Solutions Exercise Sheet 6

Exercise 1 (Isomorphism theorems for Lie algebras). Let \mathfrak{g} be a Lie algebra.
a) Let $\mathfrak{h} \unlhd \mathfrak{g}$ be an ideal. Show that

$$
[X+\mathfrak{h}, Y+\mathfrak{h}]:=[X, Y]+\mathfrak{h}
$$

defines a Lie algebra structure on $\mathfrak{g} / \mathfrak{h}$.
Solution. All we need to show is that the bracket defined above is well-defined. All the Lie algebra properties will then be inherited from \mathfrak{g}. Now let $X, X^{\prime}, Y, Y^{\prime} \in \mathfrak{g}$ and $U, V \in \mathfrak{h}$ such that $X^{\prime}=X+U$ and $Y^{\prime}=Y+V$. Then

$$
\begin{aligned}
{\left[X^{\prime}+\mathfrak{h}, Y^{\prime}+\mathfrak{h}\right] } & =[X+U, Y+V]+\mathfrak{h} \\
& =[X, Y]+\underbrace{[X, V]+[U, Y]+[U, V]}_{\in \mathfrak{h}}+\mathfrak{h} \\
& =[X, Y]+\mathfrak{h} .
\end{aligned}
$$

This proves that the Lie bracket is well-defined.
b) Show that if $\varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ is a Lie algebra homomorphism then

$$
\mathfrak{g} / \operatorname{ker} \varphi \cong \operatorname{im} \varphi
$$

as Lie algebras.
Solution. Let us first see that $\operatorname{ker} \varphi$ is an ideal in \mathfrak{g} whence $\mathfrak{g} / \operatorname{ker} \varphi$ has indeed a Lie algebra structure. Let $X \in \operatorname{ker} \varphi$ and let $Y \in \mathfrak{g}$. Then

$$
\varphi([X, Y])=[\varphi(X), \varphi(Y)]=[0, \varphi(Y)]=0
$$

whence $[X, Y] \in \operatorname{ker} \varphi$. This shows that $\operatorname{ker} \varphi \unlhd \mathfrak{g}$ is an ideal.
Clearly, $\operatorname{im} \varphi \leq \mathfrak{h}$ is a Lie subalgebra. We claim that $\psi: \mathfrak{g} / \operatorname{ker} \varphi \rightarrow \operatorname{im} \varphi$ defined by

$$
\psi(X+\operatorname{ker} \varphi)=\varphi(X)
$$

is a well-defined Lie algebra isomorphism. We have

$$
\begin{aligned}
X+\operatorname{ker} \varphi=Y+\operatorname{ker} \varphi & \Longleftrightarrow X-Y \in \operatorname{ker} \varphi \Longleftrightarrow \varphi(X)=\varphi(Y) \\
& \Longleftrightarrow \psi(X)=\psi(Y)
\end{aligned}
$$

for all $X, Y \in \mathfrak{g}$. This proves that ψ is well-defined and injective. Surjectivity is immediate from the definition. Finally, ψ is a Lie algebra homomorphism since

$$
\begin{aligned}
\psi([X+\operatorname{ker} \varphi, Y+\operatorname{ker} \varphi]) & =\psi([X, Y]+\operatorname{ker} \varphi)=\varphi([X, Y]) \\
& =[\varphi(X), \varphi(Y)] \\
& =[\psi(X+\operatorname{ker} \varphi), \psi(Y+\operatorname{ker} \varphi)]
\end{aligned}
$$

for all $X, Y \in \mathfrak{g}$.
c) Let $\mathfrak{h} \subseteq \mathfrak{I}$ be ideals of \mathfrak{g}. Show that

$$
\mathfrak{I} / \mathfrak{h} \unlhd \mathfrak{g} / \mathfrak{h} \quad \text { and } \quad(\mathfrak{g} / \mathfrak{h}) /(\mathfrak{I} / \mathfrak{h}) \cong \mathfrak{g} / \mathfrak{I}
$$

