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Solutions Exercise Sheet 6

Exercise 1 (Isomorphism theorems for Lie algebras). Let g be a Lie algebra.

a) Let h E g be an ideal. Show that

[X + h, Y + h] := [X,Y ] + h

defines a Lie algebra structure on g/h.

Solution. All we need to show is that the bracket defined above is well-defined. All the Lie
algebra properties will then be inherited from g. Now let X,X ′, Y, Y ′ ∈ g and U, V ∈ h such
that X ′ = X + U and Y ′ = Y + V . Then

[X ′ + h, Y ′ + h] = [X + U, Y + V ] + h

= [X,Y ] + [X,V ] + [U, Y ] + [U, V ]︸ ︷︷ ︸
∈h

+h

= [X,Y ] + h.

This proves that the Lie bracket is well-defined.

b) Show that if ϕ : g→ h is a Lie algebra homomorphism then

g/kerϕ ∼= imϕ

as Lie algebras.

Solution. Let us first see that kerϕ is an ideal in g whence g/kerϕ has indeed a Lie algebra
structure. Let X ∈ kerϕ and let Y ∈ g. Then

ϕ([X,Y ]) = [ϕ(X), ϕ(Y )] = [0, ϕ(Y )] = 0

whence [X,Y ] ∈ kerϕ. This shows that kerϕ E g is an ideal.

Clearly, imϕ ≤ h is a Lie subalgebra. We claim that ψ : g/kerϕ→ imϕ defined by

ψ(X + kerϕ) = ϕ(X)

is a well-defined Lie algebra isomorphism. We have

X + kerϕ = Y + kerϕ ⇐⇒ X − Y ∈ kerϕ ⇐⇒ ϕ(X) = ϕ(Y )

⇐⇒ ψ(X) = ψ(Y )
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for all X,Y ∈ g. This proves that ψ is well-defined and injective. Surjectivity is immediate
from the definition. Finally, ψ is a Lie algebra homomorphism since

ψ([X + kerϕ, Y + kerϕ]) = ψ([X,Y ] + kerϕ) = ϕ([X,Y ])

= [ϕ(X), ϕ(Y )]

= [ψ(X + kerϕ), ψ(Y + kerϕ)]

for all X,Y ∈ g.

c) Let h ⊆ I be ideals of g. Show that

I/h E g/h and (g/h)/(I/h) ∼= g/I.

Solution. Observe that because h E g also h E I. Consider the homomorphism ϕ : g/h →
g/I given by

ϕ(X + h) = X + I.

This is a well-defined homomorphism since h E I. Let X + h ∈ kerϕ. Then

I = ϕ(X + h) = X + I ⇐⇒ X ∈ I,

i.e. kerϕ = I/h. As we have seen in part a) kernels of Lie algebra homomorphisms are ideals
whence I/h E g/h and again by part a)

(g/h)/(I/h) ∼= g/I.

d) Let h and I be ideals of g. Show that h + I and h ∩ I are ideals in g, and that

h/(h ∩ I) ∼= (h + I)/I.

Solution. Observe that I E h + I because I E g. Let X ∈ h, Y ∈ I and Z ∈ g. Then

[Z,X + Y ] = [Z,X] + [Z, Y ] ∈ h + I.

This proves that h + I E g is an ideal

Consider the map ϕ : h→ (h + I)/I given by

ϕ(X) = X + I.

We have

X ∈ kerϕ ⇐⇒ X + I = I ⇐⇒ X ∈ I ∩ h,

whence kerϕ = I ∩ h. Therefore I ∩ h is an ideal in h.

Finally, ϕ is surjective: Let X + Y + I ∈ (h + I)/I. Then

X + Y + I = X + I ∈ imϕ.

Exercise 2 (Solvable Lie algebras). a) Show that Lie subalgebras and homomorphic images of
solvable Lie algebras are solvable.
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Solution. Let g be a solvable Lie algebra. Recall that g is called solvable if

g D g(1) D · · · D g(n) = 0

for some n ∈ N where g(0) := g and inductively

g(i+1) = [g(i), g(i)] = spanR{[X,Y ] : X,Y ∈ g(i)}

for every i ∈ N.

First, let h ≤ g be a Lie subalgebra. Then h(0) = h ≤ g = g(0) and inductively

h(i+1) = [h(i), h(i)] ⊆ [g(i), g(i)] = g(i+1)

for every i ∈ N. Hence, if g(n) = 0 then also h(n) = 0 and h is solvable.

Let ϕ : g → a be a Lie algebra homomorphism. We need to see that imϕ ≤ a is solvable.
Because ϕ is a Lie algebra homomorphism we have that

(imϕ)(i) = ϕ(g)(i) = ϕ(g(i)) (1)

for every i ∈ N. From (??) it follows that (imϕ)(n) = ϕ(g(n)) = 0 because g(n) = 0 for some
n ∈ N whence imϕ is solvable.

b) Show that if h and I are solvable ideals of a Lie algebra g then h + I is a solvable ideal.

