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Chapter 1 Introduction

=0

Lie groups are named after Sophus Lie, a Norwegian mathematician of the second half of the
nineteenth century who developed the theory of continuous transformation groups. His original
idea was to develop a theory of symmetries of differential equations parallel to the theory developed
by Galois for algebraic equations, with Lie groups being the continous analogue of permutation
groups in Galois theory. This point of view did not fulfill Lie’s expectations and went in unexpected
directions (see for example the theory of differential fields, D-modules, etc), but Lie groups came

to be an indispensable tool in many branches of mathematics as well as in theoretical physics.

The definition of a Lie group is simple, in that it is a differentiable manifold that is also a
group, such that the group operations are compatible with the manifold structure. One can hence
study Lie groups from a geometrical point of view or from an algebraic point of view. The starting
point of the algebraic point of view is the existence of an algebraic object, namely the Lie algebra
of the Lie group, that turns out to have the geometric interpretation as the tangent space at the
identity of the Lie group. There is also a somewhat different approach, much more elementary, but
also more restrictive, in which one considers only linear Lie groups, that is (closed) subgroups of
GL(n,R) and one develops the whole theory via elementary methods. While this is appropriate
for example in case one is teaching a course to students with limited mathematical background,
there is the problem that, although any Lie group can be locally realized as a linear Lie group, there
are important Lie groups that are not (globally) linear. Our approach will be the more algebraic
one. In fact, as such we will start by considering Lie groups just as topological groups, that is
topological spaces that are also groups, such that the group operations are compatible with the
topological structure. We will see how far one can go for topological groups, and we will see that

there are some miraculous facts that arise from the interplay of these two structures.
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2.1 Definitions and Examples

Definition 2.1. Topological group

A topological group G is a group endowed with a Hausdorff topology with respect to which

the group operations

GxG—GG

(g,h) — gh
and

G — G
gr—rg "

are continuous.

Remark

o The inversion g —+ g~! is a continuous bijection. Since its inverse g~! ++ (g~!) ! is also
continuous, then it is a homeomorphism.
o The left translation
Ly:G—G
T gT
and the right translation
Ry:G—G
T — 29
are continuous and bijective. Since (Ly) ™' = L,-1 and (Ry)~! = R,-1 are also continuous,
L4 and R, are homeomorphisms. If U > e is a neighborhood of the identity (that is a set in
G containing e and and open set U, > e), then L,U is a neighborhood of g homeomorphic
to U. Hence topological groups “look everywhere the same”.

o Any subgroup of a topological group is a topological group.
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o If G, G5 are topological groups and p: G; — G2 is a homomorphism, then p is continuous
if and only if it is continuous at one point.

o Products of topological groups are topological groups. Quotients of topological groups
are also topological groups Also semidirect product of topological groups is a topological
group. We recall in fact that if H, N are topological groups and n: H — Aut(N) is a
homomorphism such that

HxN-— N
(h,n) = n(h)n
is continuous, the semidirect product H x,, IV is the Cartesian product H x N with the

product
(h1,m1)(h2,n2) = (hihg,nin(h1)ns).
and it is a topological group with the product topology. Notice that there are other

characterizations of a semidirect product. We recall this here since we will be using it

in the sequel.

Let G be a topological group, H < G a closed subgroup and N < G a closed normal
subgroup. The following are equivalent:

1. There existsn: H — Aut(N) such that G = H x,; N;

2. G = NH, where NN H = {e};

3. G is a group extension of N by H, that is there exists a short exact sequence

{e} N G H {e}.

that splits, that is the composition poi: H — G /N ofthe embeddingi: H — G
and the natural projection p: G — G/N is an isomorphism of topological

groups.

Example 2.1 Any group with the discrete topology is a topological group. In this case any subset

is open and any map to any other topological group is continuous.

Example 2.2 The vector space (R™,+) with the componentwise addition is a commutative

topological group in the Euclidean topology.

Example 2.3 The non-zero real numbers and the non-zero complex numbers, (R*, -) and (C*, -),
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are commutative topological groups with the topology induced by the Euclidean topology.

Example 2.4 Let us denote by R™*™ the n x n matrices with real coefficients and let us define
GL(n,R) := {A € R™"™: det A # 0}.

Then GL(n, R) is an open set in R™*" and it inherits from R™*" the Euclidean topology. With this
topology GL(n, R) is a topological group. In fact the topology on R™*™, and hence on GL(n,R)
is such that if (Ax)reny C GL(n,R) is a sequence, then
Ay — Aif and only if (Ag)ij — Ayj
forall 1 <4i,5 <n. Since if A, B € GL(n,R)
n
(AB)ij = > AyByj,
k=1

this means that the multiplication is continuous. Since

det M. ;
—1 J— 7t
(A7) det A ’

where Mj; is the (j,7)-minor matrix obtained by removing the i-th row and the j-th column and

by multiplying by (—1)*7, then the inversion is also continuous.

Example 2.5 In the Example 2.4 we used that R is a fopological field, that is the sum, the
multiplication and the inversion are continuous. As a consequence, on R™*" there is a topology
that induces the topology on GL(n,R). Likewise, if F is any topological field, then GL(n,F) is a
topological group. Examples of topological fields are R, C, QQ,, and finite fields.

Example 2.6 Let X be a compact Hausdorff space. Then
Homeo(X) := {f: X — X : fis a homeomorphism}
is a topological group with the compact-open topology (see Definition A.5).

If X is only locally compact but not compact, then Homeo(X') need not be a topological group.
If however X is locally compact but also locally connected, then Homeo(X ) is a topological group.
This includes for example all manifolds. Likewise, if X is a proper metric space (that is a metric

space in which closed balls of finite radius are compact), then Homeo X is a topological group.
Example 2.7 Let (X, d) be a compact metric space and let

Iso(X) := {f € Homeo(X) : d(f(z), f(y)) = d(z,y) forall z,y € X }.
Then Iso(X) C Homeo(X) is a closed subgroup and hence a topological group (Exercise 1.).

Example 2.8 We showed in Example 2.4 that GL(n,R) is a topological group when it inherits
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the Euclidean topology as a subspace of R™*". We show now that GL(n,R) is a topological
group also with respect to the compact-open topology (and in fact the two topologies coincide,
see Exercise 2.). In fact, since GL(n,R) < Homeo(R"™) and R" is a metric space, then the
compact-open topology on GL(n,R) < Homeo(R") is the topology of the uniform convergence
on compact sets. If (Ax)reny C GL(n,R), and Ay — A uniformly on compact set, then A is
linear, so that GL(n,R) is closed in Homeo(R") and is hence a topological group. Notice that
for the limit of a sequence of linear function to be linear, it is actually enough that the sequence

converges pointwise.
Example 2.9 Let M be a smooth manifold. Then
Diff" (M) := {f € Homeo(M) : f, f~! are continuous and differentiable r times}

is a subgroup of Homeo (M) that is not closed in the compact-open topology. We can consider
however the C"-topology, that is the topology according to which (f;,)nen < f if and only if
( fy(Lk)) — f) converge uniformly on compact sets for all 0 < k < n (where f(©) = f). With
this topology Diff" (M) is a topological group.

Example 2.10 Let A be a partially ordered set and let (G)) e be a family of groups such that

for every A1, Ao € A with A\; < A9 there exists a homomorphism
PAg,
Gy, 222G,
satisfying the following properties:

. paa =1d|g,;
2. p)\3’>\1 = p>\27)\1 (e] p>\37)\2 for all )\1 S )\2 S )\3.

Then the inverse limit G of the projective system ((G)xeA, Px,,), ) is defined as the unique smallest

topological group G such that for all A € A there exists a continuous homomorphism py: G — G

Prg
G G,
k A,Al
Gy,

commutes, px, = Px,,\, © Pr,- One can verify that G can be identified with

Mm G = {(fUA)AeA € H Gt Pagn (T,) = 90,\1} :

AEA
Points in @ G are said to be compatible. If the (G) xea are topological groups, sois [[,.4 G

with the property that the diagram

2.1)
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with the product topology and, since %in G\ is a closed subgroups of [, ., G, it is a topological

groups as well with the induced topology.

Of course if the (G)))xen are compact then by Tychonoff theorem also @G ) is compact.
Moreover, if the (G))) e are discrete, then 1&1 G, is totally disconnected, that is the connected
sets are the points. In fact, let C' C G be a connected set. Since p): G — G is continuous, then
pA(C) is connected and hence a point, say x) € G). By the commutativity of the diagram (2.1)

the sequence (x))xca must be compatible and unique, so that C'is the singleton {(z)xea }-

If the groups in the projective system (G )xca are finite, the resulting inverse limit is called
profinite. It follows from the previous observation that profinite groups are compact and totally
disconnected. An important example is the group of p-adic integers 7, which is a profinite group

under addition. In fact Z,, is the inverse limit of the projective system

(Z/p"Z), (pnm: L)L — Z[p"" L)n>m)
where p,, , is the natural reduction mod p™ homomorphism. One can check that the topology

on Zy, is the same as the topology arising from the p-adic valuation on Z,,.

Example 2.11 We consider now three subgroups of GL(n,R) that will turn out to play an

extremely important role.

. Let
A1
Adet := € GL(n,R): \; #0, for1 <i<n
An
Then Age is an Abelian topological group as it is homomorphic and homeomorphic to
(R*)™.
2. Let
1 *
N = € GL(n,R)
0 1

be the group of upper triangular matrices with all 1s on the diagonal. Then N is a closed
subgroup of GL(n,R) and is hence a topological group. However, in this case NNV is
homeomorphic to Rn(nz_l) as a topological space, but not as a group, as for example N is

not Abelian, unless n < 2.
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3. Let
K :=0(R", (-, )) ={X € GL(n,R) : (Xv, Xw) = (v,w) forall v,w € R"}
={X € GL(n,R) : || Xv|| = |jv] forall v € R"}
= {X € GL(n,R): 'X X = Idn}
be the orthogonal group of the usual Euclidean inner product ( -, - ) or of the usual Euclidean
norm || - || on R™. This is a topological group as it is a closed subgroup of GL(n,R). The

standard notation for this group is
O(n,R) := O(R", (-, -)).

Example 2.12 We may also consider inner products on a vector space with respect to which
vectors might have negative length. Let V' be a real vector space and let B : V x V' — R be a

non-degenerate symmetric bilinear form on V/, that is:

1. (Non-degeneracy) Given x € V there exists y € V' such that B(x,y) # 0;

2. (Symmetry) B(v,w) = B(w,v) for all v,w € V, and

3. (Bilinearity) B(av,w) = aB(v,w) = B(v,aw) forall v,w € V and all « € R.
Incidentally, giving such a non-degenerate symmetric bilinear form is equivalent to choosing an
isomorphism A : V' — V* of V with its dual V* given by B(v, w) = A(v)w. If Q) is the quadratic
form associated to B, Q(v) := B(v,v), the orthogonal group of (V, B) or of (V, Q) is defined as

O(V,B) ={A e GL(V) : B(Av, Aw) = B(v,w), forallv,w € V}
={A e GL(V): Q(Av) = Q(v), forallv € V'}.

This is a topological group as it is a closed subgroup of GL(V).

Recall that one can always choose a basis of V' so that B can be written as

p n
By(v,w) = — Zvjwj + Z vjw;j (2.2)

j=1 j=p+1
for some fixed p. Then B is positive definite if and only if p = 0. If V' = R"™ and B, is as in (2.2),

then it is customary to use the notation

O(p,q) := O(V, By).-

Notice that in the above discussion it is essential that V' is a real vector space, since instead
over the complex numbers all O(V, B) are isomorphic once the dimension of V' is fixed. In fact

we can perform a change of basis

(€1, s €p,€ptiy... €n) > (1€1,...,1€p, €pt1,...,€En)
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so that in the new basis the bilinear form reads
n
B(v,w) = Z vjw; . (2.3)
j=1
The orthogonal group of the symmetric bilinear form in (2.3) is denoted by
O(n,C) =0O(V, B),
where now V' is a complex n-dimensional vector space.

Example 2.13 Let V be a complex vector space and h: V x V' — C a Hermitian inner product,
that is a positive definite antisymmetric complex valued form that is linear in the first variable and

antilinear in the second. The unitary group U(V, h) is defined as
U(V,h) :={X € GL(V) : h(Xv,Xw) = h(v,w) forall v,w € V}
={X €GL(V): X*=X"1},
where X* denotes the adjoint with respect to h. Notice that if X € U(V,h), then |det X| = 1. If

h: C" x C" — C is the standard Hermitian inner product

n
h(.il:‘, y) = ijgj )
Jj=1
then we use the notation

U(n) := U(C", h).

Example 2.14 Let k be a topological field. The special linear group defined as
SL(n, k) := {X € GL(n,k) : det X =1}

is a topological group as a subgroup of GL(n, k). We can thus define subgroups of all of the above
linear groups by taking the intersection with SL(n, k) with the appropriate field. So for example

SO(n,R) :=SL(n,R) N O(n,R)

SO(p.q) :==SL(p + ¢,R) N O(p, q)
SO(n,C) :=SL(n,C) N O(n,C)
SU(n) :=SL(n,C)NU(n).

Notice that the subgroup N in Example 2.11 is in SL(n, R). Moreover A := Aqe; N SL(n, R) is

also an important non-empty subgroups of SL(n, R).

Example 2.15 Let H be a complex separable Hilbert space (see Definition A.8) and the space of
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continuous unitary operators of
UH) ={U:H—>H: U =U"}

is a topological group with the strong operator topology.

2.2 Compactness and Local Compactness

The Examples 2.1, 2.2 and 2.3 are obviously locally compact. Likewise the Examples 2.4,
2.11 and 2.12 are also locally compact because of Lemma A.2, as well as Example 2.5 if F is

locally compact.

Example 2.16 (See Example 2.6) The homeomorphism group of a topological space X is not

necessarily locally compact, even if X is compact (see Exercise 3.).

Example 2.17 (See Example 2.8) Contrary to the homeomorphism group, the isometry group of
a metric space X is as“good” as the space itself. In other words, if X is compact, then Iso(X) is
compact and if X is locally compact, then Iso(X) is locally compact (Exercise 4.). So Iso(X) is

always much much smaller than Homeo(X).

The proof of the first assertion follows immediately from Ascoli—Arzeld’s Theorem (see
Theorem A.1). In fact, from the chain of inclusions
Iso(X) C Homeo(X) C C(X, X)

it follows that Iso(.X ) is compact if it is an equicontinuous family, which is obvious since it consists

of isometries.

Example 2.18 (See Example 2.11.3. and 2.12) We mentioned already that O(p, q) is locally
compact since it is a closed subgroup of GL(p + ¢, R). The question now is whether it is compact

and we will show that O(p, q) is compact if and only if p = 0 or ¢ = 0.
1. Letp = 0 and let O(0,n) = O(n,R). Let us write A € O(n,R) as A = ((¢1),...,(cn))s
where ¢; = Ae; for 1 < j < n. Since ‘AA = 1d,,, then (det A)? = 1, so that det A = £1.
It follows that ||c;||* = 1, so that |4;;| < 1. Thus O(n,R) is bounded in R"*". On the
other hand, by definition
O(n,R) ={A e R"": (Av, Aw) = (v,w) forall v,w € R"}

so that O(n, R) is closed and hence compact by the Heine—Borel Theorem.

2. Let us assume now that p # 0 and we will show that in this case O(p, ¢) is not compact
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since it is not bounded. In fact we can write for n = p + q
O(p, q) == {A € R : Qp(Av) = Qp(v) forall v € R},
where
p n
Q==Y+ 3 o2
j=1

Jj=p+1
Consider for example the case p = 1, so that

n
Qu(v) = vt + o]
j=2

with respect to the basis (eq, . . ., €,). Consider now the change of basis
€] i=ex —e1
6'2 =eg + €1
e;» =ejfor3 < j<mn,
and denote by V' the vector space R™ with this new basis. On V' the quadratic form will now

take the form

QL (v)) = (vh — vf)(vh +vf) + ) vf?.

§=3
The matrix
t 0 0p-2
Ac=] 0 1 w0, (24)

0n—2 0n—2 Idn—Z
clearly satisfies
Q1(Aw) = Q' (v)
so that A; € O(V, Q), which shows that O(V, @}) is not compact. The general argument

for n > p > 1is analogous.

Example 2.19 The special linear group SL(n, R) is a locally compact group since it is closed in

GL(n,R), but it is not compact since the matrix A; in (2.4) belongs to SL(n, R) as well.

Example 2.20 (See Example 2.10) Profinite groups are compact and the inverse limit of a projective

system of locally compact groups is locally compact.

Example 2.21
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1. The one-dimensional torus
T:={z€C: |z|=1}

with the usual multiplication is a compact Abelian topological group isomorphic to

SO(2,R) cosf sinf 0 € [0,2n)
,R) = : ,2m
—sinf cosf

via the isomorphism
SO(2,R) — T
X +— Xe.

2. The n-dimensional torus T™ is also a compact Abelian topological group.
Example 2.22 We emphasise that U(n) # O(n, C). In fact:

o U(n) preserves the usual inner product on C”, which is antisymmetric and linear in the first

variable and antilinear in the second variable. Thus
U(n) ={X € GL(n,C) : *XX =1d,},
where * X = !X and it is compact.
o O(n,C) preserves a non-degenerate symmetric bilinear form on C™ so that
O(n,C) := {X € GL(n,C) : 'XX =1d,}
and O(n, C) is not compact. The argument to see this is exactly the same as for O(p, q).
Example 2.23 Let B: C?* x C?>" — C be the skew-symmetric bilinear form on C2" given

by B(xz,y) = Y. ZpYn+p — TnipYp. Where x = (z1,...,22,) and y = (y1,...,%2n). The
1<p<n

symplectic group Sp(2n, C) is defined as the subgroup of GL(2n,C) of matrices that leave B

. 0 I
invariant. If F' = , then
-1, 0

Sp(2n,C) := {A € GL(2n,C) : B(x,y) = B(Ax, Ay) forall 2,y € C*"}
={A€GL(2n,C):"AFA=F}.
Related to Sp(2n, C) there are also the following groups
Sp(2n) := Sp(2n,C) N U(2n),
which is compact, and

Sp(2n,R) := Sp(2n,C) N GL(2n,R) = {A € GL(2n,R) : YAF A = F}.
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Example 2.24 We get back to the space of continuous unitary operators of a be a complex

separable Hilbert space H.

If H is a complex separable Hilbert space, then the space of continuous unitary operators
U(H) is a topological group that is locally compact if and only if dim H < oo, in which

case it is compact.

(<) Let us assume that dim H = n < oco. Then

which is compact.

(=) We prove the assertion by contradiction. A neighborhood of Id € U(#H) in the strong
operator topology is of the form
Upe ={T cU(H): |[Tu—ul|| < eforallu e F},

where F' C H is a finite set and € > 0. If U/(#) is locally compact, the neighborhood U is
contained in a compact set C'. We will show that the assumption that H is infinite dimensional

leads a contradiction.

We write H = (F) @ (F)™. Then an obvious verification shows that the subgroup

Id 0 cU
0 u(Eyh)

Id 0
since if T' € ( N ), then Ty = u for all w € F. But then
0 U{F)™)

(a0
Z/[(<F> )-(O u(<F>L))CUF,ea

that is also /((F')™) must be contained in a compact set and hence be compact. But if F' C H is

finite and H is infinite dimensional, then <F>l must be infinite dimensional. We show now that

the image of an infinite dimensional Hilbert space cannot be compact.
Claim 2.2.1. IfH is an infinite dimensional separable Hilbert space, thenU (H) cannot be compact.
Let us assume that we can find a sequence (7,),eny C U(H) of unitary operator converging to

zero in the weak operator topology. Since U (#) is compact, there must be a converging subsequence

(Th,.)ken- But a converging sequence of unitary operators converges to a unitary operator, hence
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in particular to an operator that does not have zero norm, contradicting the assumption.

Thus, in order to complete the proof, we need to show that if H is infinite dimensional we
can find a sequence of operators (7},),en that converges to zero in the weak operator topology.
Let X = L*(R) and let T € L?(R) be the translation by one, T'f(z) := f(x — 1). Then if
f,g € L*R), (T"f,g) — 0. In fact, the space of C'°° compactly supported functions on R is
dense in L?(R) and (T™f, g) is very small as soon as n is large enough that the supports of 7" f

and of g are almost disjoint.

O
/& —

2.3 General Facts about Topological Groups

The simple fact of requiring that the group operations are continuous has a plethora of

interesting consequences, of which we illustrate here the most important ones.

Definition 2.2. Symmetric neighborhood

A neighborhood U of the identity e € G in a topological group is symmetric if g~ € U

whenever g € U.

Proposition 2.1

Let G be a topological group. Then

&

1. If V is a neighborhood of the identity e € G, there exists a symmetric neighborhood
U of the identity contained in V.
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2. If V is a neighborhood of the identity e € G, there exists a symmetric neighborhood
U of the identity such that U> = U~'U C V.

If H < G is a subgroup, then its closure H is also a subgroup

If G is connected any discrete normal subgroups is central.

The connected component G° of the identity is a closed normal subgroup.

Every open subgroup is closed.

N S R W

If G is connected and U is any neighborhood of the identity e € G, then G = U2 U".

)

Note that the converse of Proposition 2.1.6. is not true. For example R < R? is a closed

subgroup that is not open.
(1) is immediate by taking U := V' N V! and (2) is also immediate from the continuity

of the multiplication and from (1).

(3) Since the multiplication and the inversion are continuous, then

m(Hx H)=m(H xH)Cm(Hx H)=H

i(H)CH.

(4) Let D be a discrete normal subgroup and, for h € D fixed, let us define the continuous map
i G — Dby v,(g) := ghg~'. We want to show that 7;,(g) = h and this will follow from the
connectedness of GG and the discreteness of D. In fact, since G is connected, 7, is continuous and
D is discrete, then image(;,) must be one point. Since vy, (e) = ehe™! = h, then v, (g) = h for
all g € G. Thus ghg~' = hforall g € G, so that gh = hg for all g € G, that is D is central.

(5) Let G° be the connected component of the identity e € G. Since the multiplication
m: G° x G° — G is continuous and G° x G° is connected, then m(G° x G°) is connected.
But e € m(G° x G°), so that m(G° x G°) C G°, that is G° is closed under multiplication.
Likewise i: G° — G° has connected image and contains e, so that i(G°) C G°. Thus G° is a
group.