Solution. Observe that because $\mathfrak{h} \unlhd \mathfrak{g}$ also $\mathfrak{h} \unlhd \mathfrak{I}$. Consider the homomorphism $\varphi: \mathfrak{g} / \mathfrak{h} \rightarrow$ $\mathfrak{g} / \mathfrak{I}$ given by

$$
\varphi(X+\mathfrak{h})=X+\mathfrak{I}
$$

This is a well-defined homomorphism since $\mathfrak{h} \unlhd \mathfrak{I}$. Let $X+\mathfrak{h} \in \operatorname{ker} \varphi$. Then

$$
\mathfrak{I}=\varphi(X+\mathfrak{h})=X+\mathfrak{I} \quad \Longleftrightarrow \quad X \in \mathfrak{I}
$$

i.e. $\operatorname{ker} \varphi=\mathfrak{I} / \mathfrak{h}$. As we have seen in part a) kernels of Lie algebra homomorphisms are ideals whence $\mathfrak{I} / \mathfrak{h} \unlhd \mathfrak{g} / \mathfrak{h}$ and again by part a)

$$
(\mathfrak{g} / \mathfrak{h}) /(\mathfrak{I} / \mathfrak{h}) \cong \mathfrak{g} / \mathfrak{I} .
$$

d) Let \mathfrak{h} and \mathfrak{I} be ideals of \mathfrak{g}. Show that $\mathfrak{h}+\mathfrak{I}$ and $\mathfrak{h} \cap \mathfrak{I}$ are ideals in \mathfrak{g}, and that

$$
\mathfrak{h} /(\mathfrak{h} \cap \mathfrak{I}) \cong(\mathfrak{h}+\mathfrak{I}) / \mathfrak{I}
$$

Solution. Observe that $\mathfrak{I} \unlhd \mathfrak{h}+\mathfrak{I}$ because $\mathfrak{I} \unlhd \mathfrak{g}$. Let $X \in \mathfrak{h}, Y \in \mathfrak{I}$ and $Z \in \mathfrak{g}$. Then

$$
[Z, X+Y]=[Z, X]+[Z, Y] \in \mathfrak{h}+\mathfrak{I}
$$

This proves that $\mathfrak{h}+\mathfrak{I} \unlhd \mathfrak{g}$ is an ideal
Consider the map $\varphi: \mathfrak{h} \rightarrow(\mathfrak{h}+\mathfrak{I}) / \mathfrak{I}$ given by

$$
\varphi(X)=X+\mathfrak{I}
$$

We have

$$
X \in \operatorname{ker} \varphi \Longleftrightarrow X+\mathfrak{I}=\mathfrak{I} \Longleftrightarrow X \in \mathfrak{I} \cap \mathfrak{h}
$$

whence $\operatorname{ker} \varphi=\mathfrak{I} \cap \mathfrak{h}$. Therefore $\mathfrak{I} \cap \mathfrak{h}$ is an ideal in \mathfrak{h}.
Finally, φ is surjective: Let $X+Y+\mathfrak{I} \in(\mathfrak{h}+\mathfrak{I}) / \mathfrak{I}$. Then

$$
X+Y+\mathfrak{I}=X+\mathfrak{I} \in \operatorname{im} \varphi
$$

Exercise 2 (Solvable Lie algebras). a) Show that Lie subalgebras and homomorphic images of solvable Lie algebras are solvable.

Solution. Let \mathfrak{g} be a solvable Lie algebra. Recall that \mathfrak{g} is called solvable if

$$
\mathfrak{g} \unrhd \mathfrak{g}^{(1)} \unrhd \cdots \unrhd \mathfrak{g}^{(n)}=0
$$

for some $n \in \mathbb{N}$ where $\mathfrak{g}^{(0)}:=\mathfrak{g}$ and inductively

$$
\mathfrak{g}^{(i+1)}=\left[\mathfrak{g}^{(i)}, \mathfrak{g}^{(i)}\right]=\operatorname{span}_{\mathbb{R}}\left\{[X, Y]: X, Y \in \mathfrak{g}^{(i)}\right\}
$$

for every $i \in \mathbb{N}$.
First, let $\mathfrak{h} \leq \mathfrak{g}$ be a Lie subalgebra. Then $\mathfrak{h}^{(0)}=\mathfrak{h} \leq \mathfrak{g}=\mathfrak{g}^{(0)}$ and inductively

$$
\mathfrak{h}^{(i+1)}=\left[\mathfrak{h}^{(i)}, \mathfrak{h}^{(i)}\right] \subseteq\left[\mathfrak{g}^{(i)}, \mathfrak{g}^{(i)}\right]=\mathfrak{g}^{(i+1)}
$$