Hint: Use exercise ??. ??.

Solution. By ?? we have that

(h + I)/I ∼= h/(h ∩ I). (2)

Since h is solvable so is h/(h∩I) as the image of the quotient homomorphism π : h→ h/(h∩I).
By the isomorphism (??) we know that (h + I)/I is solvable and

0 = ((h + I)/I)
(n)

= p(h + I)(n)
(??)
= p

(
(h + I)(n)

)
for some n ∈ N, where p : h + I→ (h + I)/I is the quotient homomorphism. Therefore

(h + I)(n) ⊆ kerp = I.

Because I is solvable there is m ∈ N such that I(m) = 0. It follows that

(h + I)(n+m) =
(

(h + I)(n)
)(m)

⊆ I(m) = 0

whence h + I is solvable.

c) Deduce that every Lie algebra contains a unique maximal solvable ideal.

3



Solution. Let g be a Lie algebra and let

a1 ⊆ . . . ⊆ ak ⊆ . . .

be an increasing sequence of solvable ideals of g. Note that every ak is a linear subspace of
ak+1 whence the sequence {ak} has at most n = dim g different elements. Thus every such
sequence has a maximal element and by Zorn’s lemma there is a maximal solvable ideal s E g.

Let s and s′ be two maximal solvable ideals of g. By part b) s + s′ is also a solvable ideal of
g and by the maximality of s and s′ we get

s = s + s′ = s′.

This proves uniqueness.

The so obtained unique maximal solvable ideal of g is called its radical.

Exercise 3 (Quotients of Lie groups). Let G be a Lie group and let K ≤ G be a closed normal
subgroup.

Show that G/K can be equipped with a Lie group structure such that the quotient map π : G →
G/K is a surjective Lie group homomorphism with kernel K.

Solution. From the lecture we know that there exists a suitable neighborhood U ⊂ g of the
origin such that exp |U : U → exp(U) is a diffeomorphism. Denote by k = Lie(K) the Lie algebra
associated to K. Choose any complement l such that g = k⊕ l as vector spaces. Define

V := U ∩ l.

Since V ∩ k = {0} it is immediate to verify that π ◦ exp |V : V → G/K is a homeomorphism onto
the image. This gives us a local chart around the point K ∈ G/K. We can get an atlas by suitably
translating this chart by the natural action of G on G/K. This gives us back an atlas such that
each change of coordinate charts is smooth (since the multiplication in G is smooth).

Note that multiplication and inversion are defined on G/K by passing to the quotient, i.e. the
following diagrams commute:

G×G G

G/K ×G/K G/K

m

π×π π

G G

G/K G/K

i

π π

By definition, the quotient map π : G→ G/K is a smooth submersion with respect to this smooth
structure. Thus, it follows from the constant rank theorem that multiplication and inversion are
smooth, and G/K is a Lie group. Moreover, it is clear from the construction that K is the kernel
of π.

For more details see Theorem 21.26 in John M. Lee, “Intorduction to Smooth Manifolds”, Springer
(2013)

4



Exercise 4 (Common eigenvectors). Let G be a connected Lie group and let π : G→ GL(V ) be a
finite-dimensional complex representation.

A common eigenvector of {π(g) : g ∈ G} is a vector v ∈ V such that there is a smooth ho-
momorphism χ : G → C with π(g)v = χ(g) · v for all g ∈ G. Similarly, a common eigenvector
of {deπ(X) : X ∈ g} is a vector v ∈ V such that there is a linear functional λ : g → C with
deπ(X)v = λ(X) · v for all X ∈ g.

Show that a vector v ∈ V is a common eigenvector of {deπ(X) : X ∈ g} if and only if it is a
common eigenvector of {π(g) : g ∈ G}. Moreover, show that χ(exp(X)) = eλ(X) for all X ∈ g
(with χ : G→ C and λ : g→ C as above).

Solution. Let Gv := {g ∈ G : π(g)Cv = Cv} be the stabilizer of the line Cv. Then Gv is a closed
subgroup of G and hence a Lie group whose Lie algebra is

Lie(Gv) = {X ∈ g : expG(tX) ∈ Gv for all t ∈ R}
= {X ∈ g : π(expG(tX))Cv = Cv for all t ∈ R}
= {X ∈ g : expGL(V )(tdeπ(X))Cv = Cv for all t ∈ R} .

Now observe that if A ∈ End(V ), then

expGL(V )(tA)Cv ⇔ Cv ⇔ A(Cv) ⊂ Cv .

In fact (⇐) is immediate by the exponential series and (⇒) follows from the fact that A =

limt→0
expGL(V )(tA)−Id

t .