To see that G° is closed, observe that G° C G°. But G° is connected and contains the identity
in G so that G° C G°. Thus G° = G°.

If g € G, consider now the continuous map defined by the conjugation ¢,: G° — G,
cg(h) = ghg™'. Since G° is connected, c,(G®) is connected, hence contained in G°, which means

that G° is normal.
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(6) Let H < G be an open subgroup. If L,: G — G is the left multiplication by g € G, by
continuity of the multiplication L, H is also open for all g € G. Thus the union G \ H = UgH

over all g € G~ H is open and hence H is closed.

(7) Obviously Us2 ;U™ C G. Let V. C U be a symmetric neighborhood of e € G such that
V2=V~ CcU. Then H := U, V™ C U ,U" C G is an open subgroup of G, hence closed
by (6). Since G is connected, we have equality. O

2.4 Local homomorphisms

The content of this section will be heavily used in the correspondence between Lie groups and

Lie algebras and it is of independent interest.

Definition 2.3. Local homomorphism

Let G, H be topological groups.

1. A local homomorphism is a continuous map p : U — H, where U is a neighborhood
of e € G, such that whenever x,y,xy € U
p(zy) = o(x)e(y).
2. A local homomorphism ¢: U — H is a local isomorphism if it is bijective onto o (U )
and o~ ': o(U) — G is continuous.

L)

A natural question is when a local homomorphism ¢ of a topological group can be extended

to a homomorphism.

Theorem 2.1. Extension of local homomorphism

If G is a simply connected topological group, then any local homomorphism extends uniquely

to a homomorphism G — H. ©

Recall that a topological space X is simply connected if it is path-connected and 7 (X) is
trivial. Path-connectedness implies connectedness but the converse is not true in general. For
example, let X := [0,1] x {0} U{{2} x [0,1] : n € N} U {{0} x [0,1] . {0} x (0,1)}.
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A

NS
o
N\A
—_—

Then X is connected but not path-connected.

However, if a space is connected and locally path-connected, then it is path-connected. For
example connected manifolds, and in particular connected Lie groups, are automatically path-

connected, since they are locally homeomorphic to R™, which is path-connected.

We give only the sketch of the proof. For the complete argument see [3]. Let U C G be a
neighborhood of e € G and ¢: U — H the local homomorphism that we want to extend. We will

prove the Theorem in three steps:

1. We use that G is path-connected to define ¢ on all of G.
2. We use that 771 (G) = 0 to show that the definition is independent of the choice of the path.

3. We show that ¢ is a unique continuous homomorphism.

1. Since G is path-connected, if g € G, let « : [0,1] — G be a path from e to g. Choose
a partition of [0, 1] into subintervals I}, := [ty_1,tx], for ¢ = 1,... n, with the property that if
s,t € I, then

a(s)ta(t) e U.

We call such a partition good. We impose a further condition that will be needed only in Step 2.,
but that we may as well impose from the beginning. We choose W be a neighborhood of e € GG
contained in U such that W = W~ and W2 C U and o C U}_,x(t;)W. Such a partition exists
since [0, 1] is compact and the group operations are continuous, so that there exists a § > 0 such

that a(s)ta(t) € U whenever |s — t| < §. Set xp, := a(t) € a, with xg = a(0) = e and
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g = o(tn) = . Then
9= (wg @) (ay wa) - ()

with xj_lx]qu el.

s
/

/
-~ //x o )=%

</

€

o‘&k-\):ykq

Then we define

0alg) = ol w1)e(xy ' 22) .. (et an)

To show that ¢, (g) is independent of the partition, notice that adding points to the partition
gives a partition that still has the above defining properties. Let us hence take ¢ € [} and write

[te1,tx] = [te_1,t] U [t, tx). Since t € Iy, then aty,_1) " ta(t) € U, a(t) ta(ty) € U and
alty_1) ta(ty) = a(tr_1) tat)a(t) talty) € U,
so that

pala(te-1) " at) = plalti-1) " a()p(alt) " alt).

2. We show now that ¢,(g) is in fact independent of «. Since 7;(G) = 0 we can choose a
homotopy H: [0,1] x [0,1] — G with H(0,t) = ap(t) and H(1,t) = a1(t) and set ps := @q,,
where «(s): [0,1] — G is defined as a(t) := H(s,t). Let § > 0 be such that

H(Sl, tl)_lH(Sz, tg) ceWw

for all s1,s9,t1,t2 € [0,1] with |s1 — sa| + |t1 — t2| < . Then for all s € [0, 1], the partition

{te}ieo = {%}’,;”:0 is good, where we choose n large enough that % < %.
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Let
A:={s€0,1]: vs(g) = »o(9)}-
Since 0 € A # @, it will be enough to show that A is open and closed.

To see that A is closed, we will show that if (s;)jen C A and s; — s for j — oo, thens € A.
Let a; and o be the corresponding paths and let {t; }}._, be the good partition of [0, 1] chosen

above. Because of the continuity of H, one deduces that
lim Qs; (tr) = as(ty) .
J]—00

Writing z, 1, := as; (tr) and 2 ; = as(tx), and using that the ¢, are continuous, one deduces
that

lim (2] )25, k1) = @s(2 3T gt1) -

Jj—o0
Thus
n—1 n—1
. . -1 ~1
.hm Ps; (g) = .hm H 50(1"54 kl's]',k—i-l) = H SOS(I‘S kxs,k:—',-l) .
oo I =0 ]’ k=0 7

Since each term on the left hand side is equal to (g), so is the one on the right hand side.

To see that A is open, let¢ € A and let s € [0, 1] be close enough to ¢ so that as C UT_yz; W,

where x; := «(t;) were defined at the beginning of the proof. We can write

—1 -1 —1
Tsk—1Tsk = Yk—1T4 1 TtkY >
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so that

n

n n
_ —1
H T, k 1Zs, Ic H ykflxt,k_lwt,kyk H xt k 1Lt k QOt(g) .

= k=1 k=1
This s € A, that is A is open.

3. It is easy to see that ¢ is continuous. To see that it is a homomorphism, let a be a path from e
to g and [ a path from e to h. Then the concatenation of o with gf is a path from e to gh and by
definition p(gh) = ©(g)w(h). The uniqueness follows immediately from Proposition 2.1.7. [

2.5 Haar Measure and Homogeneous Spaces

2.5.1 Haar Measure

Let X be a locally compact topological space and GG a topological group. A left action of G

on X by homeomorphisms is a homomorphism G — Homeo(X), that is a map
GxX—X
(9,2) — g
such that (g2g1,x) = (g2, (g1,)) for all g1,92 € G and z € X. The action is continuous if
G x X — X is a continuous map, in which case
pg: X — X
T —> gx
is a homeomorphism with inverse ¢ 1. If C.(X) is the space of continuous functions with

compact support and G acts on X, then there is a continuous representation \: G — Iso(C.(X))
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defined by (A\(g)f)(z) := f(g ') (see Lemma A.3). Likewise G acts continuously on the left

on the space C.(X)* of continuous linear functionals on C.(X), via the adjoint representation
(AN = AAg™ S
A right G-action on X (g,z) —— xg would induce a right G-action on C.(X),

(p(9)f)(z) := f(xg) and hence on C.(X)*, (p*(9)(A))(f) := Alp(g)(f))-

A left (resp. right) action is an action for which, given the product g; g» acting on X, first g9

acts (resp. gp) followed then by g; (resp. g2).

Let X be a locally compact Hausdor{f topological space. If A is a positive linear functional
on Co(X) (that is A(f) > 0if f € Co(X) with f > 0), then there exists a regular Borel
measure |1 on X that represents A, that is such that for every f € C.(X),

A(f) = /X f() du(z) .

(For the definition of regular Borel measure see Definition A.7.)

Notice that the action on the left of a group G on A is reflected in the action on the measure
given by the adjoint action and the identification of functionals with regular Borel measures given

by Riesz Representation Theorem. In other words the G-action on measures on C.(X) is denoted

by (g, 1) > gsp, where
(gen)(A) := (g~ A),

so that
(gM)(f) = /X £(@) d(gupt) () = /X f() du(ga)

A particular action is the one of a locally compact Hausdorft group on itself.

Definition 2.4. (Haar measure)

A left (resp. right) Haar measure on a locally compact Hausdorff group G is a non-zero

positive linear functional
m: C.(G) —» C
that is invariant under left (resp. right) translation, that is such that

(g«m)(f) = m(f)

=<
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forall f € C.(G). %

In the following we will use the notation m( f fG ), dm(x) or dx according to

what we want to emphasize or for simplicity.

Theorem 2.3. (Existence and Uniqueness of the Haar measure, 1933)

A left (resp. right) Haar measure on a locally compact Hausdorff group always exists and

is unique up to positive multiplicative constants. v

We will verify the uniqueness. However the proof of the existence of the Haar measure in
general is long, technical and does not bring much insight. There are however cases in which the
proof is simple and follows on standard yet useful techniques. This is the case for example for

compact groups (see [11, Theorem 2.2.3]) or for Lie groups (see ?7?).

Let m be a left Haar measure. If f € C.(G) and x € G, let f(z) := f(z~'). Then

n(f) := m(f) is a right Haar measure.

Q

Proof  We need to verify that n(p(g)(f)) = n(f) for every g € G and for every f € C.(G).
Notice that

so that
n(p(9)f) = / (2™ g) dm(z)
/fglwdm = [ F@yam(@) = a(p).
O
Let G be a locally compact Hausdorf(f group with left Haar measure m. Then
1. supp(m) = G, and
2. If h € C(Q) is such that
/ h(z)p(z)dm(x) =0
G
forall p € C.(G), then h = 0. O

Proof (1) Recall that supp(m) := {x € G : for every open set U containing =, m(U) > 0}.
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Since m # 0, there exists f € C.(G) such that m(f) > 0. Let K := supp(f) with m(K) > 0.
If G # supp(m), then there exists z € G ~ supp(m) and an open neighborhood U > z with
m(U) = 0. But a finite number of translates of U would cover K, so that m(K) = 0, which is a

contradiction.

(2) We show that h(e) = 0 and the rest will be analogous. Let ¢ > 0. By continuity of A there
exists an open neighborhood V' 3 e such that forall g € V

h(g) — h(e)| <e.
By Urysohn’s lemma there exists ¢ € C.(G) such that ¢ > 0, ¢(e) > 0 and supp(y) C V. Since
Jo h(g)e(g) dm(g) = 0 for all p € Cc(G), then

\h<e>r\ / olg) dm
s

[ Wete)dmio) - | h(e)so(g)dm(g)'
/ Ih(g) — h(e)l¢(g) dm(g)

<e /G o(g) dm(g)

from which it follows that |h(e)| < € for all € > 0, thatis h(e) = 0. O

[o)

We remark that we used in the first part of the
proof that G is a topological group. In fact,
the fact that we can cover K with translates of
aneighborhood U of x € G\ K is only possible

because we are in a topological group.

[Proof of the uniqueness of the Haar measure in Theorem 2.3] Let m be an arbitrary left

Haar measures and n an arbitrary right Haar measure. Let f, g € C.(G) be such that m(f) # 0
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(this certainly exists since m is non-zero).

where we used:

—in (1) that n is right invariant;
—in (2) and in (4) Fubini;

—in (3) the right invariance of n, the left invariance of m and we set x = yt.
Note that we could use Fubini’s theorem since the support of all functions is compact and hence

/ FOgt)| dm(t) dn(y) < oo
GxG

and
[ 10 096 dm(a) dnty) < o0
GxG
Let us now define wy: G — C by

'—L 1) dn
wi@)i= 5 [ ) dnGy),

so that

o) = s | ( / f<y—1x>dn<y>> ola)dm(z) = [ wyalgta) dm(z).

Since the left hand side is independent of f, then

[ en@gt@)dn) - [ wpl)gts) dnt) = 0.
G G

Since wy, — wy, is continuous, by Lemma 2.4 wy(e) is independent of f, so that w¢(e) = C' for
some C' € R. Thus

=m we:mL “Hdn(y) = “Hdn(y) = n(f
m(1)C = mifue) = m( e [ ants) = [ 167 dntw) = ().
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If now we choose n(f) := m/(f), then

m(f)C =m'(f)
forall f € C.(G) such that m(f) # 0. O
Example 2.25

I. The Lebesgue measure on (R™, +) is the Haar measure.

2. The Lebesgue measure on G := (R, -) is neither left nor right invariant, but

dx
EIRCE
defines both the left and the right Haar measure on G .

3. If G is discrete, then the counting measure is both a left and a right Haar measure.

The above examples bring to the question as to when a left Haar measure is also right invariant.
To approach this question let Aut(G) be the group of continuous invertible automorphisms with

continuous inverse. Then Aut(G) acts on C,(G) on the left via

(- f)(z) = fla™ (2))
for « € Aut(G), f € C.(G) and = € G. If m is a left Haar measure on G, one can easily verify

that the linear form

fr=ma-f)
is also a left Haar measure. In fact

m(a - Ag)f) = /G (o Mg)f) () dm(z) = /G Ag) fla~ () dm(z)
- / f(o}(x)) dm(z) = / (o~ f)(@)dm(z) = m(a- f)
G G

Thus there exists a positive constant mod¢ () such that

m(a - f) = modg(a)m(f). (2.5)
The function modg: Aut(G) — (Rso, -) is a homomorphism.

Since Aut(G) acts on C,(G) on the left, then () - f = - (B - f). Then
modg(af)m(f) = m((af) - f) = m(a- (8- f))

= modg(a)m(B - f

= modg(a)modea(B)m(f) .

m(
)
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O
Let now consider the conjugation automorphism o = ¢, for g € G,
cg: G— G
(2.6)
x> grgt,

so that (¢, - f)(x) = f(g~'zg). We use the notation Ag(g) := modg(cy) and we call
Ag: G = (Rso, ) the modular function of G. Explicitly the formula (2.5) for o = ¢ gives

Ac(g)m(f) = m(c, jv=/wgn< /fg%mdm<>
Z/fwdm m(p(g)f)

so that

m(p(9)f) = Ac(g)m(f), (2.7

which shows that the modular function captures the extent to which a given left Haar measure fails

to be right invariant.

Proposition 2.2

Let G be a locally compact Hausdorff topological group with left Haar measure m and let

Ag: G — Ry be its modular function. Then

1. Ag is continuous and

2. forevery f € C.(G)
/ flx -1 )Ag(x) dm(x / f(x)dm(x

)

(1) Since p: G — Iso(C.(G)) is continuous when Iso(C,(G)) is given the strong operator
topology, then

tim [lo(2)f = p(4) 1o = 0
forall f € C.(G)and all z,y € G. It follows that
0 = lim |m(p(z)f) —m(p(y) /)| = lim |m(f)[|Ac(z) — Ac(y)l,

that is A is continuous.
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(2) Let us set f*(z) := f(z7!)Ag(z) and let us observe that
(A9)f)*(2) = M9 f)a™HAg(z) = flg~ a7 )Ag(2)
= Ac(g)"' flg™ 27 HAc(rg) = Ac(g)™ f(xg)
= Ac(9) " (pl9) ) (@)
Notice that m/( f) := m(f*) is also a left Haar measure. In fact,
m((A(9)f)*) = m(Ac(9) ™ (p(9) ) = Aclg)"'mlp(9) f*) = Aclg) ™ Ac(g)m(f*) = m(f*)
Thus there exists C' > 0 such that m/(f) = C'm/(f) and we want to show that C' = 1. Since Ag

is continuous, for every € > 0 there exists a symmetric neighborhood V' > e such that
|Ag(z) — 1| <e

for every x € V. Let f € C.(G) be a symmetric function with support in V' and such that
m(f) = 1. Then for every e > 0

1= Cl=[(1=C)m(f)l = Im(f) —m/(f)] = [m(f) — m(f")]

2 () = m(Acf) = lm((1 = Aa)f)| < em(f) = e,
where in (x) we used that f is symmetric. O

Definition 2.5

A group G is unimodular if Ag = 1, that is if the left Haar measure and the right Haar

measure coincide. &

Since for a left Haar measure m( f ) is a right Haar integral, the following is immediate

The Haar measure of a group G is inverse invariant if and only if the group is unimodular.

Example 2.26

1. Any locally compact Hausdorf Abelian group is unimodular.

2. Any discrete group is unimodular, since the Haar measure is just the counting measure.

3. Since there are no non-trivial compact subgroups of (Rsq,-), any compact group is
unimodular.

4. We show that GL(n,R) is unimodular. Since GL(n,R) is an open subset of R"*", we
consider the restriction dm(X) = [[',_; dX;; to GL(n,R) of the Lebesgue measure
on R™ ", where X = (X;;);';—;- We claim that [det X|™" dm(X) is both a left
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and a right Haar measure on GL(n,R). In fact, let Ty: Myxn(R) — Myxn(R) be
defined by T, (X) := ¢gX and let us observe, by writing X = ((v1), (v2),..., (vy)), that
| det(dT,)| = | det g|™. Thus

/ (A(9)£)(X)] det X| " dm(X)

GL(n,R)

:/ Flg™ X)| det X" dm(X)

GL(n,R)

—|detg| ™" / Flom 13| det(g " X) " dm(X)
GL(n,R)

—|detg| ™" / £ det(X)] 77| | det(dT, -1 (X)] " dm(X)
GL(n,R)

—|detg| ™" / £ det(X)[ "] | det g | dim(X)
GL(n,R)

- / F(X)| det X7 dm(X) .
GL(n.R)

A similar calculation shows the right invariance.
5. We consider the group R~ x, R, where 1: R5o — Aut(R) is defined by 7(a)(b) := ab,
so that the product is (a,b)(a’,b") = (aa’,b+ ab’). Then R %, R is the group of affine

transformations of the real line, (a,b)z = ax + b, where a € R>o and b € R and can be

a b
ca€Rsg,bER
0 1

actingon R ~ {(z,0) : = € R} C R2. Itis easy to verify that ‘;—Sdb is a left Haar measure

identified with the group

and that %adb is a right Haar measure, so that R x,, R is not unimodular.

6. We consider the Heisenberg groups R x,, R2, where n: R — Aut(R?) is defined by

ia)-( 2,

y) € R?, so that the group operation is

z

) )G (L20)

forx € R, (
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It is easy to see that it can be identified with the group

1 =z =z
01 yl|l:=zyz€R
0 0 1

and that the Lebesgue measure is both the left and the right Haar measure, so that R x, R?

a b
P::{(O a_l) : a,bER,a;«éO}

is not unimodular since i—gdb is a left Haar measure and da db is a right Haar measure.

is unimodular.

7. The group

8. Any closed normal subgroup of a unimodular group is unimodular. This follows from the

following proposition.

Proposition 2.3

Let G be a locally compact Hausdor{f group and let H < G be a closed normal subgroup.

Then Ay = Ag|g. Thus if G is unimodular, H is also unimodular.

)

We will prove this later. For the moment we remark that it is essential that H is normal. In

fact, for example GL(2, R) is unimodular, but P is not.

Proposition 2.4

Let G be a locally compact Hausdorff topological group with left Haar measure m. Then

m(G) < oo if and only if G is compact. N

(<) Since G is compact, the function identically equal to 1 is in C.(G) Thus
m(G) =m(l) < co.

(=) Let us assume that G is not compact. We will cover G with an infinite number of
disjoint translates of neighborhood of the identity (hence of positive measure), thus showing
that m(G) = oc.

Let U C G be aneighborhood of the identity with compact closure. Since G is not compact, it
cannot be covered by a finite number of translates of U. Thus there exists a sequence (2, )pen C G
such that 1 = e and x,, ¢ U?;llxj U. Let V C G be a symmetric neighborhood of the identity
suchthat VV~1 C U. Thenz,, ¢ U?;llijV_l and we claim thatif & # n, thenz,,V Nz, V = @.
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In fact, if z € x,V N x;V, there exists v1,v9 € V such that x = x,v1 = xpve. Butifn > k
this implies that =, € 2, VV ! C U?;llxj V'V 1, which contradicts the definition of (x,,). Thus
G D U522V, so that

oo

m(G) >m Za:jV = Zm(aﬁjV) = Zm(V) = 00,
j=1 j=1 j=1

where the last equality comes from the fact that m (V) > 0. 0l

If G is compact, the Haar measure is usually normalized so that m(G) = 1.

2.5.2 Homogeneous Spaces

Let G be a group and H < G a subgroup. Then G acts on the homogeneous space G/H on
the left by translations (g, ¢’H) — g¢'H and the projection p: G — G/H is a G-map, that is it
commutes with the G-action on G and on G/H. If G and H are topological groups, we endow
G/ H with the quotient topology, that is U C G/H is open if and only if p~(U) C G is open.
This is the finest topology that makes p continuous.

Proposition 2.5

Let H < G be topological groups. Then:

The projection p is open, that is it sends open sets into open sets.
The action of G on G/ H is continuous.

The quotient G/ H is Hausdorf{f if and only if H is closed.

If G is locally compact, then also G/ H is locally compact.

SR Wb~

If G is locally compact and H < G is closed, for every compact set C C G/ H there
exists a compact set K C G such that p(K) = C.

)

1. and 2. follow from the definitions and the properties of topological groups.

3. If G/H is Hausdorff, then points are closed. In particular eH € G/H is closed and hence
p~Y(eH) = H < G is closed.

Conversely let us suppose that H is closed and let x H and y H be distinct points in G/ H. Then

1

xHy~! is a closed set not containing the identity in G. Thus G~ 2 Hy ! is an open neighborhood

of e € G and hence there exist U an open neighborhood of e € G such that UU ' ¢ G~ zHy .