for every $i \in \mathbb{N}$. Hence, if $\mathfrak{g}^{(n)}=0$ then also $\mathfrak{h}^{(n)}=0$ and \mathfrak{h} is solvable.
Let $\varphi: \mathfrak{g} \rightarrow \mathfrak{a}$ be a Lie algebra homomorphism. We need to see that $\operatorname{im} \varphi \leq \mathfrak{a}$ is solvable. Because φ is a Lie algebra homomorphism we have that

$$
\begin{equation*}
(\operatorname{im} \varphi)^{(i)}=\varphi(\mathfrak{g})^{(i)}=\varphi\left(\mathfrak{g}^{(i)}\right) \tag{1}
\end{equation*}
$$

for every $i \in \mathbb{N}$. From (??) it follows that $(\operatorname{im} \varphi)^{(n)}=\varphi\left(\mathfrak{g}^{(n)}\right)=0$ because $\mathfrak{g}^{(n)}=0$ for some $n \in \mathbb{N}$ whence $\operatorname{im} \varphi$ is solvable.
b) Show that if \mathfrak{h} and \mathfrak{I} are solvable ideals of a Lie algebra \mathfrak{g} then $\mathfrak{h}+\mathfrak{I}$ is a solvable ideal. Hint: Use exercise ??. ??.

Solution. By ?? we have that

$$
\begin{equation*}
(\mathfrak{h}+\mathfrak{I}) / \mathfrak{I} \cong \mathfrak{h} /(\mathfrak{h} \cap \mathfrak{I}) \tag{2}
\end{equation*}
$$

Since \mathfrak{h} is solvable so is $\mathfrak{h} /(\mathfrak{h} \cap \mathfrak{I})$ as the image of the quotient homomorphism $\pi: \mathfrak{h} \rightarrow \mathfrak{h} /(\mathfrak{h} \cap \mathfrak{I})$. By the isomorphism (??) we know that $(\mathfrak{h}+\mathfrak{I}) / \mathfrak{I}$ is solvable and

$$
0=((\mathfrak{h}+\mathfrak{I}) / \mathfrak{I})^{(n)}=p(\mathfrak{h}+\mathfrak{I})^{(n)} \stackrel{(? ? ?)}{=} p\left((\mathfrak{h}+\mathfrak{I})^{(n)}\right)
$$

for some $n \in \mathbb{N}$, where $p: \mathfrak{h}+\mathfrak{I} \rightarrow(\mathfrak{h}+\mathfrak{I}) / \mathfrak{I}$ is the quotient homomorphism. Therefore

$$
(\mathfrak{h}+\mathfrak{I})^{(n)} \subseteq \operatorname{ker} p=\mathfrak{I}
$$

Because \mathfrak{I} is solvable there is $m \in \mathbb{N}$ such that $\mathfrak{I}^{(m)}=0$. It follows that

$$
(\mathfrak{h}+\mathfrak{I})^{(n+m)}=\left((\mathfrak{h}+\mathfrak{I})^{(n)}\right)^{(m)} \subseteq \mathfrak{I}^{(m)}=0
$$

whence $\mathfrak{h}+\mathfrak{I}$ is solvable.
c) Deduce that every Lie algebra contains a unique maximal solvable ideal.

Solution. Let \mathfrak{g} be a Lie algebra and let

$$
\mathfrak{a}_{1} \subseteq \ldots \subseteq \mathfrak{a}_{k} \subseteq \ldots
$$

be an increasing sequence of solvable ideals of \mathfrak{g}. Note that every \mathfrak{a}_{k} is a linear subspace of \mathfrak{a}_{k+1} whence the sequence $\left\{\mathfrak{a}_{k}\right\}$ has at most $n=\operatorname{dim} \mathfrak{g}$ different elements. Thus every such sequence has a maximal element and by Zorn's lemma there is a maximal solvable ideal $\mathfrak{s} \unlhd \mathfrak{g}$.
Let \mathfrak{s} and \mathfrak{s}^{\prime} be two maximal solvable ideals of \mathfrak{g}. By part b) $\mathfrak{s}+\mathfrak{s}^{\prime}$ is also a solvable ideal of \mathfrak{g} and by the maximality of \mathfrak{s} and \mathfrak{s}^{\prime} we get

$$
\mathfrak{s}=\mathfrak{s}+\mathfrak{s}^{\prime}=\mathfrak{s}^{\prime}
$$

This proves uniqueness.
The so obtained unique maximal solvable ideal of \mathfrak{g} is called its radical.
Exercise 3 (Quotients of Lie groups). Let G be a Lie group and let $K \leq G$ be a closed normal subgroup.