Thus
Lie(Gv) = {X ∈ g : deπ(X)(Cv) ⊂ Cv} = g

by hypothesis. Since G s connected, this implies that Gv = G. Thus for all g ∈ G there is a well
defined χ(g) ∈ C∗ with π(g)v = χ(g)v and since g 7→ π(g)v is smooth, so is χ. Finally,

χ(expG(X))v = π(expG(X))v = expGL(V )(deπ(X))v = eλ(X)v .

Exercise 5 (Weight spaces and ideals). Let g be a Lie algebra, let h E g be an ideal and let
π : g → gl(V ) a finite-dimensional complex representation. For a given linear functional λ : h → C
consider its weight space

V h
λ := {v ∈ V |π(X)v = λ(X)v ∀X ∈ h}.

Show that every weight space V h
λ is invariant under π(g), i.e. π(Y )V h

λ ⊆ V
h
λ for every λ ∈ h∗, Y ∈ g.

Solution. Let λ ∈ h∗, let Y ∈ g, let X ∈ h and let v ∈ V h
λ . Then

π(X)π(Y )v = (π(X)π(Y )− π(Y )π(X))v + π(Y )π(X)v

= π([X,Y ])v + λ(X)π(Y )v

= λ([X,Y ])v + λ(X)π(Y )v.
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Thus, we are left to prove that λ([X,Y ]) = 0.

Consider the increasing sequence of subspaces

Wm = 〈v, π(Y )v, . . . , π(Y )mv〉 ≤ V, m ≥ 0.

Because V is finite-dimensional this sequence stabilizes for some N ∈ N:

WN−1 �WN = WN+1 = · · ·

We claim that for all m ≥ 0, Wm is invariant under π(h) and furthermore

π(X)π(Y )mv − λ(Y )π(X)mv ∈Wm−1 ∀X ∈ h. (3)

We will prove this by induction on m. It holds for m = 0 because v ∈ V h
λ . So let’s assume it holds

for m− 1. We compute:

π(X)π(Y )mv − λ(X)π(Y )mv = [π(X), π(Y )]π(Y )m−1v + π(Y )π(X)π(Y )m−1v − λ(X)π(Y )mv

= [π(X), π(Y )]π(Y )m−1v + π(Y )π(X)π(Y )m−1v − π(Y )λ(X)π(Y )m−1v.

By induction hypothesis, we have that

w := π(X)π(Y )m−1v − λ(Y )π(X)m−1v ∈Wm−2,

and π(Y )w ∈ Wm−1 by construction of the Wi’2. Moreover, h is an ideal, so that [π(X), π(Y )] ∈
π(h) and, by induction hypothesis,

[π(X), π(Y )]π(Y )m−1v ∈Wm−1.

Thus,
π(X)π(Y )mv − λ(X)π(Y )mv ∈Wm−1.

We know that WN is invariant for both π(Y ) and π(X). In particular, (??) shows that π(X) acts
on WN as an upper triangular matrix in the basis {v, π(Y )v, . . . , π(Y )Nv}:λ(X) ∗

. . .

0 λ(X)



Therefore,
trWN

([π(X), π(Y )]) = 0 = trWN
(π([X,Y ])) = Nλ([X,Y ]),

which implies that λ([X,Y ]) = 0.
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Exercise 6 (Lie’s theorem for Lie algebras). Let g be a solvable Lie algebra and let ρ : g→ gl(V )
be a finite-dimensional complex representation.

Show that ρ(g) stabilizes a flag V = V0 ⊇ V1 ⊇ · · · ⊇ Vn = 0, with codimVi = i, i.e. ρ(X)Vi ⊆ Vi
for every X ∈ Vi, i = 1, . . . , n.

Hint: Use exercise ??.

Solution. By induction, it suffices to show that there is a weight λ ∈ g∗ for ρ such that V g
λ 6= {0}.

We will prove this by induction on dim g. The case dim g = 0 is trivial. So let’s assume that it
holds for dim g = m− 1.

Since g is solvable (of positive dimension) it properly includes [g, g]. Since g/[g, g] is abelian, any
subspace is automatically an ideal. Take a subspace of codimension one in g/[g, g]. Then its inverse
image h E g is an ideal of codimension on in g. Thus, we can decompose

g = h + CY

for some Y ∈ g.

Notice that h is a solvable ideal of dimension m − 1, whence there is a weight λ ∈ h∗ such that
V h
λ 6= {0}. By exercise ?? V h

λ is invariant under the action of ρ(g). In particular, ρ(Y )V h
λ ⊆ V h

λ

and there is v ∈ V h
λ \ {0} such that ρ(Y )v = βv for some β ∈ C. We define a linear functional

λ′ ∈ g∗ by
λ′(X + αY ) = λ(X) + αβ

for all X ∈ h, α ∈ C.

By construction v ∈ V g
λ′ 6= {0}.
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