Thus UU ' NaHy ™! = @, thatis Uz H and Uy H are disjoint neighborhood respectively of zH
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and yH.
4,

5. Let U be an open relatively compact neighborhood of e € G. Then {p(Uz)}.,cq is an open
cover of C and hence there exists a finite subcover C' C U7_;p(Uxz;). Then
n
K = Uﬁxj Nnp 1(C)cG.
j=1

is a compact subset in G such that p(K) = C. O

If G acts transitively on a space X, then there is an isomorphism of G-spaces G/G, — X,
where G, = Stabg(x) for x € X, given by the map gG, — gz. If X is a topological space
and the action of G on X is continuous, then the G-map is also continuous. If G is a locally
compact second countable Hausdorff space and X is locally compact Hausdorff, then the bijection

is a homeomorphism.
Example 2.27

1. Let us consider the action of O(n + 1,R) on S™ C R™*!. Notice that g € O(n + 1,R) if
and only if tgg = Id, which implies that ||gv|| = |lv|| for all v € R™*1; in particular S™ is
preserved by O(n + 1,R). Moreover this action is transitive, that is O(n + 1,R)e,, = S™
and in fact even the SO(n, R) is transitive on S™. The stabilizer of e, 1 € S™ is

SO(n,R) = {g € SO(n + 1,R) : gep = en} =~ { (SO(Z’R) (D } <SO(n+1,R),

so that
S" ~SO(n +1,R)/SO(n,R).
2. The upper half plane H2 := {z +y € C : y > 0} is an SL(2, R)-space, with the SL(2, R)-

a b
action given by fractional linear transformations: if g = ( d) € SL(2,R) and 2 € H3,

c
(a b) az+b
z = .
c d cz+d

It is easy to see that the action is transitive since

1/2 —-1/2
Y Y 1=+
0 y—1/2

then
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and that SL(2,R), = SO(2,R). Thus the map SL(2,R)/SO(2,R) — H3 identifies the
upper half plane as the SL(2, R)-orbit of .

3. The group SL(2, R) acts transitively also on R U {oo} with P = SL(2,R).

6.

. We generalize now the action in (2). Let

Symi (n) := {X € M,xn(R) : X is symmetric, positive definite and det(X) =1} .

Then SL(n,R) acts transitively on Symj (n) via gX = ¢'Xg, for g € SL(n,R) and
X € Symj (n). Moreover

SL(n,R) 14, = {g € SL(n,R) : ¢'Id,g = Id,} = SO(n,R),
so that
SL(n,R)/SO(n,R) ~ Sym] (n).

If n = 2 this is nothing but the example in (2).

. We generalize now the example in (3). We consider

P 1(R) = P(R™) := {V C R": is a subspace with dimV = 1}
with the transitive SL(n, R)-action. In this case
SL(n,R) <o s = { (g Z) cacRa#0,ceR"™ AeGL(n—1,R),det A = al}
and we identify SL(n, R)/ SL(n, R) <¢,~ with P"~1(R). If n = 2 this is the example in (3).
Let

L:={Zfi+ - -+Zf,: fjeR", forj=1,...,n,det(f1,..., fn) =1}

be the space of lattices in R".

The group SL(n, R) acts transitively on L via

9L+ -+ Lfn) = Lgfi + -+ Lgfn
and the stabilizer of Ze; + --- + Zey is SL(n,Z). Thus L can be identified with
SL(n,R)/SL(n,Z).

We prove now that if H < G is closed and normal, then Ag|g = Ap. We start with the

following lemma, only the first part of which (the definition) will be immediately used.
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/]

AN

A\

/

NN

Figure 2.1: A lattice in L with f; = ((1)) and fo = G)

Let G be a locally compact Hausdorff group and H < G a closed subgroup. If f € C.(Q)
and dh is the left Haar measure then

£16) = [ fan)dn
H
is in C.(G/H). Moreover the linear operator Ap: C.(G) — C.(G/H) defined as

Ag(f) == fH is surjective.

Q

Proof The function f* is obviously well defined as it is independent of the choice of representative
of the coset gH. Moreover it is continuous because f & C.(() is uniformly continuous and the

integral depends continuously on the parameters. Furthermore, supp f C p(supp f). Thus
fecC.(G/H).

To prove the surjectivity, let F' € C.(G/H), let C C G/H be the compact support of F' and
let K C G be a compact set such that p(K) = C. We will define f € C.(G) such that f = F.
Letn € C.(G) such that 0 < n < 1 and n|x = 1, which exists by Urysohn’s Lemma ([6]). Then
by definition
(Fop)' =F = ((Fop)-n!"=(F-n"=F "

)H

so that F' = ((FO%. Thus we define

flg) = oGl i 0" (0)(9) £0

0 if (n" (p))(9) =0,
which we need to verify to be in Cy(G). In fact obviously supp f C suppn. Moreover f is
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continuous as it is continuous on two open sets U/; and Us whose union is G, namely on

I. Uy :={g€G: (n(p))(g) # 0} by definition and on
2. Uy := G ~ KH, where it vanishes. If factif g € G~ HK, then p(g) ¢ C = supp F, so
that (F'(p))(g) = 0.

So the only thing to verify is that G = U; U Uy. 1In fact, if ¢ € G and g ¢ U, then
0 =n(p(g) = S5 m(gh)dh. Since n > 0 this implies that 7(gh) = 0 for all h € H. Thus

gh ¢ K, which means that g ¢ K H, thatis g € Us,.

Finally,

[ (Fp)(z) n(zh) dh ‘
/ H(x)_/ﬂ 0 ) an = / @ iy = @)

O

[Proof of Proposition 2.3] Since H < G and is closed, the quotient G/H is a locally
compact Hausdorft topological group and hence there exists a left Haar measure on G/ H, which

we denote by di. We claim that the functional m(f) := [ /H fH (&) di is a left Haar measure on
C.(G). In fact

m(A(g)f) = / () P! (@) di- 2 / M) (@ di= [ (@) di=m(f).
G/H G/H G/H

where () follows from the fact that left and right translations commute. If ¢ € H and f € C.(G)),
then

wlp(o)f) = [ y ([ wtpaman) = | y ([ ausenan) i

— An() /G/H</th dh)d:c_AH() [ 7@ = Aulm(r),

where we used in (k) that dh is a left Haar measure. Comparing this with (2.7) shows that
Ag| H = A H- OJ

We remark that the only place in the proof in which we used that H is a normal subgroup is
to infer that there exists a left Haar measure on. G/H. The following result thus follows with the

same proof.

Let G be a locally compact Hausdorff topological group, H < G a closed subgroup
such that there exists a left invariant Borel measure on the topological space G/H. Then
Aglp = Ap.
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Luckily the above condition on the equality of the modular functions is not only necessary but

also sufficient:

Let G be a locally compact Hausdorf{f topological group, H < G a closed subgroup. Then
there exists a left invariant positive Borel measure di on G /H if and only if Ag|g = Ap.

Such an invariant measure is characterized by Weil formula

/Gf(g)dgz/G/H </Hf(xh)dh> dd

for every f € C.(G), where dg and dh are the left Haar measures respectively on G and
on H.

Let G be a locally compact Hausdorff topological group, and let H' and H be closed
subgroups with H' < H < G.
1. If G and H are unimodular, there exists a unique (up to scalar) G-invariant measure
on G/H.
2. If G, H and H' are unimodular, there exists invariant measures on G/H', on G/H

and on H/H' such that

| L J@a= | y ( / @) dz) dy

forall f € C.(G/H').

Example 2.28 We look for an SL(2,R)-invariant measure on the upper half plane HZ ~
SL(2,R)/SO(2,R). The group SO(2,R) is unimodular since it is compact, and SL(2,R) is
also unimodular since it is equal to its own commutator subgroup,

SL(2,R) = [SL(2,R),SL(2,R)].
We will see later that this is true for all semisimple Lie groups (see Proposition 4.12, of which

SL(2,R) is an example, but in this particular case we can see it from the fact that SL(2, R) can be

generated by the upper triangular and the lower triangular matrices and that for a, x € R, a # 0,

666 ):

Thus there exists a positive SL(2, R)-invariant measure on Hﬁ, which we proceed to compute.
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a b
If g = ( d> , 2 € H3 and w := gz, it is easy to check that
c

I. Imw = |cz +d|?Im z, and
2. dw = (cz + d)~2dz,
so that (Imz)~2dzdz is an SL(2,R)-invariant measure on HZ. Since dzdz = —2i1dzdy,

(Im 2)~2|dz dz| = y~2 dx dy is a positive SL(2, R)-invariant measure on H32. Thus Weil formula

in this case reads

= -2
/SL(Z,R) f(g> dg = /HD% (/SO(Q,R) f(gk) dk) y “drdy,

where we identify gk with gv = x + 1y, and where dk := id& is the normalized Haar measure

6 sinf
msom = { (20 ). ocpom |

In this particular case, since also P acts transitively on H2, we can decompose the measure

on H, H% even further. In fact, the subgroup

" a b
PT = 0 4 ta,beR,a>0
a

also acts transitively and freely on HH% (that is with trivial stabilizer). Moreover, just like
P = A x, N, we can also write P* = A" x, N, where AT ~ (Rs,) is the subgroup of

diagonal matrices with positive entries.

Thus, any z = z +1y € HZ can be obtained by acting upon 1 via the element n(z)a(y) € NA

1 =z y1/2 0 1 =z n
1= Yy =T 1y .
0 1 0 y /2 0 1)"” Y

—_—————
=n(z) —:a(y)

as follows:

In ¢ € C.(HZ), we can consider the composition
NA——>H2-2-R

N7

namely
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Thus

/ o) e[ ) ([ otatmyas) 4.

so that we can write

= n(r)a T @
/SL(Q,R) flg)dg = /R ( /R ( /S RILOLOL dk) d ) 23 (2.8)

Any element in P™ (hence in Hﬂ%) can be written also uniquely as the product of an element

in A and one in N. In fact an easy calculation shows that

n(z)a(y) = a(y)aly) 'n(z)a(y) = aly)n(y 'z),

Thus with
AN —= 2 2R
v
we have
d d d
/ ol + 1y xy:/ </\I’ yn(y~tz)) dx —32/
H2 Rso \J/R Y
d
-/ ( [ vt ))dx) dy 2.9)
R>o \J/R Yy
L (foumne)
R>o R y
Thus

/ f(g) dg— ( ( a(y)n(x)k) dk) dx) dy
SL(2,R) R>0 SO(2, R) Y

Notice that both (2.8) and (2.9) are examples of Weil’s formulas. However in this case the
group P is not unimodular, while the subgroup N is. There is in fact the following more general

version of Weil’s formula that we state without proof.

Definition 2.6. (Quasi-invariant measure)

Let m be ameasure on G/ H. We say that m is quasi-invariant if there exists a homomorphism

x: G — Ry q such that
g«m(A) = x(g)m(A)

for every A C G/H measurable and every g € G.
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Theorem 2.5. (Generalized Weil Formula)

Let G be a locally compact Hausdorff group and H < G a closed subgroup. There exists a
quasi-invariant measure on G/ H if and only if there exists a homomorphism x: G — R~

such that Aglg = A - x|m- Q

Example 2.29 On S' ~ SL(2,R)/P there is no quasi-invariant measure since SL(2,R) is
unimodular and P is not, so that such homomorphism x does not exist. On the other hand, in
the above example, since P is not unimodular and N is, there could be a homomorphism Y that

extends to P1. The above calculation shows that this is indeed the case.

The following is a fundamental example to which one can apply the above discussion.

Definition 2.7. (Lattice Subgroup)

A lattice I in a locally compact Hausdorff group G is a subgroup with the following

properties:
[. T'is discrete, and

2. there exists on G /I a finite G-invariant measure.

)
Proposition 2.6
Let G be a topological group that admits a lattice I' < G. Then G is unimodular. .

Proof The modular function A is a homomorphism that contains I' is its kernel. Hence it

descends to a Ag-map A: G/T" — R, that is a map such that for h € G and z € G/T
A(hz) = Ag(h)A(z) .

Thus the push-forward via A of the finite G-invariant measure on G//T" is a finite A¢/(G)-invariant

measure on R~. This is impossible unless Ag(G) = 1.

Remark According to Proposition 2.6 a necessary condition for the existence of a lattice subgroup
is that G is unimodular. Once this is verified, and I' < G is any discrete subgroup, Theorem 2.4
assures the existence of such a unique G-invariant measure on G/I". The point at stake here is thus

the finiteness of the measure.

Example 2.30 We remarked already that the Lebesgue measure on (R™, +) is the Haar measure

and that R" is unimodular.

I. The subgroup Z ~ {(n,0) : n € Z} < R? is discrete but it is not a lattice because the
fundamental domain of the action of Z on R? is an infinite strip, which hence has infinite

Lebesgue measure.
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2. The subgroups Z? < R? and Z" < R™ are lattices whose covolume is easily computed.

[Proof of Theorem 2.4] One direction has been proven already as Proposition 2.3 and
Corollary 2.3.

To show the other direction, we make the following claim:

Claim 2.5.1. Let A : Co(G) — C.(G/H) be the averaging operator defined in Lemma 2.6 and
assume that Ag|y = Ap. If Ag(f1) = Au(f2), then [ f1(9)dg = [, f2(g) dg.

We assume that the claim is proven and proceed to conclude the proof. Let F' € C.(G/H)
and let f € C.(G) be such that ff = F. The existence of such an f is assured by the surjectivity
of Ay in Lemma 2.6. Because of the claim we can define a positive functional on C.(G/H) as
follows:

m: C.(G/H) — R

F H/Gf(g)dg-

By Riesz Representation Theorem, this is a positive Borel measure dz which is also left invariant

because of the left invariance of dg. Then Weil formula follows at once:

/Gf(g)dgzm(F) = /G/HF(:SE)da'c :/G/H </H f(xh)dh) di .

To prove the claim it is enough that we show that, under those hypotheses, if f = 0, then
I o f(g) dg = 0. This will follow immediately once we will have proven that, under the hypotheses
of the Claim,

[;um(éh@mwﬁdgzlgxm<éﬁ@mwﬁdg 2.10)

In fact, if fi7 = 0, then it follows from (2.10) that

O=Aﬁ@<émmw0@:4ﬁ@f@@.
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It is hence enough to find f; € C.(G) such that f{" = 1 on supp(f2), which exists because of

Lemma 2.6.

Thus we are left to prove (2. 10) which is just a verification. In fact,

/G filg ( / f2(gh) dh> / £1(9)fa(gh) dg> ah

/f (gh™") fa(g )Ag(h)dg> dh

A
A

O [ ([ tanaman) o dy
I

/ filgh) a () Ac(h) 1Ac<h> dn | f2(g) dg

~ [ 20 ( [ ntama )

— in (1) and in (3) Fubini’s theorem,
— in (2) the relation (2.7), and
— in (4) the second part of Proposition 2.2.

where we used

2.5.3 An Application

Theorem 2.6. (Mackey)

Let o: G — H be a measurable homomorphism of locally compact second countable

Haurdorff groups. Then ¢ is continuous.

Q©

Proof By restricting the image of ¢ we may assume that ¢ is surjective. We want to show that
for every open neighborhood V' C H of the identity ey € H, there exists an open neighborhood
N C G of the identity e, € G such that o(N) C V, thatis N C o~ 1(V).

Let U C H be a symmetric open neighborhood of ey € H such that U? C V. Let (h,,) C H
be a countable dense set, which exists since H is second countable, and let (g,,) C G be such that
©(gn) = hn. We can write H = U,enh,U and hence G = Upengne ™1 (U). If m is the left Haar
measure on G, there exists n € N such that m (g, *(U)) > 0, so that m(o~*(U)) > 0. Since G

is locally compact and m is inner regular, there exists a compact set A C ¢~ 1(U) with m(A) > 0.
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Then o= 1(V) D ¢ Y (U)p~1(U) D AA~L, and it is hence enough to show that AA~! contains
an open neighborhood IV of ¢, € G. 0

Thus we need to prove the folllowing:

Let G be a locally compact Hausdor{f topological group. If A C G is a compact set with

m(A) > 0, then AA~! contains an open neighborhood of ec; € G. O

Proof If AzN A +# @, thenxz € AA™1, so that it is enough to show that
A'AD{z: AxNnA# 3} DN Seq,

where N is an open neighborhood of e¢;. Since m is outer regular, thenm(A) = inf{m(W) : W D
A, W is open} and since m(A) > 0, there exists an open set W O A such that m(W) < 2m(A).

We will show that since A is compact, there exists an open neighborhood IV of e such that
AN C W, so that for every x € N

%m(W) < m(A) = m(Az) < m(W) .

This will be enough to conclude the proof, because in fact this open neighborhood N has the

desired property that
eccENC{r: ArNnA#2} CA A,
In fact, if on the contrary for x € N, Ax N A = @, then
m(Az U A) = m(Azx) + m(A) = 2m(A4) > m(W).

But this is not possible since Az C W and A C W, imply that Ax U A C W and hence
m(Ax N A) < m(W). [The idea is that whatever keeps A within W cannot translate A so that it

is disjoint from itself.] O

Lemma 2.8

Let G be a topological group, A C G a compact set and W C G an open set such that

A C W. Then there exists a neighborhood N > eq such that AN C W. v

Proof Since W is open, for all x € A there exists an open neighborhood V,, 5 e such that
xV, C W. Let U, be a symmetric open neighborhood of e € G such that U,U, C V. The sets
{zU, : = € A} form an open cover of A and, since A is compact, there exists a finite subcover

AC 21Uy, U---UzyU,. Let N :=U, N---NU,, C Umj for j = 1,...,n. Then for
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L1, --

AR e B

8.

LTy €A,

AN Cc 11U, NU---Uz,U,, N
C 21Uy Uy, U--- U, Uy, Uy,

Ca1Vy U UV, CW.

= Chapter 2 Exercise <~

. Show that if X is a compact metric space, then Iso(X) is a closed subgroup of Homeo(X).

Verify that the Euclidean topology on GL(n, R) is the same as the compact-open topology.
Show that Homeo(.S?) is not locally compact.

Show that if X is a locally compact metric space, then Iso(X) is locally compact as well.
Show that Aut(R", +) = GL(n,R) and that modg»: GL(n,R) — (Rsq,-) is modgn =
| det .

. Let H be a Hilbert space a field £ = R or C. Show that # is locally compact if and only if

it is finite-dimensional.

. Let X, Y, Z be topological space, and denote by C'(Y, X) the set of continuous maps from Y’

to X. The set C(Y, X) can be endowed with the compact-open topology, that is generated
by the subbasic sets

S(K,U):={feC¥,X)|f(K)<c U},
where K C Y is compact and U C X is open.
Prove the following useful facts about the compact-open topology.
If Y is locally compact, then:

(a). The evaluationmap e: C(Y, X) x Y — X, e(f,y) := f(y), is continuous.
(b). Amap f: Y x Z — X is continuous if and only if the map

fiZ =0, X), f(2)(y) = fly, 2),
is continuous.
(a). Let X be a compact Hausdorff space. Show that (Homeo(X), o) is a topological group
when endowed with the compact-open topology.
(b). The objective of this exercise is to show that (Homeo(X ), o) will not necessarily be a

topological group if X is only locally compact.
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9.

10.

Consider the “middle thirds” Cantor set

C = {ZenB_” :€n € {0,2} foreachn € N} C [0,1]

n=1
in the unit interval. We define the sets U, = C N [0,37 "] and V,, = CN[1 - 37" 1].
Further we construct a sequence of homeomorphisms h,, € Homeo(C') as follows:
)—:L‘foralleC’\(U U WVn),
0) =
Un+1) Un,
Un \ Uny1) = Vag1,
b (Vi) = Voo \ Vi1
These restrict to homeomorphisms h,|x on X := C'\ {0}.

o

]

°

©

ha(
ha(
ha(
ha(

©

Show that the sequence (hy,|x )nen C Homeo(X) converges to the identity on X but
the sequence ((hy|x) ™ )nen € Homeo(X) of their inverses does not!
However, if X is locally compact and locally connected then Homeo(X) is a
topological group.
(c). Let St € C\ {0} denote the circle. Show that Homeo(S*') is not locally compact.
In fact, Homeo(M ) is not locally compact for any manifold M.

Let (X, d) be a compact metric space. Recall that the isometry group of X is defined as

Iso(X) = {f € Homeo(X) : d(f(z), f(y)) = d(z,y) forallz,y € X}.
Show that Iso(X) C Homeo(X) is compact with respect to the compact-open topology.
Hint: Use the fact that the compact-open topology is induced by the metric of uniform-
convergence and apply Arzela—Ascoli’s theorem.
(a). The general linear group

GL(n,R) :={A e R™"| det A # 0} C R™"
is naturally endowed with the subspace topology of R™*" = R™. However, it can also
be seen as a subset of the space of homeomorphisms of R" via the injection
j: GL(n,R) — Homeo(R"),
A (x— Ax).

(b). Show that j(GL(n,R)) C Homeo(R") is a closed subset, where Homeo(R™) C

C(R™,R™) is endowed with the compact-open topology.
(c). If we identify GL(n,R) with its image j(GL(n,R)) C Homeo(R™) we can endow it
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11.

12.

14.

15.

with the induced subspace topology. Show that this topology coincides with the usual
topology coming from the inclusion GL(n,R) C R™*".

Let p € N be a prime number. Recall that the p-adic integers Z,, can be seen as the subspace

{(an)neN € H Z/an P ln41 = an (mOd pn)}

neN
of the infinite product [ [, Z/p" Z, carrying the induced topology. Note that each Z/p"Z

carries the discrete topology and [, . Z%/p"Z is endowed with the resulting product
topology.
(a). Show that the image of Z via the embedding

L L — L,
z — (x (mod p"))nen

is dense. In particular, Z,, is a compactification of Z.
(b). Show that the 2-adic integers Zs are homeomorphic to the “middle thirds” cantor set
C as defined in Exercise 8. .
Let GG be a topological group, X a topological space and i : G x X — X a continuous
transitive group action.
a) Show that if G is compact then X is compact.

b) Show that if GG is connected then X is connected.

. Let G be a connected topologcial group, U C G an open neighborhood of the identity and

U':={g1- - 9gnlg1,-..,9n € U}. Show that G = | J,—, U™.
Hint: You may assume that g~ € U for every g € U. Why?
Let H be a Hilbert space and U(H) its group of unitary operators. Show that the weak
operator topology coincides with the strong operator topology on U (H.).
(a). Let us consider the three-dimensional Heisenberg group H = R x, R?, where
n: R — Aut(R?) is defined by

“)-(2)
z z+xy

for all z,y, z € R. Thus the group operation is given by

(1, y1,21) * (22, Y2, 22) = (21 + 22, y1 + Y2, 21 + 22 + T1Y2)
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and it is easy to see that it can be identified with the matrix group

1 = =z
H= 01 yl|:z,y,2€R
0 0 1

Verify that the Lebesgue measure is the Haar measure of R x,, R? and that the group

b
PZ{(Z a_1> :a,bER,a;ﬁO}.