Show that G / K can be equipped with a Lie group structure such that the quotient map $\pi: G \rightarrow$ G / K is a surjective Lie group homomorphism with kernel K.
Solution. From the lecture we know that there exists a suitable neighborhood $U \subset \mathfrak{g}$ of the origin such that $\left.\exp \right|_{U}: U \rightarrow \exp (U)$ is a diffeomorphism. Denote by $\mathfrak{k}=\operatorname{Lie}(K)$ the Lie algebra associated to K. Choose any complement \mathfrak{l} such that $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{l}$ as vector spaces. Define

$$
V:=U \cap \mathfrak{l} .
$$

Since $V \cap \mathfrak{k}=\{0\}$ it is immediate to verify that $\left.\pi \circ \exp \right|_{V}: V \rightarrow G / K$ is a homeomorphism onto the image. This gives us a local chart around the point $K \in G / K$. We can get an atlas by suitably translating this chart by the natural action of G on G / K. This gives us back an atlas such that each change of coordinate charts is smooth (since the multiplication in G is smooth).

Note that multiplication and inversion are defined on G / K by passing to the quotient, i.e. the following diagrams commute:

By definition, the quotient map $\pi: G \rightarrow G / K$ is a smooth submersion with respect to this smooth structure. Thus, it follows from the constant rank theorem that multiplication and inversion are smooth, and G / K is a Lie group. Moreover, it is clear from the construction that K is the kernel of π.

For more details see Theorem 21.26 in John M. Lee, "Intorduction to Smooth Manifolds", Springer (2013)

Exercise 4 (Common eigenvectors). Let G be a connected Lie group and let $\pi: G \rightarrow \mathrm{GL}(V)$ be a finite-dimensional complex representation.

A common eigenvector of $\{\pi(g): g \in G\}$ is a vector $v \in V$ such that there is a smooth homomorphism $\chi: G \rightarrow \mathbb{C}$ with $\pi(g) v=\chi(g) \cdot v$ for all $g \in G$. Similarly, a common eigenvector of $\left\{d_{e} \pi(X): X \in \mathfrak{g}\right\}$ is a vector $v \in V$ such that there is a linear functional $\lambda: \mathfrak{g} \rightarrow \mathbb{C}$ with $d_{e} \pi(X) v=\lambda(X) \cdot v$ for all $X \in \mathfrak{g}$.

Show that a vector $v \in V$ is a common eigenvector of $\left\{d_{e} \pi(X): X \in \mathfrak{g}\right\}$ if and only if it is a common eigenvector of $\{\pi(g): g \in G\}$. Moreover, show that $\chi(\exp (X))=e^{\lambda(X)}$ for all $X \in \mathfrak{g}$ (with $\chi: G \rightarrow \mathbb{C}$ and $\lambda: \mathfrak{g} \rightarrow \mathbb{C}$ as above).

Solution. Let $G_{v}:=\{g \in G: \pi(g) \mathbb{C} v=\mathbb{C} v\}$ be the stabilizer of the line $\mathbb{C} v$. Then G_{v} is a closed subgroup of G and hence a Lie group whose Lie algebra is

$$
\begin{aligned}
\operatorname{Lie}\left(G_{v}\right) & =\left\{X \in \mathfrak{g}: \exp _{G}(t X) \in G_{v} \text { for all } t \in \mathbb{R}\right\} \\
& =\left\{X \in \mathfrak{g}: \pi\left(\exp _{G}(t X)\right) \mathbb{C} v=\mathbb{C} v \text { for all } t \in \mathbb{R}\right\} \\
& =\left\{X \in \mathfrak{g}: \exp _{G L(V)}\left(t d_{e} \pi(X)\right) \mathbb{C} v=\mathbb{C} v \text { for all } t \in \mathbb{R}\right\}
\end{aligned}
$$

Now observe that if $A \in \operatorname{End}(V)$, then

$$
\exp _{\mathrm{GL}(V)}(t A) \mathbb{C} v \Leftrightarrow \mathbb{C} v \Leftrightarrow A(\mathbb{C} v) \subset \mathbb{C} v
$$

In fact (\Leftarrow) is immediate by the exponential series and (\Rightarrow) follows from the fact that $A=$ $\lim _{t \rightarrow 0} \frac{\exp _{\mathrm{GL}(V)}(t A)-\mathrm{Id}}{t}$.

