([X, Y])) = NA([X,Y]),
which implies that A([X,Y]) = 0.



Exercise 6 (Lie’s theorem for Lie algebras). Let g be a solvable Lie algebra and let p: g — gl(V)
be a finite-dimensional complex representation.

Show that p(g) stabilizes a flag V =V, 2 V4 2 --- D V,, = 0, with codimV; = 4, i.e. p(X)V; CV;
forevery X e V;,i=1,...,n.

Hint: Use exercise ?7.

Solution. By induction, it suffices to show that there is a weight A € g* for p such that V¥ # {0}.

We will prove this by induction on dimg. The case dimg = 0 is trivial. So let’s assume that it
holds for dimg =m — 1.

Since g is solvable (of positive dimension) it properly includes [g, g]. Since g/[g, g] is abelian, any
subspace is automatically an ideal. Take a subspace of codimension one in g/[g, g]. Then its inverse
image h < g is an ideal of codimension on in g. Thus, we can decompose

g=h+CY
for some Y € g.

Notice that § is a solvable ideal of dimension m — 1, whence there is a weight A € h* such that
VY # {0}. By exercise ?? Vy is invariant under the action of p(g). In particular, p(Y)Vy C V)
and there is v € V;’ \ {0} such that p(Y)v = pv for some 5 € C. We define a linear functional
N € g* by

N(X +aY)=XX)+ap

forall X € h,a € C.

By construction v € VY, # {0}.