Show that % db is the left Haar measure and da db is the right Haar measure. In

is unimodular.
(b). Let

particular, P is not unimodular.
16. Let G be a locally compact Hausdorff group. Show that if H; < Hy < G are closed
subgroups and H1, Ho, G are all unimodular then there exist invariant measures dx, dy, dz
on G/Hi,G/H> and Hs/H; respectively such that

| o f@ = /| » ( / » f(yZ)dZ> dy

forall f € C.(G/H,).
17. Let G = SLa(R) and P be the subgroup of upper triangular matrices. Show directly that
there is no (non-trivial) finite G-invariant measure on G/ P.

Hint: Tdentify G /P = S' =2 R U {oo} with the unit circle and consider a rotation
cosf sind
—sinf cosé

o)

18. Let D < R"™ be a discrete subgroup. Show that there are x1,...,x; € D such that

and a translation

(a). x1,...,xy are linearly independent over R, and

(b). D=%Zx1 - & Zxg,ie. r,...,r; generate D as a Z-submodule of R"™.




Chapter 3 Lie Groups

=0

3.1 Definitions and Examples

Definition 3.1. (Lie Group)

A Lie group G is a topological group endowed with the structure of a smooth manifold with

respect to which the group operations
GxG—G
(g, h) — gh
and

G— G

gr—rg "

are smooth. &

Lie groups are locally compact (since they are manifolds) and have a dimension, namely

the dimension of the underlying manifold. We will only consider finite dimensional Lie groups.
Example 3.1 (See Example 2.2) (R™, +) is a Lie group.

Example 3.2 (See Example 2.4) The matrix group GL(n,R) is a Lie group. Note that for n = 1,
this is the group (R*, -), where R* = R ~ {0}.

Example 3.3 (See Example 2.21) The one-dimensional torus T = {z € C : |z| = 1} = SO(2)
is a Lie group.

Example 3.4 A finite direct product of Lie groups is a Lie group. It follows from the previous

example that the n-dimensional torus T" is a Lie group.

Example 3.5 Countable discrete groups are Lie groups, as they are O-dimensional manifolds. We
require them to be countable because we consider smooth manifolds to be second countable (see
Appendix A.3).

Example 3.6 (See Example 2.10) An inverse limit of discrete groups is not a Lie group. Indeed,

such a group is totally disconnected but not discrete, and thus its topology cannot be that of a
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manifold. In particular, profinite groups are not Lie groups.

Example 3.7 (See Example 2.6) If X is a topological space, we have seen in Example 2.16 that

Homeo(X) is not necessarily locally compact, hence “too big” to be a Lie group.

Example 3.8 (See Example 2.7) If (X, d) is a locally compact metric space, we have seen in
Example 2.17 that Iso(X) is a locally compact topological group. It may or may not be a Lie
group. For example, if (X, d) = (R", deyc), then Iso(X) =2 R™ x O(n,R). More generally, the
Myers—Steenrod Theorem, [5], states that the isometry group of a Riemannian manifold is a Lie
group.

Example 3.9 The groups Ager and NV in Example 2.11 are Lie groups. The group Aget gets the
Lie group structure from the identification Ager ~ ((R*)™,-). On the other hand we can give N
the structure of smooth @—manifold coming from the homeomorphism N ~ Rn(n;l) , but, as

remarked in Example 2.11, this is not a (Lie group) homomorphism, unless n = 2.

Example 3.10 Let V' C R" be a k-dimensional linear subspace, k < n, and let {y1,...,y,} be a
basis of R” such that {y1,...,yx} C {y1,---,Yks Yk+1,-- - Yn} is a basis of V. With our choice
of basis we have:
Stabgr,(n,r) (V)
:={g € GL(n,R) : gV C V'}

A B
:{<0 C) € GL(n,R) : A € GL(k,R),C € GL(n— k,R), B eMkX(nk)}.

This is again a Lie group whose underlying manifold is diffeomorphic to GL(k, R) x GL(n —

k,R) x RFX (n=k) " As in the previous example, this diffeomorphism is not a group homomorphism.

Definition 3.2. Lie group homomorphism

A Lie group homomorphism is a group homomorphism between Lie groups that is also

smooth. &

We will often write simply homomorphism if there is no risk of confusion.

It is easy to verify that all of the above examples are Lie groups. This is either because there is
an easy identification, as manifolds, to another Lie group, or because any open subset of a smooth
manifold is a smooth manifold with the induced structure. To treat other cases it will be useful to

have the following:
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Theorem 3.1. Regular submanifold

Let G be a Lie group and H < G a subgroup that is also a regular submanifold. Then H

is a Lie group with the induced smooth structure.

Q

The proof of the theorem boils down do the fact that restriction of a smooth map in R™ to a

coordinate plane is again smooth.

Let M, M' be smooth manifolds, N C M a regular submanifold, and f: M' — M a

smooth map such that f(M') C N. Then f: M’ — N is also smooth. v

Remark The example is on Boothby’s book. Shall I refer to it? If NV is not a regular submanifold
then the lemma does not hold. For example consider the setting of the Example A.2 and consider a
map f: (—1,1) — N such that f(0) = 0 that sends the interval (0, 1) into the right upper branch
of the arc with the clockwise orientation and the interval (—1,0) into the lower left branch with
the counterclockwise orientation. Then f is smooth as a map into M = R2?, but it is not even

continuous if thought of as amap f: (—1,1) — N as the image of (—1, 1) is disconnected.

N

/ M\:L—L‘L) ;
N

Nem=¢F

/7

- 7N\
- <&/

N

Then f is smooth as a function in A/ = R? but not even continuous as a function in N.

Proof (Proof of Lemma 3.1)
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Let p € M’ and f(p) =: q € N. If (U, ) is a coordinate neighborhood around ¢ of the
above type, then if m = dim M > n = dim N, we have ¢(U) = (—&,¢)™, ¢(q) = 0 € R™ and
UNN={yeU:¢y) = Wi, -, yn,0...,0)}. If (V, 1)) is a coordinate neighborhood around
psuch that f(V) C U and x4, . .., xy are local coordinates in (V, ¢)) for M’, then the expression
of f: M' — M in local coordinates is:

pofoy ey, ,zk) = (file),.... fu(x),0,...,0).

T

However the expression of f: M’ — N in local coordinates is

(pofoqb_l(:vl,...,mk) = (fl(x)77fn(m))a

T

that is the same expression followed by the projection R”T("~") _ R"_ Since f is smooth, the

proof is complete. 0

Proof (Proof of Theorem 3.1) Since H < G is a regular submanifold, H x H C G x G is also
a regular submanifold., Therefore m: H x H — G is a smooth map taking values in H, hence

m: H x H — H is also smooth, by Lemma 3.1. Similarly, inversion is smooth. U

A very convenient way of determining whether a subset of a smooth manifold is a regular

submanifolds is by using the Inverse Function Theorem:

Theorem 3.2. Inverse Function Theorem
Let M, M’ be smooth manifolds of dimension m and k respectively, and let f: M — M’

be a smooth map such that its rank is constant on M, say tk f = l. Then for any q € f(M),
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f~Yq) € M is a closed regular submanifold of dimension m — I.

Recall that the rank of a smooth map f: M — M’ at a point p € M is

(rk f)p = rkdf, = dim(Imdfy,) .

If f: M — M’ is a diffeomorphism, then the differential d,,f at any point p € M is an
isomorphism and hence rk, f = dim M = dim M’. The rank assumption in the Inverse Function
Theorem is essential: in fact for example any closed subset of R™ is the set of zeros of a smooth

function R" — R.

The proof is a straightforward application of the rank condition, which gives the defining

property of a regular submanifold.

Letq € f(M) and set N := f~1(q) C M. Then N is closed. Now let p € N. Since rk f is
constant there exist coordinate neighborhoods (U, ¢) for p and (V) for g such that:

1. p(p) =0€ R™and ¥(q) = 0 € R¥;
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2. QD(U) = (_€7€)m and w(v) = <_€7€)k;
3. 9o fop Yoy, zm) = (21,...,2,0,...,0).
This means that the points in U that map onto ¢ (that is, the points of U N NN) are exactly those

whose first / local coordinates are 0. So

NNU=¢ 'Wofop )71 0)=¢ ' ({z € (—g,e)" 11 =+ =2, = 0}).
Thus N is a regular submanifold of M of dimension m — I. O
Example 3.11 We want to show that SL(n,R) = {A € GL(n,R) : det A = 1} = det™!(1)
is a Lie group, where det: GL(n,R) — R* is the usual determinant map. Since SL(n,R) is
a group and det is smooth, by Theorems 3.1 and 3.2 it suffices to check that the rank of det is
constant. Given X € GL(n,R), denote by Lx: GL(n,R) — GL(n, R) the left translation by X,

Y — XY and similarly, given z € R*, by [,: R* — R* the left translation by x, ¢t — xt. Notice
that they are both diffeomorphisms.

Now let A € GL(n,R) and let a := det A € R*. The diagram

GL(n, R) —2¢'~ R*

La i lla
is commutative, so that det = [, o detoL 4-1. By the chain rule, since L4-1 and [, are
diffeomorphisms, for every X € GL(n,R)
I'kX det = I"kA—lx det

which is hence independent of A. By choosing A = X, we obtain rk dx det = rkd; det for all
X € GL(n,R). This shows that the rank is constant.

One can verify that d; det = tr, the usual trace map R"*" — R, and deduce that SL(n, R) is
a Lie group of dimension (n? — 1). (Exercise 2.).

Example 3.12 We consider now the orthogonal group O(n,R) = {4 € GL(n,R) : tAA = I},
where ' A is the transpose of A. If f: GL(n,R) — GL(n,R) is defined by f(X) = ' X X, then
O(n,R) = f~1(I), so that, using again Theorems 3.1 and 3.2, it suffices to check that the rank of
f is constant. We can show this in a way similar as for SL(n, R). In fact

FXA™TY) = (A X)XA™ = Liaryo Ry-1 0 f(X),

so that f = Lg-1)0 Ry-1 0 f o Ra. Just like before we can show that rkx f = rkxa f is
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independent of A and hence, taking A = X ! it is constant and equal to rk; f.
Otherwise we could have computed the derivative directly:

d
dxf(Y) = s
a
ds

HX 4+ sY)(X +sY) =
s=0

(XX +s'XY +s'YX +s2YY) ='XY + 'YV X.
s=0

In particular
dx f(XT'Z)="X(XT'Z2)+ (X' 2)X ='X'XT'Z+"ZX'X =Z+"'Z =d; f(2),
thus independent of X.
To compute the dimension of O(n,R) we could use again Theorem 3.2, so that we need to
compute rky f. We just saw that
d[f . ]RTLXTL N Rnxn
X - X+'X,

that is Im d; f consists of the symmetric matrices. Since a symmetric matrix is determined by its

upper triangular part, the dimension of the imageis 1 4+2+.--+n = w Asaresult O(n,R)

is a regular submanifold of GL(n, R) of dimension n? — "(n; D — "(n;l).

ill1 how the followi ful th :
We will later show the following powerful theorem PROOE?,

Theorem 3.3. Closed Subgroup Theorem See  also,
Any closed subgroup of a Lie group is a Lie group. ©| Thm. 3.8

3.2 General Facts About Lie Groups and Lie Algebras

Let M be a smooth manifold. We denote by C°° (M) the space of smooth R-valued functions
on M. If U C M is an open set, any function f € C°°(U) can be thought of as a function in
C>°(M) as follows. Take p € U and let V' C U be a neighborhood of p. By Urysohn’s Lemma
there exists a function f* € C°°(M) such that f|,y = f*|y and f* = 0 on the complement of U.

Definition 3.3. (Linear differential operator)

A linear operator D: C*°(M) — C°°(M) is called a linear differential operator if:
1. ForanyopensetU C M, andany f € C*(U), D(f) C C*(U), thatis, D preserves
the support of functions.
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2. If U is an open set diffeomorphic to R", then, under identification with R, D takes
on U the form of a usual differential operator. Namely if f € C*°(U), then

N olel ¢
D(f) = Z gD f = Z gama
|a <k lo|<k "

n
where go, € R, a = (av1,...,ap) € (NU{0})", n =dim M and |a| = ) au.
i=1
The order of a differential operator D is ord(D) := max{|a| : go # 0}. It can be verified
that the order of a differential operator is independent of the choice of charts. &

The space DiffOp (M) of linear differential operators on M is an algebra with composition as
a product, which satisfies ord(D1D3) < ord(D1) 4 ord(D3).
We are now going to look at a notable vector subspace of DiffOp(M ), show that it is not a

subalgebra and give it some weaker but essential structure. We will also see that one can do this

abstractly.
We denote by Vect(M ) the space of smooth vector fields on M.

IfU C Misopenand f € C®°(U), then X f € C*(U), where X f is defined as above. One
can show that applying a vector field to a function at a point amounts to taking the derivative of
that function in the direction of the vector field at that point. It follows that vector fields can be

thought of as differential operators.

Proposition 3.1

There is a bijection between Vect(M ) and first-order differential operators on M that vanish

on constant functions. o

If X,Y € Vect(M), then in general ord(XY) = 2, so XY is not a vector field.

Hence Vect(M) is a vector subspace of the algebra DiffOp()M ), but not a subalgebra. On

the other hand XY — Y X is a vector field, since it vanishes on constant functions and
ord( XY —YX)=ord(X)+ord(Y) —1=1.

We want to give another structure to Vect(M ), and we will view vector fields as derivations.

It is convenient now to look at the abstract setting of which this will be an example.

=<
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Definition 3.4. Derivation

Let K be a field, and let A be an K-algebra (not necessarily associative). Let

End(A) :={0 : A — A preserving the K — module structure}
={0:A—=A:6(a+b)=25(a)+0(b) and
d(Aa) = Xo(a) forall a,b € A, \ € K}
An element § € End(A) is a derivation of A if
d(ab) = d(a)b+ ad(b)
forall a,b € A. We denote by Der(A) the set of derivations of the K-algebra A.

)

Example 3.13 The example to keep in mind is A := C°°(M). In fact, the space of smooth
functions on M form an R-algebra, and vector fields are derivations of C°° (M) because of the

Leibniz rule.

We want to give the set of derivations some structure. Let 0;,d2 € Der(A). Then
01 + 92 € Der(A) and A\J; € Der(A) for all A € R. Therefore Der(A) is a vector subspace
of End(A). However it is not a subalgebra with the product defined as the composition, since d1 92

is not necessarily a derivation. In fact:

d102(ab) = 01(d2(a)b + adz(b)) =
= 5152((1)1) + 52(@)(51 (b) + (51(@)(52(1)) + a5152(b).

But then

(8102 — 8201)(ab) = 8102(a)b + d2(a)d1(b) + 61(a)da(b) + adida(b)+
— 0201(a)b — 01(a)dz(b) — d2(a)o1(b) — adedq(b) =
= 0102(a)b + ad192(b) — 9201 (a)b — adad;(b) =
= (0102 — 0201)(a)b + a(d102 — 6201)(b).
Hence (0102 — 0201) € Der(A). Let us introduce a notation for this: we define the bracket on
Der(A) as follows:
[+, -]: Der(A) x Der(A) — Der(A)
(01,02) +> [01,02] := 6102 — 102
The following properties are then immediate to verify. If d1, 2, 03 € Der(A),
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I. [-,-] is bilinear.
2. [61,02] = —[d2, 61].
3. [51, [(52, (53“ = [[51, 52], (53] =+ [52, [51, 53]]

Recalling that Der(A) is a only a vector space and not an algebra, we can extrapolate these

properties and define a new algebraic structure on any vector space.

Definition 3.5. Lie algebra

A Lie algebra g over a field K is a K-vector space with a bilinear map [-,-]: g X g — ¢

satisfying the following properties:
1. [X,Y]=-]Y, X].
2. [X,[Y, Z]) = [[X,Y], Z] + [Y, [X, Z]] (Jacobi identity).

L)

The bracket is a sort of multiplication that is not associative. If it were, we would have
[X,[Y, Z]] = [[X,Y], Z], instead of the Jacobi identity.

Notice that the Jacobi identity is nothing but the defining relation of the derivation dx : g — g,

defined by
ox(Y):=[X,Y].
where now we are thinking of a derivation of a Lie algebra (hence with respect to the Lie algebra
operation [ -, -]) rather than of the derivation of an algebra (see § 4.1).
Example 3.14
1. Any algebra is a Lie algebra with [a, b] := ab — ba.

Vect (M) is a Lie algebra with [ X, Y], (f) = Xpn (Y f) — Yo (X f).
Any vector space V' is a Lie algebra with the bracket [v, w] = 0.

woN

Definition 3.6. Abelian Lie algebra

A Lie algebra g is called Abelian if [ X, Y] =0 forall X,Y € g.

4. The vector space R™*" of real matrices is a Lie algebra with [A, B] = AB — BA (thisis a
special case of the first item).

5. Let V be a two-dimensional vector space with basis {v, w}. Then we can define a bracket
on the elements of the basis by [v,v] = [w,w] = 0, [v,w] = —|w, v] = w and extend it by
linearity to obtain a Lie algebra.

6. R? with the cross product is a Lie algebra.
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7. Let V be a three-dimensional vector space with basis {u, v, w}. Define a bracket on the

elements of the basis by:
[u, u] = [v,v] = [w,w] =0, [u,v] = w, [u,w] = —2u, [v, w] = 2v;

and extend it by linearity to obtain a Lie algebra. A matrix realization of this Lie algebra

can be obtained by setting

(o) (0 )

Related to the notion of Lie algebra there is also the notion of Lie subalgebra.

Definition 3.7. Lie subalgebra

Let g be a Lie algebra. A vector subspace b C g is a Lie subalgebra if [ X, Y] € h whenever

X, Y €. &

Remarlk Just like the concept of Lie algebra is weaker than the concept of algebra, the concept of

Lie subalgebra is weaker than the concept of subalgebra.
Example 3.15
1. DiffOp(M) is an algebra (hence a Lie algebra) but we saw that Vect(M) is only a Lie
subalgebra and not a subalgebra:

Vect(M) C DiffOp(M) C End(C*(M)).
N—— ~~
Lie subalgebra subalgebra algebra

2. In general Der(A) C End(A) is a Lie subalgebra but not a subalgebra.

Definition 3.8. Lie algebra homomorphism

Let g, b be Lie algebras. A Lie algebra homomorphism ¢: g — 0 is a linear map such that

[o(X), (Y)]y = o([X, Y],)
forall XY € g.

Example 3.16 Let f : M — M’ be a diffeomorphism. Define f,: Vect(M) — Vect(M') by
FeX ) = g1y FX 1 - 3.1)

In other words, f. X is the only vector field that makes the following diagram commute:
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™ —Y _pap
X f«X
M ! M

Then it can be checked that f. is a Lie algebra homomorphism, that is f.([X,Y]) =
[f+(X), f«(Y)]. See the Remark after Corollary 3.3 for a further discussion.

3.3 Invariant Vector Fields: the Lie Algebra of a Lie Group

Definition 3.9. Smooth action

A smooth action of a Lie group G on a smooth manifold M by diffeomorphisms is a group

homomorphism G — Diffeo(M) such that the map
GxM—M

(g,m) — gm

is smooth. &

If G acts on M, then there is an induced action on Vect(M) and hence a homomorphism
G — L(Vect(M)) : g — g. to the space of linear operators of the vector space Vect(M ), where

g« is defined as for a general diffeomorphism in (3.1), namely (g« X )m = dg-1,,9X g1,

Definition 3.10. Invariant vector field
We say that the vector field X is invariant if g. X = X for all ¢ € G. We denote by

Vect(M)C the space of invariant vector fields.

&

We saw in Example 3.16 that if f € Diffeo(M), then f. € L(Vect(M)) is a Lie
algebra homomorphism. Thus, for ¢ € G, g, is also a Lie algebra homomorphism; that is,
g+([X,Y]) = [+ X, g.Y]. If moreover X, Y € Vect(M)%, then

g*([X, Y]) = [g*X,g*Y] = [Xa Y];

and so [X, Y] € Vect(M)©. Thus we have proven the following:
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Invariant vector fields form a Lie subalgebra of Vect(M). ©

We want to understand better Vect (M ).

Proposition 3.2

If G acts transitively on M and mo € M, the evaluation map Ep,,: Vect(M)® — T, M
is injective and linear. Thus Vect(M )G is identified with a linear subspace of T),, M and

is hence finite-dimensional. o

Remark We recall again that G acts transitively on M if for all m,m’ € M there exists g € G
such that gm = m’. For example if M = G, then G acts transitively and freely on itself, that is
the stabilizers of the action are trivial. However, if the element g € G such that gm = m’ is not

unique, then there are non-trivial stabilizers G,,, = {g € G : gm = m} # {e}.

Proof The evaluation map E,,,, X — E(X) = X,,, € Ty, M is clearly linear. It is defined on
all of Vect(M), but it is injective only on Vect(M)%. In fact, let X, Y € Vect(M )% be such that
Xmo = Y, Letm € M, and let g € G be such that gmg = m. Then:
Xm = (9« X)m = dg-1m9X g1 = dmogXmo;
Yin = (9« )m = dg10,9Y g 11 = ding 9Ymy-

Since X, = Y}, it follows that X,,, = Y,,,. Since m was arbitrary, X =Y. OJ

If G acts transitively on M, then Vect(M )G is a finite-dimensional Lie algebra.

An important case of transitive action is the one above, where M = G.

Definition 3.11. Lie algebra of a Lie group

Let G be a Lie group. Then the Lie algebra of G, denoted by g (or L(G) or Lie(Q)) is the
Lie algebra of left-invariant vector fields on G. &

We want to identify Vect(G)“ better. So far we know that the evaluation map E, :
Vect(G)¢ — T.G is injective, where e € G is the identity.

Proposition 3.3

The evaluation map E, : Vect(G)® — T.G is bijective.
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We shall see in § 3.4 how much structure this bijection preserves.

In view of Proposition 3.2 we only need to show that F is surjective. Given A € T.G, we

extend A to the whole group by invariance. Namely, we define Ace Vect(G)“ by
Ag 1= ((Lg)+A)g = dLglng(AL* ) = deLg(A);

g 19
where L, : G — G is the left translation diffeomorphism on G. O
For a general transitive action of G on a manifold M, it is not true in general that there is a

unique element g such that gmg = m. Then the statement of the previous proposition needs to be
modified a bit.