Thus

$$
\operatorname{Lie}\left(G_{v}\right)=\left\{X \in \mathfrak{g}: d_{e} \pi(X)(\mathbb{C} v) \subset \mathbb{C} v\right\}=\mathfrak{g}
$$

by hypothesis. Since G s connected, this implies that $G_{v}=G$. Thus for all $g \in G$ there is a well defined $\chi(g) \in \mathbb{C}^{*}$ with $\pi(g) v=\chi(g) v$ and since $g \mapsto \pi(g) v$ is smooth, so is χ. Finally,

$$
\chi\left(\exp _{G}(X)\right) v=\pi\left(\exp _{G}(X)\right) v=\exp _{\mathrm{GL}(V)}\left(d_{e} \pi(X)\right) v=e^{\lambda(X)} v
$$

Exercise 5 (Weight spaces and ideals). Let \mathfrak{g} be a Lie algebra, let $\mathfrak{h} \unlhd \mathfrak{g}$ be an ideal and let $\pi: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ a finite-dimensional complex representation. For a given linear functional $\lambda: \mathfrak{h} \rightarrow \mathbb{C}$ consider its weight space

$$
V_{\lambda}^{\mathfrak{h}}:=\{v \in V \mid \pi(X) v=\lambda(X) v \quad \forall X \in \mathfrak{h}\}
$$

Show that every weight space $V_{\lambda}^{\mathfrak{h}}$ is invariant under $\pi(\mathfrak{g})$, i.e. $\pi(Y) V_{\lambda}^{\mathfrak{h}} \subseteq V_{\lambda}^{\mathfrak{h}}$ for every $\lambda \in \mathfrak{h}^{*}, Y \in \mathfrak{g}$.
Solution. Let $\lambda \in \mathfrak{h}^{*}$, let $Y \in \mathfrak{g}$, let $X \in \mathfrak{h}$ and let $v \in V_{\lambda}^{\mathfrak{h}}$. Then

$$
\begin{aligned}
\pi(X) \pi(Y) v & =(\pi(X) \pi(Y)-\pi(Y) \pi(X)) v+\pi(Y) \pi(X) v \\
& =\pi([X, Y]) v+\lambda(X) \pi(Y) v \\
& =\lambda([X, Y]) v+\lambda(X) \pi(Y) v
\end{aligned}
$$

Thus, we are left to prove that $\lambda([X, Y])=0$.
Consider the increasing sequence of subspaces

$$
W_{m}=\left\langle v, \pi(Y) v, \ldots, \pi(Y)^{m} v\right\rangle \leq V, \quad m \geq 0
$$

Because V is finite-dimensional this sequence stabilizes for some $N \in \mathbb{N}$:

$$
W_{N-1} \lesseqgtr W_{N}=W_{N+1}=\cdots
$$

We claim that for all $m \geq 0, W_{m}$ is invariant under $\pi(\mathfrak{h})$ and furthermore

$$
\begin{equation*}
\pi(X) \pi(Y)^{m} v-\lambda(Y) \pi(X)^{m} v \in W_{m-1} \quad \forall X \in \mathfrak{h} \tag{3}
\end{equation*}
$$

We will prove this by induction on m. It holds for $m=0$ because $v \in V_{\lambda}^{\mathfrak{h}}$. So let's assume it holds for $m-1$. We compute:

$$
\begin{aligned}
\pi(X) \pi(Y)^{m} v-\lambda(X) \pi(Y)^{m} v & =[\pi(X), \pi(Y)] \pi(Y)^{m-1} v+\pi(Y) \pi(X) \pi(Y)^{m-1} v-\lambda(X) \pi(Y)^{m} v \\
& =[\pi(X), \pi(Y)] \pi(Y)^{m-1} v+\pi(Y) \pi(X) \pi(Y)^{m-1} v-\pi(Y) \lambda(X) \pi(Y)^{m-1} v
\end{aligned}
$$

By induction hypothesis, we have that

$$
w:=\pi(X) \pi(Y)^{m-1} v-\lambda(Y) \pi(X)^{m-1} v \in W_{m-2}
$$

and $\pi(Y) w \in W_{m-1}$ by construction of the $W_{i}{ }^{\prime} 2$. Moreover, \mathfrak{h} is an ideal, so that $[\pi(X), \pi(Y)] \in$ $\pi(\mathfrak{h})$ and, by induction hypothesis,

$$
[\pi(X), \pi(Y)] \pi(Y)^{m-1} v \in W_{m-1}
$$

Thus,

$$
\pi(X) \pi(Y)^{m} v-\lambda(X) \pi(Y)^{m} v \in W_{m-1}
$$

We know that W_{N} is invariant for both $\pi(Y)$ and $\pi(X)$. In particular, (??) shows that $\pi(X)$ acts on W_{N} as an upper triangular matrix in the basis $\left\{v, \pi(Y) v, \ldots, \pi(Y)^{N} v\right\}$:

$$
\left(\begin{array}{ccc}
\lambda(X) & & * \\
& \ddots & \\
0 & & \lambda(X)
\end{array}\right)
$$

Therefore,

$$
\operatorname{tr}_{W_{N}}([\pi(X), \pi(Y)])=0=\operatorname{tr}_{W_{N}}(\pi([X, Y]))=N \lambda([X, Y])
$$

which implies that $\lambda([X, Y])=0$.

Exercise 6 (Lie's theorem for Lie algebras). Let \mathfrak{g} be a solvable Lie algebra and let $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ be a finite-dimensional complex representation.

Show that $\rho(\mathfrak{g})$ stabilizes a flag $V=V_{0} \supseteq V_{1} \supseteq \cdots \supseteq V_{n}=0$, with $\operatorname{codim} V_{i}=i$, i.e. $\rho(X) V_{i} \subseteq V_{i}$ for every $X \in V_{i}, i=1, \ldots, n$.

Hint: Use exercise ??.
Solution. By induction, it suffices to show that there is a weight $\lambda \in \mathfrak{g}^{*}$ for ρ such that $V_{\lambda}^{\mathfrak{g}} \neq\{0\}$.
We will prove this by induction on $\operatorname{dim} \mathfrak{g}$. The case $\operatorname{dim} \mathfrak{g}=0$ is trivial. So let's assume that it holds for $\operatorname{dim} \mathfrak{g}=m-1$.

Since \mathfrak{g} is solvable (of positive dimension) it properly includes $[\mathfrak{g}, \mathfrak{g}]$. Since $\mathfrak{g} /[\mathfrak{g}, \mathfrak{g}]$ is abelian, any subspace is automatically an ideal. Take a subspace of codimension one in $\mathfrak{g} /[\mathfrak{g}, \mathfrak{g}]$. Then its inverse image $\mathfrak{h} \unlhd \mathfrak{g}$ is an ideal of codimension on in \mathfrak{g}. Thus, we can decompose

$$
\mathfrak{g}=\mathfrak{h}+\mathbb{C} Y
$$

for some $Y \in \mathfrak{g}$.
Notice that \mathfrak{h} is a solvable ideal of dimension $m-1$, whence there is a weight $\lambda \in \mathfrak{h}^{*}$ such that $V_{\lambda}^{\mathfrak{h}} \neq\{0\}$. By exercise ?? $V_{\lambda}^{\mathfrak{h}}$ is invariant under the action of $\rho(\mathfrak{g})$. In particular, $\rho(Y) V_{\lambda}^{\mathfrak{h}} \subseteq V_{\lambda}^{\mathfrak{h}}$ and there is $v \in V_{\lambda}^{\mathfrak{h}} \backslash\{0\}$ such that $\rho(Y) v=\beta v$ for some $\beta \in \mathbb{C}$. We define a linear functional $\lambda^{\prime} \in \mathfrak{g}^{*}$ by

$$
\lambda^{\prime}(X+\alpha Y)=\lambda(X)+\alpha \beta
$$

for all $X \in \mathfrak{h}, \alpha \in \mathbb{C}$.
By construction $v \in V_{\lambda^{\prime}}^{\mathfrak{g}} \neq\{0\}$.