We saw that associated to an action of G on M there is an action of G on Vect(M ). Now we see
that there is also another action, the isotropy representation. If my € M and G, is the stabilizer in
G of my, then G, acts on Tj, M. In fact, if g € G, then dpy g 2 Ting M — Ty M = Tppg M
is a bijective linear map, so that it defines a homomorphism:

p: Gy — GL(To M) : g — dpmyg.
Denote by T}, MP(Gmo) the G, -invariant vectors in T}, M, that is the vectors v € Ty, M such

that p(g)v = dimegv = vforall g € G-

Proposition 3.4

If G acts transitively on M, there is an identification E,y,, : Vect(M)% — Ty,o M P(Gmo),

By definition, if X € Vect(M)%, then Eyy(X) = Xy € TmgMPEm0). To find
the inverse, let v € TmOM”(Gmo) and, given m € M, let g € G be such that gmg = m.
Define then X,, := dp,gv € T,,M. To see that this is well-defined, let ¢ € G be
such that ¢'mg = m, so that g~'¢g' € G,,,. We need to see that d,,gv = dy,g'v, that
is that v = (dingg) (dmeg )v = dmy(9~1g')v, which holds true since g~'¢' € Gy, and
v € Typg MP(Gmo), O

Example 3.17 We saw in Example 2.27 that SO(3, R) acts transitively on S2, SO (3, R)e3 = S2.
Moreover the stabilizer of ez can be identified with SO(2,R). Thus Vect(S?)S0BR) =~
(Te3SQ)P(SO(27R)). However, identifying the tangent plane at e3 with the xy-plane, one sees
that the action of SO(2, R) is by rotations. Thus the only tangent vector at e3 that is invariant under
the isotropy representation is the zero vector, hence there are no SO(3, R)-invariant vector fields

on 52, and no O(3, R)-invariant vector fields on 5.
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3.4 Characterization of the Lie Algebra of a Lie Group

Let G be a Lie group. We defined its Lie algebra g as Vect(G)G with the bracket operation.
Since Vect(G)® = T,G by Proposition 3.3, we want to endow T,G with a bracket operation so

that this vector space isomorphism is a Lie algebra isomorphism.

If G = GL(n,R), then tangent space 77 GL(n,R) is isomorphic as vector space to R"*".
However R™*™ is an algebra with the usual bracket [A, B] = AB — BA, which thus induces a
bracket on T.G.

Proposition 3.5

The vector space isomorphism R™"™ = T7(GL(n,R)) — Vect(GL(n, R))SHR) 5 4

Lie algebra isomorphism, where the bracket in Tr(GL(n,R)) is the one coming from the

algebra structure on R™*"™,

Corollary 3.2

The Lie algebra gl(n,R) of GL(n,R) is isomorphic to R"*"™ with the usual bracket of

matrices. V)

)

Proof If A € R™™, let A; € T7(GL(n,R)) be the matrix A thought of as a tangent vector
at I € GL(n,R), and let A € Vect(GL(n, R))SR) be the invariant vector field obtained by

spreading A; around using invariance:

R™"™ = Ty(GL(n,R)) L Vect(GL(n,R))CL(:R)
A & A; — A '

We want to show that f([A, B]) = [f(4), f(B)], that is:

[A,B] = [A, B (3.2)
where [A, B] is the bracket in R"*" and [A, B] is the bracket in Vect(GL(n, R))SHR),

First reduction. The equality (3.2) must hold everywhere on GL(n, R). However Vect(GL(n, R))GL(%R)

is a Lie algebra, so that the bracket of two invariant vectors is invariant. Thus [A, B] and [A, B]

are both invariant vector fields, and hence it suffices to prove the assertion at the identity, that is:

([4, B)); = ([A, B)); .- (3.3)

Second reduction. To show the equality (3.3) in 77 GL(n,R) it is enough to show that if
A: Ty GL(n,R) — R is a linear functional, then A(([4,B]);) = A(([A,B]);). By our
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correspondence, if X € T7 GL(n,R), then (X); = X, so we need to show that A\([4, B]) =
A([A, B];). But [A, B] is the bracket in R"*", hence it is enough to show:

M[A, B]r) = M(AB) — A\(BA). (3.4)

If L: R™ — RF is a linear map, then its derivative dL: TR™ — TRF is such that for
every x € R™, d,L: T,R™ — TL(Z)]RI‘: can be identified with d,L: R™ — RF and in fact with
L: R™ — R, In other words the map

R® — End(R™,RF)
r dzL
is constant and identically equal to L.
We can hence think of L as its own derivative.
Third reduction. Given A: 77 GL(n,R) = R"*" — R, then
M[A, B]r) = diM([A4, Br) = [4, Bl1(A) = Ar(BO)(I) = Bi(A(N)(I).
By putting this together with (3.4), we are left to show that
MAB) = XN(BA) = A(BN)(I) — B(AN)(I).
We will show that A(AB) = A;(B())), which concludes the proof.
~ o~ ~ ~ 1) ~ 2) ~
Ar(BO) = Ailg = B,(0) © Arlg = (drLg) Br(V) 2 Arlg = (d,\)(drLy) Br)
~ ~ < 4
= Ai(g = di(Ao Ly)Br) = Ar(g = (Ao Ly)(B)) = Ai(g = MgB)) £ M(AB),
O

where we used

in (1) that B if invariant;

in (2) the interpretation in (A.1) of the action of the vector field (d;L,)B; on the function \;

in (3) the above remark, and

in (4) the fact that the map F': g — A\(gB) is linear in g for a fixed B and hence, again using
the above remark, A;(F) = d;F(A;) = F(A;) = A(AB).

We want to find now a way of identifying the Lie algebra structure of a Lie subalgebra of
gl(n,R). We want to see that, in fact, even for a subalgebra of gl(n,R), we can use the matrix

bracket.
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Proposition 3.6

If o: G — H is a Lie group homomorphism, then d.p : b — g is a Lie algebra

homomorphism.

)

If H < G is an inclusion of Lie groups, then T.H — T, G is an inclusion of tangent spaces
that defines a Lie algebra embedding ) — g.

It follows that f H < GL(n,R) is a Lie group, then the bracket on b is the one coming from
gl(n,R).

In order to prove the proposition we need some preliminary remarks:

1. The differential is a local definition in the following sense. Let M, M’ be smooth manifolds
and o: M — M’ a smooth map. If X € Vect(M), then in general do(X) does not define
a vector field on M’. In fact (M) might not be the whole of M’. However even if it
were, dpp(X,) is a tangent vector at ¢(p) that is however not necessarily uniquely defined,
if for example there exists ¢ € M such that p(p) = p(q) but dpp(X,) # dep(X,). We
say that X € Vect(M) and X’ € Vect(M') are @-related if X' o o = dp o X, that is if
X;(m) = dpmp(Xp,) forallm € M:

™M — % T

X s X

M ‘ M’
It is easy to verify that if X; € Vect(M) is ¢-related to X € Vect(M'), for i = 1,2, then
[X1, Xo] is p-related to [ X1, X}]. (Exercise 4.)

Of course the above remark does not apply to homomorphisms between Lie groups and to

left invariant vector fields. In fact we record the following fact:
Let G, H are Lie groups with Lie algebras Lie(G) = g and Lie(H) = bh. Let

p: G = H be a Lie group homomorphism. Then the left invariant vector fields
defined by X € g and d.p(X) € b are p-related for all X € g.

=<
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So the property of being (-related is in some sense a generalization of the property of being
left invariant, in the sense of the following remark.
2. A vector field X € Vect(G) is left-invariant if and only if it is L4-related to itself. In fact,
X is Ly-related toitself <= X oL, =dLs0X <= XoLgy(h)=dLy(X)(h)forallh € G
& Xy =dpLyXpforallh € G <= X is left-invariant .
3. If p : G — H is a homomorphism, then for all g,h € G we have p(gh) = ¢(g)p(h) =
@©(Lgh) = Ly ¢(h) and so g o Ly = L4 o ¢ forall g € G.

[Proof of Proposition 3.6]) We use the notation X := dp(X). It will then be enough to
show that X and X are p-related. In fact, by 1. we have that [ X, Y] and [X, Y] are o-related, that
is

dpo[X,Y]=[X,Y]op = [dp(X),do(Y)]op.
This is true at every point g € G and in particular at g = eq. Since p(eq) = ep, the assertion

follows. So we only have to show that X and X are -related, that is X, = dge(X) for all

g € G. But
<~ @) -~ (2
Xo(g) = deg Lip(g) Xy = degy Lp(g)deqp(Xeg)
= deHL¢(g)d€G90(X6G) = dec (Lga(g) © @)(Xec)
(3)
= deg (po Lg)(Xec;) =d(po Lg)(X)(Xec) =
= dgp(X)(9)
where we used in (1) the fact the invariance of X, in (2) its definition and in (3) 3.. ]

We can now compute some Lie algebras.

Example 3.18 SL(n,R) = {g € GL(n,R) : det(g) = 1}. Soif v: (—e,e) — SL(n,R) is a
smooth curve, then det(y(¢)) = 1, and so % det(~(t)) = 0. If moreover ~ is chosen so that
v(0) = I, and so 7/(0) € T7 SL(n,R) = sl(n,R), then by the chain rule:
d
0= 7 det () = d.(p) det7'(0) = dj det 7' (0) = tr(y'(0)).
t=0
Thus sl(n,R) C {A € gl(n,R) : tr(A) = 0}. But since dimsl(n,R) = dim{A € gl(n,R) :

tr(A) = 0} = n? — 1, then equality holds.

In many cases it will be useful to have the following:

=<
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Let A, B: (—e,&) — R™ ™ be smooth curves and let us define p(s) := A(s)B(s) C R™*".
Then

¢'(s) = A'(s)B(s) + A(s)B'(s).

[Hint of the proof] Write in coordinates and mimic the proof of the product rule for R-valued

functions, where one uses only that R is an algebra and not necessarily a commutative one. O

Example 3.19 O(n,R) = {g € GL(n,R) : tgg = I}. If : (—e,e) — O(n,R) is a smooth
curve then 'y(s)y(s) = I. If v(0) = I, then

d
== (9()7(5)) = (0)7(0) +"1(0)7'(0) = "'(0) +~'(0).
s=0
Thus Lie(O(n,R)) = o(n,R) C {A € gl(n,R) : YA+ A = 0} is the space of skew-symmetric

matrices. As before, by checking the dimensions one sees that this is an equality.

0

0 I
v: (—e,e) = O(p,q) be a smooth curve with 7(0) = I. Then with the same procedure as

above one concludes that Lie(O(p, q)) = o(p,q) = {A € gl(p+ ¢,R) : AJ + J'A = 0}. If we

write matrices in block form we deduce that

o(p,q) = { <U(€:4R) o(iR)) :Aisap xq matrix} .

N

1 * 0 *
Example 3.21 N; = € GL(n,R) », thenn; = € gl(n,R)

-1, 0
Example 3.20 O(p,q) = {g € GL(n,R) : gJlg = J, where J = ( P ) Let

Example 3.22 Aget = : A #0 p,thenage = A ER
0 An 0 An

Example 3.23 Let U(n) = {4 € GL(n,C) : A’A = I} be the group of unitary matrices. Then
u(n) = {4 € gin,C) : A +'A = 0}, the group of skew-Hermitian matrices.
Example 3.24 If

Sp(2n,C) = {A € GL(2n,C) : "AFA = F},




3.4 Characterization of the Lie Algebra of a Lie Group - 64—

0
_I,
gl(2n,C) : 'AF + FA = 0} and sp(2n, R) = sp(2n, C) N gl(n, R).

I,
where F' = ( 0 ), and Sp(2n,R) = Sp(2n,C) N GL(2n,R), then sp(2n,C) = {A €

We just proved that if ¢ : G — H is a Lie group homomorphism, then dy : g — b is a Lie
algebra homomorphism. In order to have a correspondence between Lie groups and Lie algebras
that is as complete as possible, we would like to have the converse of this statement. However,
given a Lie group G we have defined its Lie algebra g, but we have not said proven that given a Lie
algebra g there is a Lie group G that “integrates” that Lie algebra (that is such that Lie(G) = g).

So the converse of Proposition 3.6 entails two different questions:

1. Given a Lie group G with Lie algebra g and given a subalgebra i C g, is there a subgroup
H < G such that Lie(H) = §?
2. If G, H are Lie groups and 7w: g — b is a homomorphism of their Lie algebras, does there

exists a Lie group homomorphism ¢: G — H such that d.p = 7?

Definition 3.12

If g,b are Lie algebras, the product g X by has the Lie algebra structure defined by

(X1, Y1), (X2, Y2)] := ([X1, X2], [V1, Y2)). &

Example 3.25Let G = T? = S! x S'. Since R? — T?is a covering map, g = Lie(G) = Ty T? =
ToR2 =R x R.
1. Leth = R ~ {0} x R. Itis immediate that b is a Lie subalgebra of g and if i: S' — T? < G

is defined as i(S') := {0} x S%, then Lie(i(S')) = h. (In this case we do not even need
Definition 3.12 as g is Abelian and hence the bracket is trivial. See Corollary 3.6.)

A

2. Leth = {(z,y) € R? : y = v2z}. Let : R — T2 be defined as o(t) = (¢, ¢'V?'). Then
¢ is an injective smooth homomorphism such that o(R) =: H is a subgroup of T? with Lie

algebra .

=<
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(]

It is clear that we cannot expect that the subgroup H will be more than an immersed

submanifold. In fact we have:

If G is a Lie group with Lie algebra g and ) C g is a Lie subalgebra, then there exists a

unique immersed connected Lie subgroup H < G with Lie algebra .

The proof will rely on Frobenius’ Theorem, which we introduce with an example.

If M is asmooth manifold, p € M and X € Vect(M), the theorem of existence and uniqueness
of solutions of ODEs assures that there exists an € > 0 and a smooth curve 7, : (—¢, €) — M such
that 7,(0) = p and ~,(t) = X, (). The curve v, is called integral curve of X, it is an immersed

sumbanifold and has the property that its tangent space is spanned by X.

Suppose instead now to have two vector fields, X, X2 € Vect(M) and to look for a surface
whose tangent space at every point is spanned by X; and X5. Now this amounts to solving a linear
system of PDEs and a solution in a neighborhood of a point p € M will be a surface whose tangent
space at every point ¢ € M “close enough” to p is spanned by X; and X». One possible way of
finding such a surface is to consider the integral curve -1 ;, of X7, move along such a curve for a
small amount of time, then move along the integral curve 72, of X»>. If such a surface exists, its
tangent subspace at g will certainly contain X, but will have lost memory of X;. Likewise, we
could have started following first X5 and then X; and now the tangent space to this hypothetical
surface will contain X and will have lost memory of X5. It is clear that X; and X9 must satisfy
some relationship if we want the surface and its tangent space to be defined.

Definition 3.13. Distribution

1. Let M be a manifold of dimension n + k and for each p € M consider an n-

dimensional subspace D, C T,M. Suppose that in a neighborhood U of any point
p € M there are n linearly independent smooth vector fields X1, ..., X, that give a
basis of Dy for all ¢ € U. We then say that D is a smooth distribution of dimension
non M and that X1, ..., X, is a local basis of D.




3.4 Characterization of the Lie Algebra of a Lie Group - 66 —

2. We say that a distribution is involutive if there exists a local basis X1, ..., X, of D
such that [ X;, X;] € D forall1 <i,j <n.

3. If D is a smooth distribution and p: N — M is a one-to-one immersion, we say that
¢(N) is an integral submanifold of D if dypTyN C D).

4. We say that a distribution D on M is completely integrable if through each point in
M there is an integral submanifold o : N — M such that dpyTyN = D, for all

N.
pe &

From the above discussion it should be clear that finding conditions for the existence of integral

submanifolds amounts to finding conditions for the existence of solutions to linear systems of PDEs.

Proposition 3.7

Any completely integrable distribution is involutive.

)

Example 3.26

I.IfM =R" x RFand X; = B%i fori =1,...,n,then D = {X1,..., X} is an involutive
distribution.

2. The Lie algebra § of a Lie subgroup H of a Lie group GG defines a left-invariant involutive
distribution.

3. All distribution on a two-dimensional manifold are involutive. However in higher dimension

most distributions are not involutive. For example on R3 the distribution D = {8% , a% —I—l‘%}
is not involutive since | 7=, 7 + 257 | = ;-

Frobenius showed that being involutive is not only a necessary condition but also a sufficient

one.

A smooth distribution D on a manifold M is completely integrable if and only if it is

involutive.

If the distribution has dimension 1, then this is nothing but the theorem on existence
(and uniqueness) of solutions of a PDE. In this case an integral curve is an integral manifold. In
dimension one however the necessary condition of being involutive is automatically satisfied since
[X, X] = 0 for any vector field X.

=<
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Definition 3.14. Maximal integral submanifold

A maximal integral submanifold N of an involutive distribution D on a manifold M is a

connected integral manifold of D whose image in M is not a proper subset of any other

connected integral manifold of D. In other words, it is a connected integral manifold that

contains any connected integral manifold with which it shares a point. &

Given an involutive distribution on a manifold M and a point p € M, there exists a unique

maximal integral manifold through p.

For a proof of this and of Frobenius’ Theorem, see for example [9].

Existence follows from the fact that in the Frobenius Theorem one can show that if the n-
dimensional distribution is involutive and p € M is a point through which the integral manifold
passes, then there exists a coordinate neighborhood (U, ) with U = (—&,¢)"** centered at p,
such that the integral manifold has shape x;; = constant for n < i+ 1 < (n + k). One uses this
coordinate neighborhood and the fact that M is second countable to patch the local “slices” of the

integral manifolds to show the existence of a maximal one.

Recall from Lemma 3.1 that if a smooth map takes values in a regular submanifold NV of a
manifold M, then the same map thought as a map to N is also smooth. The same statement can

be made for integral sumbanifolds of an involutive distribution.

Proposition 3.8

Let D be an involutive distribution on M and let N be a maximal integral submanifold. If
f: M' — M is a smooth map and f(M') C N, then f: M’ — N is also smooth.

e
Adapt the proof for regular submanifolds in Lemma 3.1 (Exercise 5.). O
We can finally prove Theorem 3.4.
Let X1,..., X, be left-invariant vector fields that form a basis for j. Since b is a Lie
algebra, the distribution D = {X3,..., X,,} is involutive and invariant under left translation by

G. Tt follows that if IV is an integral manifold of D, then L,(NV) is also an integral manifold of
D for all g € G. Let H be the unique maximal integral manifold through e. If h € H, then
L;,-1h = e hence both H and L;-1 H are maximal integral manifolds through e. By uniqueness
L,-1H = H and so h~'h/ € H for all b’ € H, that is H is a subgroup of G, as well as an

immersed submanifold. Moreover since the maps H x H — G, (h,h') — hh/ and H — G,
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h + h~! are smooth and take values in H, by the previous proposition the maps H x H — H
and H — H are smooth as well. Hence H is a Lie group, whose Lie algebra is h by construction.

The uniqueness follows from the uniqueness of the maximal integral manifold. O

One can generalize the above result.

Definition 3.15. Lie subgroup

Let G be a Lie group. We say that (H, ) is a Lie subgroup of G if

1. H is a Lie group;
2. @: H — G is an injective Lie group homomorphism;

3. w(H) is an immersed submanifold, meaning o is a one-to-one immersion.

Theorem 3.7. Lie group - Lie algebra correspondence I1

Let G be a Lie group with Lie algebra g and hC g a subalgebra. Then there exists a unique

connected Lie subgroup (H, @) of G such that dp(h) = b.

Q

We have however seen that the topology of a Lie subgroup does not necessarily come from
the topology of the ambient group. The following result tells us exactly when a Lie subgroup has

the relative topology:

Theorem 3.8. Embedded Lie subgroups

Let (H, @) be a Lie subgroup of a Lie group G. Then ¢ is an embedding if and only if p(H)
is closed in G. v,

‘We now move to the question of whether any Lie algebra homomorphism is the differential of

a Lie group homomorphism.

Example 3.27 Let ¢: R — S! be defined as t +— e®. Then doy: Lie(R) — Lie(S%) is a Lie
algebra isomorphism, and so is (dop)~!: Lie(S!) — Lie(R). If dye~! were the derivative of a
homomorphism ¢: S* — R, then 1/(S") would be a one-dimensional compact subgroup of R.
This is impossible since the only compact subgroup of R is the trivial one. Hence (dop) ! does
not come from a homomorphism. It does, however, come from a local homomorphism, namely

the local inverse of .

We gave in Chapter 2 the definition of local homomorphism of topological groups. In the
category of Lie groups the definition of local homomorphism has to be modified in that they are

smooth maps (see also Theorem 3.14).
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Theorem 3.9. From Lie algebra homomorphisms to local homomorphisms

1. If G,H are Lie groups and m: g — b is a Lie algebra homomorphism of the

corresponding Lie algebras, then there exists a local homomorphism ¢: U — H
such that d. = .

2. If wis a Lie algebra isomorphism then @ is a local isomorphism. v

The proof of the second assertion follows immediately from the first one together with the
following easy application of the Inverse Function Theorem, that will also be needed in the proof

of the first assertion.

If o: U — H is a local homomorphism of Lie groups such that d.p: g — b is an

isomorphism, then ¢ is a local isomorphism. v

Proof Let U be a neighborhood of e € G such that ¢ is defined on U. Since d.y is bijective,
by the Inverse Function Theorem there exists a neighborhood U’ of e € G and a neighborhood
V of ey € H such that ¢ : U’ — V is a diffeomorphism. But then ¢ is a local isomorphism on
unu'. 0l

Proof [Proof of Theorem 3.9] The important point is that, since 7 is a Lie algebra homomorphism,
Graph(m) is a Lie subalgebra of g x h. Indeed:

(X, 7 (X)), (Y, m(Y))] = (X, Y], [(X), #(Y)]) = ([X, Y], =([X,Y])).
By Theorem 3.4 this implies that there exists a subgroup K < G x H such that Lie(K) =
Graph(7).

So far we have:

depry

Graph(7)© gxh

and

Prg

K————>GxH G

Recall that we want to have a homomorphism from (G, but here we have a homomorphism
to G. By construction prg|x @ K — G is a Lie group homomorphism and its derivative
de(pre|x) = de(prg)|Grapn(r)): Graph(m) — g is a Lie algebra isomomorphism. Hence,
by the previous lemma, prg|x is a local isomorphism, that is, there exist neighborhoods
ex € W C Kandeg € V C G such that pr|y: W — V is an isomorphism. We consider then
(prg|w)~t: V. — W, whose derivative de(prg|w)~': g — Graph(n) is X — (X, 7(X)), by
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definition.

We consider now the homomorphism pry : G x H — H and its derivative depry =
pry: g X b — b, which is a Lie algebra homomorphism. Then pr; o (pra|w)~t: V — H is the

required local homomorphism, since

deq(prpz 0 (Prelw) ™) (X) = degpryy o (degprelw) ™ (X) = degpry (X, m(X)) = 7(X).
0l

We remark again that the local homomorphism given by the theorem comes from the

application of the Inverse Function Theorem in the previous lemma.

Any finite-dimensional real Lie algebra g is isomorphic to a subalgebra of gl(n, R) for some

n.

The proof relies on the structure theory of Lie groups that we will see in the next chapter. We

will give at that point a rough idea of the proof. Together with Theorem 3.9, this implies:

Any Lie group G is locally isomorphic to a subgroup of GL(n,R) for some n.

This result, seemingly very useful, is in practice not so. For example if we wanted to use
the matrix bracket, we would need to know what is the n such that g < gl(n,R). Moreover the
group G that we obtain might have a pretty ugly topology. However, together with the following
corollary, which is an immediate consequence of Theorem 3.9, it will tell us for example under

which conditions a Lie group can be isomorphic to a subgroup of GL(n, R).

1. If G is a connected Lie group with Lie algebra g, there exists a simply connected Lie
group G with Lie algebra isomorphic to g.

2. If two simply connected Lie groups have isomorphic Lie algebras, then they are
isomorphic.

3. Given two isomorphic Lie algebras g1 ~ go, there exists simply connected Lie
groups CNTYZ with Lie(éi) = g;, for i = 1,2. In other words, there is a one-to-
one correspondence between isomorphism classes of Lie algebras and isomorphism

classes of simply connected Lie groups.
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Proof (1) Using covering theory it is easy to show that if G is a connected Lie group, H a
topological group and p : H — G a covering map, then there exists a unique Lie group structure
on H such that p is a Lie group homomorphism and the kernel of p is a discrete subgroup of H.

(See Exercise 6.)

(2) Let C~}1 and ég be simply connected Lie groups with g1 ~ go. By Theorem 3.9 there is a
local isomorphism p: U — C~¥2. Since él is simply connected, by Theorem 2.1 p extends to a
homomorphism G1 — Gs. Since this is also a covering map and Go is simply connected, the
G ~ Gs.

(3) Let g1 ~ go. By Ado’s Theorem there exists a Lie group G; (locally isomorphic to a subgroup
of GL(n;, R)) with Lie(G;) = g;, for i = 1,2. Let G; be the universal covering. By (2) it follows
that G ~ Go. O

We conclude now with some easy consequences of the correspondence between Lie groups

and Lie algebras.

Corollary 3.6. Abelian Lie groups and Lie algebras

Let G be a connected Lie group with Lie algebra g. Then G is Abelian if and only if g is
Abelian. Q

Proof (=) If G is Abelian, then Inv: G — G : g — ¢~ ! is a homomorphism (in fact, this
condition is equivalent to being Abelian), so d.Inv: g — g is a Lie algebra homomorphism. We

claim that d.Inv = —Id. Assuming this (which we will verify later), for all X, Y € g:
—[X,Y] =dJInv([X,Y]) = [deInv(X), d Inv(Y)] = [- X, -Y] = [X,Y].
Therefore [X, Y] = 0 and so g is Abelian.
To show the claim, let p: (—e,e) — G be a path such that ¢(0) = eandlet¢)(t) := Inv(p(t)).
Then ¢(0) = e and e = (t)1(t), so that

= G| #0000 = FOU0) + 0 (0) = $10) + ¥/(0).

If ¢'(0) = X € g, then 0 = X + d.Inv(X), which concludes the proof of the claim.

0

(<) Suppose that g is an Abelian Lie algebra, that is, it is isomorphic to the Lie algebra of
R"™ for some n. Then G is locally isomorphic to R", that is, it is locally Abelian. But then G is
Abelian by Proposition 2.1. 7. 0l
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Corollary 3.7. Classification of connected Abelian Lie groups

1. Any connected Abelian Lie group G is isomorphic to T* x R! for some k,1 > 0.
2. Any compact connected Abelian Lie group is isomorphic to T* for some k > 0.

3. Any simply connected Abelian Lie group is isomorphic to R! for some | > 0. v

Proof It will be enough to prove 1. and the other two statements will follow immediately. To this
end, remark that the Lie algebra of G is isomorphic to the Lie algebra of R™ for some n. Hence
by Theorem 3.9 there is a local isomorphism ¢: Uy — G for some open neighborhood Uy C R™
of the origin. Since R™ is simply connected, Theorem 2.1 (yet unproven) asserts that ¢ can be

extended to a homomorphism ¢: R" — G.

We claim that ker ¢ is discrete. In fact, since d.p is an isomorphism, there exists a
neighborhood e € U, C G such that ¢: Uy — ¢(Uy) N U, is a diffeomorphism. Then
kerp N Uy = {0} and so {0} is open in ker . Since it is also closed, it is discrete. Thus
there exist x1,...,zr € ker linearly independent over R, such that ker ¢ is the Z-span of
r1,...,2TE. (See Exercise 9.) Let V' be the R-span of x1,...,x,. Then dimV = k and we can
write R” = V & W, where dimW = (n — k). Now ¢: V & W — G is surjective, because
G = fjl U by Proposition 2.1 7. Therefore

n=

GEVoW/kerg=V/kero®W = (R/Z)* x R"F = TF x R**,

3.5 The Exponential Aap

p. 96 Let G be a Lie group and g its Lie algebra. We introduce the exponential map of g into
G and study some of its properties. If G = GL(n,R) or one of its subgroups, then we will see
that the exponential map coincides with the normal matrix exponential (from which the name).
The exponential map is probably the most important basic construction associated to g and G, as
many important results in the general theory of Lie groups and Lie algebras depend in one way or

another on the properties of this map.

Definition 3.16. One-parameter subgroup

Let G be a Lie group. A one-parameter subgroup of G is a Lie group homomorphism

@: R — G (i.e., a curve that is also a homomorphism). &
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Why would one-parameter subgroups exist? Let GG be a Lie group with Lie algebra g, let
X € g and consider the Lie algebra homomorphism
Lie(R) — g
t—tX
By Theorem 3.9 there exists a local homomorphism that, since R is simply connected, according
to Theorem 2.1 can be extended to a Lie group homomorphism ¢x : R — G with the property
that dopx (t) = tX.

Definition 3.17. Exponential map

The exponential map of the Lie group G is defined by
expg: g =+ G
X = ox(1).

PICTURE

If X € g we denote by X € Vect(G)C be the left invariant vector field with X, = X.

Proposition 3.9. Properties of the exponential map

Let G be a Lie group with Lie algebra g and let X € g.

1. @x is an integral curve of)? and the only one for which px (0) = e.
More generally, Lypx : R — G is the only integral curve of X that goes through g at
0. In particular left invariant vector fields are always complete (that is, their integral
curves are defined for all t € R).

2. exp(tX) = px(t) forallt € R and hence t — exp(tX) is the unique one-parameter
subgroup corresponding to X, that is do(exp(tX)) = do(¢x (t)) = Xe.

3. exp(ty + t2) X = exp(t1X) exp(t2X) for all t1,t2 € R.

4. exp(tX)™! = exp(—tX) forallt € R.

5. exp : g — G is a smooth map, and a local diffeomorphism from a neighborhood of

0 € g onto a neighborhood of e € G. In fact, dy exp = Id. o

Proof 1. The vector fields 1 € Vect(R)® and X € Vect(G)C are ¢ x-related (Lemma 3.3), so
that ¢ x is the unique integral curve of X such that o x (0) = e. Moreover dyx (t)) = ' (t).

Since X is left invariant, L, 0 x is also an integral curve and the unique one that goes through

gatt=0.
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2. Lett,s € R, X € g. We claim that ¢, (t) ® ox (st). Assuming (*) and setting t = 1, we
obtain exp(sX) = @sx (1) = px(s). Thus s — exp(sX) = @x(s) is the unique one-parameter

subgroup whose tangent vector at ¢ = 0 is X.

To prove (x), recall that p,x is the unique integral curve of sX such that psx(0) = e.
On the other hand let n: R — G be defined by 7n(t) = ¢x(st) for s € R fixed. Then
don(t) = %‘t:e ox(st) = s’y (0) = sX. Since 1(0) = e, then 7 has the same properties

as sx, and (x) follows.
3. and 4. are obvious since ¢ — exp tX is a homomorphism.

5. Consider the manifold M = G x g and the horizontal vector field Z € Vect(G x g) defined by
2(g, X) = (X,,0) € T,G & Txg.

Since X is smooth, = is as well and hence there exists an integral curve P(%,0)" (—e,e) > G xg
g

such that L t) = (gexptX, X) is the integral curve through (g, X) at ¢ = 0 (which is
9%( g g

)?970)

the translate under L, of the integral curve through (e, X)). Since G x g is a Lie group, P(%,.0)

is complete, so it is defined for all £ € R, and in particular for ¢ = 1, so that

?x,0 1) = (gexp X, X).
By the theorem on smooth dependence of solutions on the initial conditions, ¢ (%,.0) is smooth on
G x g. Letnow prg; : G x g — G be the projection, which is a smooth map. Thenexp : g = G

can be written as

exp(X) = prg o px,0)(1).
and is hence smooth.

To check that exp is a local diffeomorphism it is enough to check that dyexp: Tog — T.G
is invertible. We show in particular that dypexp = Id. Let ¢: (—€¢,e) — g be the curve
P(t) = tX. Then ¢(0) = 0 and ¢'(0) = X. But ox: R — G, ¢x(t) = exp(tX) has the
property that ¢ x(0) = 0 and ¢ (0) = X, so that dygx = 1. Thus dopx(t) = tX, so that
dpexp(tX) =tX. O

For a Lie group this amounts to saying that there is one curve that behaves well, namely it is a
homomorphism R — . What the exponential map does is to take a line and push it down to the

group wrapping it around and preserving the group structure.

Example 3.28
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I. Let G = R™. Then exp : Lie(R™) =2 R™ — R" is the identity.
2. Let G = S' = {z € C: |z] = 1}. Then T} S' = iR = R and, chasing the

definitions, it is easy to see that exp: R — St is exp(t) = .

We want to identify the exponential map for G = GL(n, C) and we will see that it is indeed

equal to the usual matrix exponential. We will need the following:

Let V be an n-dimensional complex vector space.

. The map X — e~ Z X1 s a well defined map from End(V') to GL(V).
7=0

2. det(eX) = "X forall X € End(V).

3. If X and Y commute, then XY = XY

1. To see that the map is well defined we will show that the right hand side converges

uniformly on compact sets. In fact let X C End(V') be a compact set and let ¢ > 0 be such that
o0

|X;j| < cif X € K. Then an induction argument shows that |(X");;| < (nc)™. Since Z %

=0
PG
converges, ». ~——/ converges uniformly on K, and hence the same is true of Z . (Here
m=0 m=0

we used the Weierstrass test: if (f,,) is a sequence of real or complex valued functions ona set A
with the property that | f,,(z)| < M,, forallz € A and Z M, converges, then the series Z fn(z)

n=0 n=0
converges uniformly on A.)

Hence the map is well defined and we have to see that it takes values in GL(V'), that is, it is

invertible. In fact, let S;(.X) be the j-th partial sum Z *. By continuity of the multiplication

=0
End(V) — End(V), X — BX for B € End(V) (hence in partlcular for B € End(V') we have
that B lim S;(X)B~! = lim BS;(X)B™!, so that
J—00 J]—00

BeX Bt Y (BXB (35

Remark now that we can find B € GL(V) such that BX B~! is upper triangular: in fact, if v;
is an eigenvector of X, we can construct inductively v;11 as an eigenvector of pr; o X, where
r; : V. — Wj is the projection onto W; where V' = V; © W; and V; = span{uvi, ..., v;}. Now
choose B to be the matrix that has v; as column vectors, and let \; be the eigenvalue corresponding

to v;.

=<
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M *
If BXB~! = , then
0 An
eM *
eBXBTH _ 7
0 etn

so that
det eX = det Be* B! ® det eBXB™ £ 0,
and so eX € GL(V).

2. In particular we have that if BX B~! is upper-triangular, then

det eBXB_l A, An — gt tAn etr(BXB_l).

f— e .. e
By invariance under conjugation, and using again (3.5),

_ —1 -1
det eX = det BeX B~ = det BXB™" = WBXB™" _ otrX

3. We can write:

X > Xkyn—k
S D3RR o ZZ,M_

|
j=0 J: j:O n=0 k=0
o0 n
_ 1 N\ kyvn—k (X+Y)"
=Y LS ()= B
n=0 k=0 n=0

Corollary 3.8. Exponential map of GL (1)

The assignment t +— e is a smooth curve in GL(V') that takes the value I att = 0 and such

that the tangent vector at I is X. Hence e = exp(tX), so that exp: gl(V) — GL(V) is

just exp(X) = eX.

tX

Proof From the previous lemma we deduce that ¢ — e** is a homomorphism. Since

d ,x d = (tX)™
- —— = X tX =
- m! - t=0 ~ “
m=0 t=0

by uniqueness we have the assertion.
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Proposition 3.10. Naturality of exp

Let p: G — H be a Lie group homomorphism. Then the following diagram commutes:

dep
g——bh

expg expy

that is ¢ 0 exXp = exp 0 de .

)

Let X € g. Then t — expg(tX) is the unique one-parameter subgroup of G that takes
the value e and has tangent X at ¢ = 0. Since  is a homomorphism, then ¢ — @(exp,(tX)) is
a one-parameter subgroup of H that takes the value ey at ¢ = 0 and whose tangent vector at t = 0
is

|, Pt = deg(X).

But the only one-parameter subgroup of H with these properties is ¢ — expy (t de,(X)). Hence
for all ¢ € R we have p(exp(tX)) = exp(tde, (X)), so that ¢ o exp = exp od, . O

Since g is connected, then exp(g) C GY, the connected component of (G, but there is not

necessarily equality. In other words, exp: g — G may not be surjective, even when G is

connected.

Example 3.29 We want to show that the exponential map is not necessarily surjective, even for
connected Lie groups. Let G = SL(2,R) and g = s[(2,R). We show that exp: sl(2,R) —
SL(2,R) is not surjective.

The argument is in two steps:

1. We first show that the image of exp(s[(2,R)) consists of matrices that are squares. That is
if A € exp(sl(2,R)), then A = B? for some B € exp(sl(2,R)).

2. We will show that there exists A € SL(2,RR) that is not a square. We will do this
by showing that if A € SL(2,R) is a square, then tr(A) > —2. It follows that
exp: 6£(2,R) — SL(2,R) misses the whole open set { A € SL(2,R) : tr(4) < —2}.

l.Let X € sl(2,R) and let A := exp(X). Then

X X X\’
A =exp(X) =exp (2 + 2) = exp <2> = B,

where B = exp (3 ). Notice that if X € s[(2,R), then tr(X) = 0, so tr (3 ) = 0, which implies
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that B € exp(s((2,R)) as well.

2. Any matrix B € GL(2,R) is a root of its characteristic polynomial A2 — tr( B)\ + det(B), that
is
B? — tr(B)B + det(B)I = 0.
By taking the trace of this equation, and assuming further that B € SL(2, R), we obtain
tr(B?) — tr(B)* +2=0.
Letting A = B2, this implies that

tr(A) = tr(B)* —2 > —2.

-2 0
But {A € SL(2,R) : tr(A) < —2} is not empty since for example if A = ( 0 ), then
tr(A) < —2. Thus expg,2 gy is not surjective.

In the previous example the non-compactness of SL(2,R) plays an important role, as the

following theorem shows:

The exponential map of a compact connected Lie groups is surjective.

For a non-compact connected Lie group G, the next best thing to surjectivity is the
following: every g € G can be written as exp X - - - exp X, for Xy,..., X,, € g (von Neumann,
1929). The proof is as in the extension of a local homomorphism. A more recent result shows that

in fact n = 2 is sufficient.

The proof of Cartan’s Theorem is not difficult, but it relies on results either in differential
geometry or in the structure theory of Lie groups that we have not yet covered. We give here the

idea of two proofs. For a complete proof see for example [1, Chapter 16, 17].

1. Any compact connected Lie group can be given the structure of a Riemannian manifold
with a bi-invariant metric. (In fact, this is almost a characterization, in the sense that a Lie group
admits a bi-invariant metric if and only it is the product of a compact Lie group and an Abelian
Lie group.) This can be done in either one of two ways: either by averaging an arbitrary positive
definite inner product on g and then translating it to a left invariant positive definite inner product
on TG, that is to a bi-invariant metric on G; or by embedding G into U(n) using the Peter—Weyl

Theorem, and obtaining a bi-invariant metric on G from the one on C™*".
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In either cases, since GG is compact and connected, hence complete, one can use the Hopf-
Rinow Theorem and deduce that any two points are joined by a geodesic. It follows that the
Riemannian exponential, obtained by following geodesics, is surjective. One can then prove that

the Riemannian exponential coincides with the Lie group exponential.

2. One can easily see that the exponential map of a torus is surjective. Then one can show that

in a compact connected Lie group, every element lies in a maximal torus, and all tori are conjugate.

Example 3.30 Let

1 *
Ny = € SL(n,R) »,
0 1
with Lie algebra
0 *
n = € sl(n,R)
L \0 0

n—1 .
If A €n,then A" =0,s0exp(4) = > % Moreover, if B € Ny, then we can write B = I + B’
j=0

where (B’)" = 0. Define then log: N; — ny, by
n—1

log(B) = log(I + B') := Z(—l)j_
j=1

i
1 (B

J
Finite power series manipulation shows that exp: ny — Nj and log: N1 — n; are inverse of each
other, and so exp is surjective.

We now see some applications of the exponential map. We saw that if X,Y € GL(n,C)

commute and e is the matrix exponential then eX Y = eXeY.

Proposition 3.11

If G is a connected Abelian, then exp: g — G s a group homomorphism, that is
exp(X +Y) = exp(X) exp(Y)

forevery X, Y € gand G = g/T', where I := ker exp is discrete. .

Notice that we could recover here immediately the classification of connected Abelian Lie

groups.

=<
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Since G is Abelian, the multiplication m: G x G — G is a homomorphism. In fact

m(g1, h1)m(g2, ha) = gih1g2ha = g192h192 = m(g192, h1h2)
and we saw already that d(. .ym(X,Y’) = X + Y. Using these two facts and the naturality of the

exponential map we have that the following diagram commutes:

d(e,e)m
gXg—>9

eXPax G eXPg

G xG—" G

In other words
expg(X +7Y) = expg d(coym(X,Y) = mexpgya(X,Y)
= m(expg(X), exp(Y)) = expg(X) expg(Y),
where we used that, if G and H are Lie groups, expgy g = €XPg X €xXpy.
Since exp is a homomorphism, its image is a subgroup containing a neighborhood of the

identity. By Proposition 2.1.7., the exponential map is surjective. The fact that ker exp is discrete

follows from the fact that it is a local diffeomorphism. O

We can now prove a characterization of Lie groups related to Hilbert’s fifth problem. In 1900
Hilbert formulated 23 problems, the fifth of which, reinterpreted in modern terminology, contains
the question as to whether it makes a difference to require in the definition of a Lie group that it
is a topological manifold or a smooth manifold. This was proven in the negative (as expected) at
the beginning of the 50s by Gleason [2], Montgomery—Zippin [4] and Yamabe [10]. The possible

existence of small subgroups was recognized as one of the main difficulties involved in the proof.

Definition 3.18. Small subgroup

A topological group G is said to have small subgroups if every neighborhood of the identity

contains a non-trivial subgroup. &

A connected locally compact topological group is a Lie group if and only if it has no small

subgroups.

We are not going to prove the “if” direction of the theorem in general. We are only going

to illustrate it with the following two results. A good reference in modern terminology is [8,
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Theorem 1.1.13].

Let L .= [] G, be an infinite product of non-trivial topological groups. Then L has small
n>1
subgroups. V)

Proof Let V be a neighborhood of e in L. By definition of the product topology there exists
k

08

k > 1 and neighborhoods V1, ...,V of ein Gy,...,Gpsuchthat V O [[ V; x ] Gj. Hence
i=1 j=k+1
00 ' !
V contains the group (e,...,e) x [[ Gj. O
J=k+1

For compact groups the fact that the condition of having no small subgroups is sufficient was

already proven by Von Neumann:

Theorem 3.13. (Von Neumann)
If a compact topological group K has no small subgroups then it is a Lie group. v

Proof According to Peter—Weyl Theorem, the left regular representation of K decomposes as

a (not necessarily countable) direct sum of finite dimensional irreducible unitary representations.
Let us consider the continuous injective homomorphism
A K= JTU®)
pGK
re (o)) g

where the U(A,) are compact groups. If A(K') has no small subgroups, then there exists n > 1

such that
AK) NS (eprs-o-r€p,) X H U(Ap) o ={e}.
pEK
p#ﬂla---vﬂn
But then pr: A(K) — U(A,,) x --- x U(A,,) is injective. Therefore K can be embedded as a
closed subgroup of a finite dimensional unitary group, hence it is a Lie group. O

Proof [Proof of Theorem 3.12 (=)] Let 0 € Uy C g and e € V., C G be open neighborhoods
such that exp: Uy — V, is a diffeomorphism, and let W, := exp %VO. We will show that W, does

not contain non-trivial subgroups H < G.
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s O\Uo exp ,\L’i Q/XPCUO)
- %Uo ‘\ /\} Ve \I\] c\eQ{ lu
O EE N o~ Ne=epplz
v - ) ZM \ d : \
T x| ///%IMPX o
{ ( 5 X /( [ [ ;’ (( [
( Q L~ /’ < ( K_// / /
L _ , k -
N s -
~— _ - — — — -~

Suppose by contradiction that {e} # H is a subgroup of G suchthat H C W,. Lete # h € H
and X € %U() such thatexp X = h. We will show that there are powers of i notin H, contradicting
that [ is a subgroup. In fact, let n € N be such that 2" X € %Uo and 2" 1 X ¢ %Uo. Notice that,
since 2" X € U, then 2" X € Uj. Then

n 1
K2 = exp(27T1X) € exp (UO ~ 5U0> CV, ~ We..
So 2" ¢ H C W, which is a contradiction. 0l

Hence, given a topological group G, there is a criterion to determine whether or not the group
G can be made into a Lie group. A natural question is then whether a Lie group can have several

smooth structures. The answer is a corollary of the following theorem:

Theorem 3.14. Continuous implies smooth

Any continuous homomorphism of two Lie groups is smooth.

Corollary 3.9

Two real Lie groups that are isomorphic as topological groups are isomorphic as Lie groups. v

Proof  The continuous isomorphism would be a diffeomorphism between the two smooth

structures. O

We start the proof of Theorem 3.14 with the following.

Proposition 3.12. (Local coordinates)

Let G be a Lie group with Lie algebra g and let g1,...,0r be subspaces such that

g=91 D - D gr. Then the map
gD Dgp — G
X1+ 4+ X — expa(X1) - expa(Xk)
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is a smooth map and a local diffeomorphism ¢: W1 + -+ -+ Wy — V,, where 0 € W; C g;

and e € V, C G are open neighborhoods. In fact dy¢ = 1d. o

We take for simplicity & = 2, we identify g; @ go with g1 x go and we set exp; := expg |g;
so that dg exp; = Idg,. Then
dop(X1 + X2) = d(0,0)0(X1, X2) = dom(exp; X expy) (X1, X2)
= d(¢,eym(do expy X1, dg expy X2)

ud de,eym (X1, Xo) = X1 + Xo,

where in (x) we used Proposition 3.9.5. O
As a consequence of the proposition, if {X7, ..., X, } is a basis of g, and
n
U:={ (t1,...,tn) eR":thXj eEWi+---W,»,
j=1
the map
Ve — U

n n
[0 thXj = Hexp(thj) = (t, ..y tn)
j=1 J=1
gives a chart at the identity in G. Using this coordinate chart and left translation, we can construct
an atlas for G.

[Proof of Theorem 3.14] Let h: G — H be a continuous homomorphism of Lie groups,

{X1,...,X,}isabasisof gand g = g1 @ - - - @ gy, where g; = RX;. Let exp, := expg |q, and

o: g — G
X1+ Xy > (expy X1) - (exp, Xp) .
or
po: U — G
(t1y. . tn) > expy(t1X1) - - exp, (tn Xn)
where

P U — Wi+ +W,Cyg
(tl,...,tn)'—>t1X1—|—~-'tan.

We assume now the following:
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Proposition 3.13
Any continuous homomorphism R — G is smooth. o

Collecting the above maps, we have that

U 5 Wit+w, 5 v, H

n n
(tl, ... ,tn) =X+ Xy = H exp(tiXi) — h (H eXp(tiXi)> .
i=1 i=1
Since A is a homomorphism

h <H(exp(tiXi)> =[] hlexp(tiXi)) .

i=1 i=1

Letnow h;: R — G be defined as h;(t) := h(exp(tX;)). Then h; is a continuous homomorphism,
hence smooth by Proposition 3.13. Thus [[;" ; h(exp(t;X;)) = [];; hi(t;) and since ¢ o ) is a
diffeomorphism, h is smooth at the origin and hence smooth everywhere. O

Hence we are left to prove the proposition, which is where the heart of the issue lies.

Proof [Proof of Proposition 3.13] Let 0 € Wy C g and e € U, C G be neighborhoods such that
expg : Wo — U, is a diffeomorphism, and let e € V. C G be such that Ve2 C U.. Note that
V. C V2.

Claim 3.5.1. Every element g € V. has a unique square root
1 _
vi=eo (je0 )

In other words, the map V, — U, defined by g — g* is injective and the image contains V.

In fact, if g € V. C U,, let X € W be such that exp(X) = g, and let us consider the
one-parameter subgroup of G defined by ¢ x () = exp(tX). Then ¢ x (1) = exp(X) = g and

9> = ox(1)? = px(2) = exp(2X) = exp(2exp~ ' (g)).

1

But also g2 € U,, where exp! is a diffeomorphism, so

_ _ 1 _ _ 1 _
exp(g?) = 205071 (9) = G e ) e o) = e (o (6?)) =
which proves the claim.

To conclude the proof it will be enough to prove the following:

Claim 3.5.2. Let X € g be such that exp(X) = h(1), then h (5 ) = exp (3 X).
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In fact, assuming the claim, if p € Z then

1\” 1 P
h (ﬁ) =h <> = exp <X> = exp (QX) .
2n 2n 2n 2n
So the assertion holds for all dyadic numbers. Since these are dense in R, the conclusion of

Proposition 3.13 follows from the continuity of A.

We show the assertion in Claim 3.5.2 by induction. We start by justifying why the hypothesis
holds. In fact, since h is continuous and V, is open, there exists € > 0 such that if |¢| < ¢, then
h(t) € Ve. By rescaling h (that is considering h¢(t) := h(t/€)), we may assume that ¢ = 1, so
that h(1) € VL.

For the base case n = 1, set gg := h(1) € V. and X := exp~'(go). Then by Claim 3.5.1:
1 _ 1
V90 = exp <2 exp 1(go)> = exp <2X>
. . _ _ 7 (1)2 1\ _ _ 1
is the unique square root of g; € V.. Butalso go = h(1) = h (5) ,s0h (5) = /91 = exp (§X).

Now assume that for all £ < n we have h (2%) = exp (Q%X) Set g, :==h (2%) e V. By

Claim 3.5.1 again:

h <21n> = gn = exp (; exp‘l(gi)>
i (o 2))) ol ()
o (o e 1)) oo ()

This concludes the proof. O

The following theorem was already mentioned but we can finally prove it. It was first shown

by Von Neumann for G = GL(n, R), then extended to all Lie groups by Cartan.

Let G be a real Lie group and H a closed subgroup. Then H is a real Lie group.

The result does not hold if G is a complex Lie group, that is, if it is locally diffeomorphic

to C™ for some n. The point is that being a submanifold does not force a complex structure on the
group.
Example 3.31 GL(1,C) = C* is a complex Lie group, but S is a closed subgroup that is not a

complex Lie group, for instance because it is odd-dimensional. It is however a real Lie group.

=<
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The proof will rely upon the following two lemmas that are left as an exercise.

Let H be an abstract subgroup of the Lie group G and let b be a subspace of g = Lie(G).

Let 0 € Uy C gand e € V., C G be open neighborhoods such that exp : Uy — V. is a
diffeomorphism. Suppose that

exp(UpNh)=VeNH. 3.6)
Then:
1. H is a Lie subgroup of G with the induced topology;

2. his a Lie subalgebra of g;

3. b = Lie(H). .

Idea of the proof: Use (3.6) to define charts on H and use that if X € g, then X € b if and
only if exptX € H forallt € R (see Warner, p.104).

We saw that given a Lie group G, the pair (H, ) is a Lie subgroup if
1. H is a group;
2. H is a manifold, and the the smooth structure is compatible with the group structure;
3. ¢(H) is a submanifold of G.

In fact, the requirement of the compatibility of the group structure and the manifold structure of H

is not necessary, as one can prove the following:

Fact: If H is a subgroup of a Lie group G admitting a manifold structure that makes it into a
submanifold of G, then the manifold and the group structure are compatible. Hence H (or p(H))
is a Lie subgroup of G.

Sketch of proof. Take T, H and consider the distribution D obtained by left translation via
elements of G. Then one can show that H is an integral manifold of D and hence D is an involutive

distribution. One can then show that the group operations are smooth (Warner, p. 195).

In fact, (3.8) is exactly what is needed to give H a manifold structure. The fact that the
topology of H coincides with the topology induced by G follows from the fact that H is closed in
G.
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Let G be a Lie group with Lie algebra g. If X,Y € g, then for t small enough
exp(tX) exp(tY) = exp (H(X +Y) + O(t?)), (3.7)

where t%O(tQ) is bounded at t = 0.

[Proof of Theorem 3.15] We want to identify a subspace h of g that will satisfy (3.6). To
this purpose, let
h:={X cg:exp(tX) € Hforallt € R}.
Then

1. we first show that (3.7) implies that fj is a subspace,
2. then that b and H satisfy (3.6) for appropriate Uy and V..

To see that h is a subspace, observe that it is closed under multiplications by scalars. To see

that [ is closed under addition, observe that it follows from (3.7) it follows
(exp(tX) exp(tY))" = (exp (t(X +Y) + O(tQ)))n =exp (nt(X +Y) + O(nt2)) .

Replacing ¢ by £, one obtains

<exp (;X) exp (;y»n = exp (t(X +Y)+ TllO(t2)) :

which shows that
. t t "
lim (exp|{—X Jexp|—Y =exp(t(X +Y)).
n—o00 n n

Thus, since H is a closed subgroup, if X,Y € hthen also X +Y € h. Hence b is a subspace.

To show that H and § satisfy (3.6) we proceed by contradiction. Since exp(UyNh) C V. NH,
if (3.6) did not hold, for every Uy C g and V. C G such that exp: Uy — V. is a diffeomorphism,
we could find h € V. N H but h ¢ exp(Up N h). Thus let 0 € Wy C h be an open neighborhood
and (hy)r>1 C H asequence such that i, — e and hy, ¢ exp(W)).

Let now b’ be a complementary subspace of b in g, g = h @ b’ and, using Proposition 3.12,
choose 0 € Ny C Wy C hand 0 € N C b’ such that the map

Ny % N(/) — G
(X, X') + exp X exp X'
is a diffeomorphism onto its image A, > e.

By assumption hj, — e and so hy, € A, for all large k, so that hj, = exp(Xy)exp(X},)
for X, € Ny and X; € Nj. We need to investigate further the properties of X} and
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X,. Firstly, we know that hj ¢ exp(Wj), so since X € Nyo C Wy, we deduce that
X;. # 0 for all k. Secondly, since X, € Ng C Wy C b, we know that exp(Xj) € H.
Thus it follows from exp(X})exp(X;) = hy that exp(X)) = exp(—Xy)hy € H, that is
e # exp(X;) € H Nexp(Ny ~ {0}). We will show that this is impossible. In fact, let us
consider the sequence (X} );>1 constructed above and let Lj, := RX, which is an element of the
projective space P(h’). Since P(h') is compact, up to passing to a subsequence, the sequence Ly,

converges, say to L € P(h’).

This means that if we take X’ € L and ¢ > 0, then for any k > k(e) large enough we have:

o LyNB(X'¢) # o;

o [|Xill <&

o There exists nj, € Z such that || X’ — n; X || < e, that is n; X; — X’. This last property

follows from the Archimedean property of real numbers.

But then
exp X' = lim exp(n;X}) = lim exp(X})™ € H.
k—ro0 k—o0
This is a contradiction, since X’ € L C P(h’), and so exp X' ¢ H. O

3.6 The Adjoint Representation

CHECK WHETHER IT WAS NOT ALREADY DEFINED

Let GG be a Lie group. A representation of G over k (where k = R or C) is a continuous

(hence smooth) homomorphism 7 : G — GL(n, k). A representation of a Lie algebra g over k is
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a homomorphism g — gl(n, k). Any Lie group representation gives in turn by differentiation a Lie
algebra representation de7 : g — gl(n, k). Both G and g act on k"™ (via 7 and d.7 respectively)
and it is easy to see that if V' C k™ and G is connected, then V' is 7(G)-invariant if and only if is
d.m(g)-invariant. In fact, in the appropriate coordinates, the stabilizer Hy < GL(n, k) of V takes

* ok
the form Hy = ( and likewise for Lie(Hy) C gl(n,R). Thus 7(G) C Hy if and only if
0

*
dem(g) C Lie(Hy).

For each g € G we consider the inner automorphism of G defined in (2.6), ¢4(h) := ghg™*.
Since ¢y(e) = eforall g € G, decy : g — gis aLie algebra automorphism,and since cg o ¢y, = cgp,

it defines a representation of G into GL(g).

Definition 3.19. Adjoint representation

Let G be a Lie group.

1. The adjoint representation of G is
Ad: G — GL(g)

g+ decy .

2. The adjoint representation of the Lie algebra g

ad: g — gl(g)
is defined by
ad = d.Ad. &
By the naturality of the exponential map, we have the commutativity of the following
diagram
Ad(g)
g———>8
eXpPg 2 e
G—2 @
that is

expg 0Ad(g) = ¢4 0 expg , (3.8)
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as well as of the diagram

expg CXPGL(g)

that is

expgr(g) °ad(X) = Ad o expg(X) . (3.9)

Proposition 3.14

If G is a closed subgroup of GL(n,R), then
Ad(g)(X) = gXg™

forallg € Gandall X € g. .

Proof Since G < GL(n,R), the assertion follows from the fact that c, is linear, and so d.cy = ¢4 R k9

and from (3.8).

One can also give an explicit characterization of ad, which holds however for all Lie groups

and not necessarily only for the linear ones.

Proposition 3.15

If G is a Lie group with Lie algebra g, then for all X,Y € g
ad(X)(Y) = [X,Y].

Proof We start by illustrating a proof that is just very sloppy but gives the idea of what one is

looking for. By definition of Ad and ad, if X,Y € g we can write
ad(X)(Y) = (deAd)(X)(Y)
— 4 Ad(exp(tX))(Y)
dt |
= 2 (decoe)(Y)
at|,_, exp(tX)

d d
@, ds
d
dt

S Cexp(tX) (Y) (eXp(SY))

T exp(tX) exp(sY) exp(—tX)

s=0

t=0
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If G is a linear group, d.cy = cg4, so that Ad(g) = ¢4 (Proposition 3.14) and

= % exp(tX)Y exp(—tX)=XY —-YX.
s=0

If GG is not linear one would need to compute also the derivative with respect to s.

ad(X)(Y)

t=0 ds

The problem (in fact, one of the problems) with the above “proof” is that we considered only
vector fields at the identity, while instead if we want to take derivatives we need to consider the
vector fields defined in a neighborhood. In other words, if Z € g, we denote by Z € Vect(G)%

the left invariant vector field whose value ate € G is Z.
The naturality of the exponential map (3.9), gives forall t.X € g
Ad(expg(tX)) = expgrg(ad(tX)).
But we saw in Corollary 3.8 that expgy,g) is just the matrix exponential, so that

Ad(exp(tX))(Y) = exp(ad(tX))(Y) = 24Xy =
2 (3.10)
=Y +tad(X)Y + S R(t, X)Y .

where R(t, X) is the smooth remainder. By considering the invariant vector fields associated to

the ones in (3.10) and differentiating one obtains for f € C*(Q)

(ad(X)Y)y(f) = % —0 (Ad(exp(tX)(Y))y(f) (.11

and the rest of the proof will be the technical calculation of the derivative on the right hand side.
Recall that Z, 4(f) is the directional derivative of f at g in the direction of Z g» that is
Zy(f) = (dgf)(Zg) = (dgf)(deLg)(Z) = de(f © Lg)(Z).

I. Since Z is the tangent vector at s = 0 to the curve s — exp(sZ), we have at the point

gexp(tX),
- d
dexp(tX)(f) = de(f © Lgexp(tX))(Z) = % _0 (f © Lgexp(tX))(eXp(SZ))
= % Szof(g exp(tX) exp(sZ)).
2. Ifinstead Z = Ad(h)(Y) = d.cy(Y) is the tangent vector to the curve s — hexp(sY)h ™1,
then
d
(Ad(R)(Y))g(f) = de(f o Lg)(Ad(R)(Y)) = — y (f o Lg)(hexp(sY)h™") =
= % f(ghexp(sY)h™).
s=0
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3. Finally, we use that if F'(u,v) is a differentiable function, then

d
— F(t,t) = — F(t,0 F(0,1).
dttzo (7) dttzo ( ) dtto (7)
Indeed, let A: R — R? be the diagonal embedding ¢ + (¢, ), so that F(t,t) = F o A(t).
Then
d
@ Fo A(t) = dO(F e} A)(l) = d(070)F e} dOA(l) = d(0,0)F(l, 1)
t=0
oF oF d
=—(0,0) + -—(0,0) = — F(t,0)+ — F(0,1).
5 00+ 5000 = 5 F(t0)+ gl F(0,0)
We can now finally complete the proof. We need to
From (3.11) and 3. with h = exp(¢X) one has define very-
d d idetilde
X)) = 5| 75| Fexp(tX) exp(sY) exp(—tX) widetilde
d s command
3.
= (d - f(gexp(tX)exp(sY))>

Flgexp(sY) exp(—tX»)

+(dt

t=0 ds 5=0
= Ccli‘t()}}gexp(tX)(f) - (;i‘ ) Xgexp(sy) (f)
= (X oY )g(f) = (V0 X)y(f) = [X.V]g(f);
where in the next to the last equality 1. was applied to Z }7 xp(tx) and Z,=X gexp(sY)-
Evaluating at g = e, we conclude that ad(X)(Y) = [X,Y]. O
Example 3.32 Example of Ad(a) and ad(a) for a = diag(Aq, ..., An) € GL(n,R) and of

Ad(SL(2,R)) and ad(sl(2,R)).

A priori we only have that ad(g) C gl(g), but in fact one can easily check using the Jacobi
identity that

ad(g) C Der(g) C gl(g) -

In fact, recall that if g is a Lie algebra, a derivation 6 € Der(g) is an endomorphism d: g — g such
that [ X, Y] = [0(X), Y] + [ X, 6(Y)]. Then using the Jacobi identity,

ad(X)[Y, 2] = [X, [V, Z]] = [[X, Y], Z] + [V, [X, Z]] = [ad(X)Y, Z] + [V, ad(X) Z] .

For further structural properties of the group of automorphisms, see [7, P. 159].
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Definition 3.20. Ideal in a Lie algebra

A subspace Y of a Lie algebra g is an ideal if forall X € hand allY € g, [X,Y] € b.

Proposition 3.16

Let G be a connected Lie group with Lie algebra g, H a closed subgroup with Lie algebra

)

b. Then H is normal in G if and only if § is an ideal in g. o

Proof
H isnormal < c4(H) = H forall g € G < Ad(g)(h) =bhforallg € G &

< ad(X)(h) C hforall X € g < b is an ideal.

Proposition 3.17

Let G be a connected Lie group. Then Z(G) = ker Ad and Z(g) = ker ad. N

Proof We will show the statement for Lie groups, and the one for Lie algebras will follow readily.
If g € Z(G), then ¢, = 1d, so that Ad(g) = Id, which means that g € ker Ad.

Conversely, let us suppose that g € ker Ad. Then decy(X) = Ad(g)(X) = X for all
X € g. Applying exp on the last two terms of the above equality and using (3.8), one obtains that
cgexp X = exp X. Thus ¢, commutes with all elements that are in the image of the exponential
map. However the same proof still works for all elements in G, since G can be generated by

elements contained in a neighbourhood where exp is a diffeomorphism (see the remark after
Cartan’s Theorem 3.11). ]

= Chapter 3 Exercise <~

1. Let G' be a Lie group and H < G a closed normal subgroup. Show that G/ H is a Lie group
and that Lie(G/H ) = Lie(G)/Lie(H).

2. Show that d; det = tr, the usual trace map R"*"™ — R. Deduce that SL(n,R) is a Lie
group of dimension (n? — 1).

3. Show that O(p, ¢) and U(p, ¢) are Lie groups.

4. If X; € Vect(M) is p-related to X/ € Vect(M'), for i = 1,2, then [ X, X»] is -related to
X1, X3

5. Let M, M be smooth manifolds, let :: N — M be an immersed submanifold and let
f: : M — M be a smooth map such that f(M) C N. Show that it o f: M — N is




3.6 The Adjoint Representation —-94 -

10.

11.

smooth.

. Let GG be a connected Lie group, H a topological group and p : H — G a covering map.

Then there exists a unique Lie group structure on H such that pis a Lie group homomorphism
and the kernel of p is a discrete subgroup of H.

Let G be a connected Lie group and (H, p) a covering with the Lie group structure given by
the previous point. Then p is a local isomorphism of Lie groups, and d.p is an isomorphism

of Lie algebras.

. Letp: H — G be a connected Lie group homomorphism. Then p is a covering map if and

only if d.p is an isomorphism.

Let D < R" be a discrete subgroup. Then there exist x1, ...,z € D such that:
(a). x1,...,xy are linearly independent over R;
(b). Disthe Z-span of z1,...,zg, thatis D = Zxy + - - - Zxj, (in other words, 1, ..., Tk

generate D as a Z-submodule).

Thus a discrete subgroup of R is isomorphic to Z* for some 0 < k < n.
Let H be an abstract subgroup of the Lie group G and let h be a subspace of g = Lie(G).
Let 0 € Uy C gand e € V. C G be open neighborhoods such that exp : Uy — V. is a
diffeomorphism. Suppose that exp(Up N ) = Ve N H. Then:

(a). H is a Lie subgroup of GG with the induced topology;

(b). b is a Lie subalgebra of g;

(c). h = Lie(H).
Let GG be a Lie group with Lie algebra g. If X, Y € g, then for ¢ small enough

exp(tX) exp(tY) = exp [H(X +Y) + O(t?)]

where 5 O(#?) is bounded at t = 0.




Chapter 4 Structure Theory

=0

4.1 Solvability

We defined in the previous section the adjoint representation of the Lie algebra of a Lie group.

One could also define the adjoint representation of an abstract Lie algebra g.

Definition 4.1. Adjoint representation, 11

Let g be a Lie algebra. The adjoint representation is defined as

ad: g — gl(g)
X — ad(X),
where ad(X)(Y) := [X,Y] forall Y € g.

&

That this definition coincides with the one for the Lie algebra of a Lie group is the content of

Proposition 3.15.

Definition 4.2. Characteristic ideal
Let g be a Lie algebra. An ideal b is characteristic if d(h) C b for every derivation

0 € Der(g).

)

The importance of characteristic ideals lies in the following result:

If€ C gisanideal and Yy C € is a characteristic ideal in ¥, then by is an ideal in g. v

Proof We saw that because of the Jacobi identity, if X € g the endomorphism 6x: g — ¢
defined by dx(Y') := [X,Y] is a derivation of g. Since £ C g is an ideal, dx (¢) C € and hence
dx € Der(t). Since h C ¢ is characteristic, 0x(Y) = [X,Y] € hforall Y € . Thus b is an ideal
in g. L]

Example 4.11If 6 € Der(g), then §[X,Y] = [0X,Y] + [X,dY]. So [g, g] is a characteristic ideal,
where [g, g] is defined as the span of elements of the form [X, Y], for X, Y € g.
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We set inductively

o =g, g]
gt =[g® g7,

Then g'*! is a characteristic ideal of g(i), hence an ideal of g, by Lemma 4.1.

Definition 4.3. Solvable Lie algebra

Let g be a Lie algebra. We call
the derived series of g. We say that g is solvable if g*) = {0} for some k. .

The simplest example of a solvable Lie algebra is an Abelian one.

Proposition 4.1

Let g be a Lie algebra. The following are equivalent:

1. g is solvable.
2. There exists a chain of subalgebras g D g1 D g2 D -+ D gn = {0} such that
(a). gi4+1 is anideal in g;;

(b). 9i/@it1 is Abelian.

)

Proof (=) Set g; := g(¥. Then the g; are ideals in g and g;/g;+1 = g”/[a"), g] is Abelian.
(<) We will argue by induction on the length n of the series to show that a®) C gg, so that if
ar = {0} for some k then also g(¥) = {0}.
If n = 1then g D g1 = {0}, so that g is Abelian and hence solvable.
Now let n > 1 and let us suppose that g("_l) C gn—1- Then
g™ = [g", " V] C [g3-1,80-1] C g,

where the last inclusion follows from the fact that g,,—1/g,, is Abelian. ]

Corollary 4.1

Let g be a Lie algebra and let ) C g be an ideal. Then g is solvable if and only if h and g/b

are solvable. v,

Remarlk It follows that the class of solvable Lie algebras is the smallest class C such that

1. Abelian Lie algebras are in C;
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2. If {0} — h — g — g/b is a short exact sequence and h, g/h € C, then g € C.
Proof [Proof of Corollary 4.1] (=) Obvious.
(<)Letg/h Dl3 Dla D+ DIl = {0} be a chain of ideals such that [;/l;11 is Abelian and

similartly h D h; D --- D b, = {0}. Let p: g — g/b be the quotient map. Then defining
gi :=p '(l;) for 1 <4 < kandg; := h;_j, for k < i < k -+ n we obtain a chain of ideals

gop () > Dp ') =hDbh1 D Db, ={0}

such that g; /g; 1 is Abelian. O
Example 4.2
( 3
( 0 0 * *
0 = *
* *
n= € gl(n,R) p ;nM) = o ) = U
0 * R
0 0
0 )

and so on. So n is a solvable Lie algebra.

Definition 4.4. Solvable Lie group
Let G be a connected Lie group. Then G is solvable if Lie(G) is solvable. &

Example 4.3 The group

N = € GL(n,R)

is solvable.
Let G be a connected Lie group G. The following are equivalent:
1. G is solvable.
2. There exists a sequence of closed subgroups {G;} such that:
(@) G>G1 > >Gg={e};
(b). Git1 9Gy;
(¢). Gi/Gjit1 is Abelian.
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(<) Obvious, by taking the Lie algebras of these Lie subgroups (see Exercise 1.).

(=) If G is solvable, then g is solvable, so that the derived series
has the desired properties; the problem is that the corresponding Lie groups are not necessarily

closed. The idea of the proof is to replace each ideal in the derived series with an ideal with the

same properties but such that the corresponding Lie group is closed.

We will start with g(!) and proceed inductively. Let G be the connected Lie subgroup
corresponding to gM), and let g7 be the Lie algebra of the topological closure G of GG1. We have
that [g, g] = g(l) C g1 C g, hence g1 must be an ideal (since it contains all brackets), so that
G1 < G. Moreover, by definition of [g, g] there is an onto map g/g") — g/g7, so that g/g7 is
Abelian.

We now have
We checked that the inclusion g1 C g has the desired properties, and now we need to check the

same for g?) C g7. Namely we need to check that:

I. g is an ideal in g7, which is obvious since g(? is an ideal in g O §;

2. a1/9® is Abelian.

Notice that saying that g/ g is Abelian is equivalent to saying that the gj-action on gy / 9@ via
ad is trivial. Indeed:
a1/9? is Abelian < (g7, 71 € g
& [X, Y] eg? forall X,Y e g
Hix,y +9?) e g? forall X,Y €
< ad(gr)(@i/s?) C g,

where () holds since g? is an ideal in g;. The same is true if we replace g by g, since g? is

an ideal also in g"). Hence
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g(l)/g(Z) is Abelian < the g(l)—action on g(l)/g@) via ad is trivial <
the G -action on g™V /g® via Ad is trivial <
the G'-action on g(l) / 9(2) via Ad is trivial <
the gi-action on g(l) / 9(2) via ad is trivial <

the g(l)—action ongy/ 9(2) via ad is trivial <

O

the G1-action on gy / g via Ad is trivial <
& the G1-action on g7 /g'?) via Ad is trivial <
< the gy-action on g1/ 9(2) via ad is trivial <
& E/Q(Z) is Abelian .

The rest follows by induction. O

Theorem 4.1. Lie’s Theorem

1. Let G be a connected solvable Lie group and let m: G — GL(n,C) be a complex

representation. Then there is a basis of C™ with respect to which w(G) consists of

* *
upper triangular matrices, that is 7(G) < 0 . € GL(n,C)
0 *

2. Let g be a solvable Lie algebra and p: g — gl(n, C) a complex representation. Then

there is a basis of C™ with respect to which p(g) consists of upper triangular matrices. O

Corollary 4.2. Solvable matrix groups

Let V' be an n-dimensional vector space and let G < GL(V') a Lie group with Lie algebra
g C gl(V'). Then the following are equivalent:
1. The Lie group G (or the Lie algebra g) is solvable;

2. There exists a G-invariant (or g-invariant) flag;

3. There exists a basis of V such that G (or g) consists of upper-triangular matrices. v

We now move to the proof of the Lie Theorem, for which we will need some preliminaries.
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Definition 4.5

1. Let G be a connected Lie group and : G — GL(n, C) a representations. We say that

v is a common eigenvector of {m(g) : g € G} if 7(g)v = x(g)v, where x: G — C*
is a smooth homomorphism.
2. Let p: g — gl(n,C) be a Lie algebra representation. We say that v is a common

eigenvector of {p(X) : X € g} if p(X)v = N(X)v, where X is a linear map. %

Let m: G — GL(n,C) be a Lie group representations. A vector v € V is a
common eigenvector of {m(g) : g € G} if and only if it is a common eigenvector of
{dem(X) : X € g}. Moreover

X(exp(X)) = )
forall X € g.

By differentiating, it is obvious that if v is a common eigenvector for 7(G) it is also a

common eigenvector for d.m(g).

To see the converse, let v be a common eigenvector of d.m(g) and let G, := {g € G :
m(g)Cv = Cuv} be the stabilizer of the line Cv. We want to show that G,, = G. By definition G,

is a closed subgroup of GG and hence a Lie group whose Lie algebra is
Lie(Gy) ={X € g: exps(tX) € G, forall t € R}
={X €g: m(exps(tX))Cv = Cuv forall t € R}
={X € g: expgr)(tdem(X))Cv = Cvforallt € R}.
Now observe that if A € End(V'), then
exparv)(tA)Cv = Cv & A(Cv) C Co.

In fact (<) is immediate by the exponential series and (=) follows from the fact that A =

. expgr(v) (t4)—1d
limy g — 20—

Thus
Lie(Gy) ={X €g: den(X)(Cv) Cc Cv} =g

by hypothesis. Since GG s connected, this implies that G, = G. Thus for all g € G there is a well
defined x(g) € C* with 7(g)v = x(g)v and since g — 7(g)v is smooth, so is x. Finally,

X(expG(X)v = 7(exp(X))v = expa vy (dem(X))v = ¢ Hu. 0
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Suppose that H < G is a connected normal subgroup. Then G acts on H by conjugation
G x H — H, (g,h) — c4(h) = ghg™!, hence it acts on Hom(H, C*) via (g,x) — ¢ - X, where
g-x(h) = x(c¢;'(h)) = x(9~'hg). Observe that Hom(H, C*) can be given a topology (e.g. the
topology of uniform convergence on compact sets, or the topology of pointwise convergence) such
that the G-action is continuous. Then if x € Hom(H, C*) is such that the G-orbit of x is finite, it
follows that  is a fixed point. In fact, if y were not a fixed point, then the GG-orbit would be discrete
and not reduced to a single point, which is not possible since GG is connected and the G-action is

continuous.

In a solvable group connected normal subgroups always exist, as the following lemma shows.

If G is solvable and dim G > 1, there exists a closed connected non-trivial normal subgroup
H < G of codimension 1.

Since G is solvable, there exists a closed normal subgroup G7 < G such that G/G is
Abelian, so that G/G1 = R" x TF. Let us choose a closed codimension 1 subgroup H; < G /G1:
if this were not possible it would mean that G/G has dimension 1, hence G} is a codimension 1
normal subgroup of G and we would be done. Then H := p~!(H;) < G, where p: G — G/G
is the projection, is a closed connected subgroup that is normal, since G/G7 is Abelian, and has
codimension 1. In fact, H; <G /G = p‘1 (H1) <G and a dimension count on the tangent spaces

of the underlying manifolds gives the desired assertion. O

If g is a solvable Lie algebra there exists an ideal b C g of codimension 1.

We can now prove Lie’s Theorem 4.1 for Lie groups. The statement for Lie algebras is very

similar and is left as an exercise (Exercise ??).

We will prove that there exists a common eigenvector v € C™. Then we can iterate the

proof, by considering a representation on C"/Cu.

The proof will be by induction on dim G. If dim G = 1, then this is just the fact that every

complex matrix has an eigenvalue, together with Lemma 4.2.

Now suppose that dim G > 1. By Lemma 4.3 there exists a closed connected non-trivial




4.1 Solvability - 102 -

normal subgroup H < G of codimension 1. For each y € Hom(H, C*) we set

Vy i ={veC":m(h)v=x(h)vforallh € H}.
By inductive hypothesis H has a common eigenvector, that is there exists x € Hom(H, C*) such
that V, # 0. Since V,, NVy, = @ if x1 # x2 and, in fact, C" = @ j < ooV, there is only a

finite number of x such that V}, # &. Moreover, for all g € G we have 7(g)V,, = V.. Indeed, let
veVyand g € G. Thenforall h € H:

m(h)m(g)v = w(g)m(g~ " hg)v = m(g)m(c; " (h))v = m(g)x(c; " (h))v = (g x)(R)7(g)v,
and so m(g)v € V..

Since there is a finite number of x such that V, # 0, arguing as in the remark above we infer
that V, is G-invariant, hence g-invariant. Now let g = RX @ b, where h = Lie(H ) and consider
the representation d.m : g — gl(V,). Then X acting on V), has an eigenvalue, and since each
vector of V, is an eigenvector of d.m(Y') for all Y € b, the eigenvector of X on V, will be a

common eigenvector of d.7(g) and hence of 7(G). O

As a corollary of the proof of Lie’s Theorem we have the following:

Corollary 4.4

1. Every finite dimensional irreducible complex representation of a connected solvable

Lie group (or Lie algebra) is one dimensional.
2. Every finite dimensional irreducible real representation of a connected solvable Lie

group (or Lie algebra) is at most 2-dimensional.

v
Let g be a Lie algebra over R. The complexification of g is the Lie algebra
g“ =C®rg=g+ig,
where the bracket is induced by the one on g. &

Note that if { X7, ..., X, } is a basis of g over R, then {1 ® X1,...,1® X,,} is a basis of g*
over C. Thus dim¢ g€ = dimp g, but dimg g€ = dimg C x dimg g = 2dimg g.

Corollary 4.5

The Lie algebra g is solvable if and only if ad(g®) is upper-triangular with respect to some

basis {1 ® X1,...,1® X, }, where {X1,...,X,} is a basis of g. v
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(=) Let g© = g + ig be the complexification of g. Since g is solvable, g* is solvable and,
by Lie’s Theorem ad : g© — gl(g®) is such that ad(g®) is upper triangular.

(«<=) Any upper triangular Lie algebra of matrices is solvable, hence ad(g®) is solvable. Moreover,
from ad(g®) = ad(g)+iad(g) we deduce that ad(g) is solvable, since it is a subalgebra of ad(g®).

We conclude from the short exact sequence
{0} = Z(g) — g — ad(g) — {0}
that g is solvable, since Z(g) is Abelian and thus solvable. O
It is not true that if g is solvable then ad(g) is upper-triangular.

Application We will show that there are Lie groups which do not have faithful representations,
that is we will exhibit a Lie group G such that for all 7 : G — GL(n, C) there exists g € G, g # e,
such that 7(g) = I.

1 =z =z
Let N = 0 1 y| :z,y,2¢€ R > bethe Heisenberg group, with center
0 01
1 0 =
H=Z(N)= 0 0fzeR
0 01
Let us consider
1 0 n
D =HnNSL(3,Z) = 0 0(neZ
0 0 1
We will show that
1 = ¢
G:=N/D={|0 1 y|:2,yecRtecs!
0 0 1

does not have faithful complex representations, that is that for any representation 7: G —
GL(n,C), n(H/D) = {I}.

Claim 4.1.1. 7(H/D) < = L.
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Claim 4.1.2. L cannot have non-trivial compact subgroups, hence 7(H/D) = {1d}.

[Proof of Claim 4.1.2] We show that if K < L is a non-trivial compact subgroup, K
can be conjugated into any neighborhood of I € GL(n, C), contradicting the no-small-subgroup

A1 0
property of the Lie group L. To this purpose, let g = € GL(n,C) with
0 An
0< A <--- <M. Thenifz < j:
1 * A1 0 1 * )\1_1 0
Cg t. . — t. . t. . - . —
1)) 0 An 1 0 M)
i )
1 *
Ai
=2 =
Aj
1)
ij
1 * 1 *
>\' n
= | cy = (l)
g A\
1 g 1)
ij ij
1 *
Now if € K, then the entries are bounded. Since \;/ Aj < 1 we have
1
1 * 1 *
n
(’%) . — 0 uniformly, and so cg . — I uniformly.
1/ 1
ij
Hence cZ(K ) is eventually contained in any neighbourhood of I. O

[Proof of Claim 4.1.1] We want to show that 7(H /D) < L, where

00 t
H/D=X10 0 0|:teR/Z
000
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To this purpose, if we set p := d.m, it will be enough to show that

0 = *
p(Lie(H/D)) C c < gl(n, C),
0 0

where Lie(H/D) = Lie(H) =: b since D is discrete. Since h is Abelian, a direct application
of Lie’s Theorem would imply that p(h) can be written in upper triangular form, which is not

enough as we need it to be strictly upper triangular. We can however argue as follows. Since

1 z =z
N = 0 1 y|:zy,z€R,, then
0 0 1
0 * =x*
n = Lie(N) = 0 0 = C gl(n,C),
0 0 0

which is solvable. By Lie’s Theorem p(n) is upper triangular and hence [p(n), p(n)] is strictly

)
upper triangular. But b = [n, n], so that p(h) = p([n, n]) = [p(n), p(n)] is strictly upper triangular,

as needed. O

4.2 Nilpotency

We want to refine the notion of solvability. If g is a Lie algebra, we set inductively
C(g) = [g.9]
C"*(g) := [g,C"(9)] = ad(g)(C"(g) = ad()" (g) -

Definition 4.7. Nilpotent Lie algebra

Let g be a Lie algebra. We call
g2 Clg) D C%(g) D

the central series of g. We say that g is nilpotent if C"(g) = {0} for some n. .

Remark

I. By definition g = C'(g) = [g,g]. Moreover g = [gV), gM)] C [g,C(g)] = C*(9)
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and by induction
g™ c C(g).

Hence any nilpotent Lie algebra is solvable. We will see that the converse is not true, but
that g is solvable if and only if [g, g| is nilpotent (Proposition 4.6).

2. Bach CY(g) is a characteristic ideal, and moreover C7(g)/C7*1(g) is Abelian. In fact
[Ci(g),C7(g)] C [g,C7(g)] = C/*(g). This, however, is not the point of nilpotent Lie
algebras. The important fact is that

C7(9)/C7H(g) € Z(a/C7H(g)), .1
which is much stronger than being Abelian. In particular it follows from (4.1) that if
C"tl(g) = {0}, then C"(g) C Z(g). That is, for a solvable Lie algebra the last non-zero
ideal in the derived series is Abelian, while for a nilpotent Lie algebra the last non-zero ideal
in the central series is central. In particular a solvable Lie algebra with no center cannot be

nilpotent.

ko ok
Example 44 g = {(0 ) € 5[(2,R)} is solvable but not nilpotent. In fact [g,g] =
*

0 =
{ (0 O) } = g = C(g) is Abelian but C(g) = [g, C'(g)] = C'(g). This is not surprising

since Z(g) = {0}.

Proposition 4.3

Let g be a Lie algebra. The following are equivalent:

1. g is nilpotent.
2. There exists a chain of subalgebras g O g1 D g2 D -+ D gn = {0} such that
(a). @i+1 is an ideal in g;;
(b). [9, 9] C git1.
3. There exists p € N such that ad(X;) o --- o ad(X,) = {0} forall X,,...,X, € g. N

(1) = (2) Obvious.

(2) = (1) The proof by induction is similar to the one for solvable Lie algebras. We have g = go.
(b)
Then C'(g) = [g,90] C g1, and inductively, if C*(g) C g, then C**1(g) = [g,C*(g)] C
(b) N
[g,9k] C gk+1. Then g, = {0} implies C"(g) = {0}.
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(1) < (3) Thisis obvious since C*(g) is generated by elements of the form ad (X1 )o- - - ad(Xy)(Y)
for X1,..., X, Y €g. ]

Example 4.51f g = € gl(n,R) 2, then g is nilpotent.
0

We saw that for solvable Lie algebras, if h C g is an ideal, then g is solvable if and only if
and g/ are solvable. The analogous statement nilpotent Lie algebras cannot be true, because if it
were we could show that any solvable Lie algebra is nilpotent by induction on dim g. In fact, let us
assume that g is solvable. If g is one-dimensional then it is certainly nilpotent. If dim g > 1, given
any ideal h C g, both h and g/b are solvable. Since their dimension is smaller than the dimension
of g, they would be nilpotent by inductive hypothesis and hence g would be nilpotent. The correct

statement instead is the following:

Proposition 4.4

Let g be a Lie algebra and by C g an ideal.
1. If g is nilpotent, then b and g/Y are nilpotent.

2. If g/b are nilpotent, and )y C Z(g), then g is nilpotent. N

In other words, it is not enough that h is nilpotent, but we need the stronger property that
b C Z(g).

1. is obvious from the definition.
2.1f g/ is nilpotent, let g/h D h; D --- D b, = {0} be a chain of subalgebras with the properties
as in Proposition 4.3, namely

I. bj41 C b is anideal and

2. [h;,b] Cbja.
If p : g — g/b denotes the projection, which is a Lie algebra homomorphism and g > p~1(h1) D
-+ D p~Y(bhy,) = b D {0}, it is easy to check that

1. p7Y(h;j41) C p~1(b;) is an ideal and

2. [p~H(by), 8] € p~H(bj41)-

Since h C Z(g), then b, 1 := [g, h] = {0}, so that g is nilpotent. O
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Definition 4.8. Nilpotent Lie group

Let G be a connected Lie group. Then G is nilpotent if Lie(G) is nilpotent. Iy
Let G be a connected Lie group. The following are equivalent:
1. G is nilpotent.
2. There exists a sequence of closed connected normal subgroups G; <\ G such that
(a). [G,G;] < Giy1 and
(b). G> Gy >--->Gy={e}.
3. There exists a sequence of closed connected normal subgroups G; <\ G such that
(a). Gi/Git1 < Z(G/Git1) and
(b). G>Gy>--->Gy ={e}. .
Proof Similar to the solvable case. 0l

We gave an example to show that if g is solvable, then g is not neessarily nilpotent. The next

proposition shows something more precise.

Proposition 4.6

g is solvable if and only if [g, g] is nilpotent.

Proof (<) Suppose that [g, g] is nilpotent. Then [g, g] is solvable. So g is solvable, with the same

derived series as the one for [g, g shifted by one.

(=) We will prove this implication in three steps.

(7) If g C gl(V) is solvable, where V' is a C-vector space, then by Lie’s Theorem g is upper

triangular. This implies that [g, g] is strictly upper triangular, and in particular nilpotent.

(74) If g is a solvable complex Lie algebra but not necessarily g C gl(V')), by Lies Theorem
ad(g) C gl(g) is upper triangular. So [ad(g),ad(g)] = ad([g, g]) is strictly upper triangular,
hence nilpotent. To deduce that [g, g is nilpotent, by Proposition 4.4 it suffices to show that
ker(ad|g4) € Z([g, g]). But this is immediate since ker(ad) = Z(g) C Z([g, g]).

(7i7) If now g is a real Lie algebra, let g€ = g + ig be its complexification. If g is solvable,
then g is solvable, so [g®, g©] is nilpotent by (4). Since [g, ] C [g, g©], we conclude that [g, g]
is nilpotent. O

The next theorem has a formulation similar to that of Lie’s Theorem, but for nilpotent Lie
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groups or Lie algebras. However it should be remarked that the theorem holds for any field, even

in positive characteristic.

Theorem 4.2. Engel’s Theorem

Let g C gl(V) be a linear Lie algebra over a field K, and suppose that for any X € g,
X™ = 0 for some n € N, that is any element of g is a nilpotent transformation. Then there

exists a basis of V with respect to which g is strictly upper triangular.

Q©

Remarlk It is not necessarily true that g is nilpotent it is strictly upper triangular. In fact, the Lie
algebra of diagonal matrices is nilpotent (since it is Abelian) but it does not necessarily have a

realization in which it is strictly upper triangular.

However we have:

Corollary 4.6

A Lie algebra is nilpotent if and only if ad(g) is strictly upper triangular.

Proof (=) If g is nilpotent then ad(g)"” = 0, that is ad(X) € gl(g) is nilpotent for all X € g.
By Engel’s Theorem ad(g) is strictly upper triangular.

(«=) If ad(g) is strictly upper triangular, then it is nilpotent, and from the short exact sequence

{0} — Z(g) — g — ad(g) — {0} we conclude that g is nilpotent as well. O

Definition 4.9

Let p: g — gl(V') be a representation of a Lie algebra g. A vectorv € V ~. {0} is a common

null vector of {p(X): X € g} if p(X)v =0forall X € g. Iy

To prove Engel’s Theorem 4.2 it is enough to prove the following:

Theorem 4.3

Let g be a Lie algebra and p: g — gl(V') a representation such that p(X) is nilpotent for

every X € g. Then p(g) has a common null vector in V.

Q

In fact, if this is true and V{ is the space of common null vectors, then we can write

0 im
p(g) C ( d 0 Yo *> and proceed inductively by considering p: g — gl(V/Vb).
*
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Letg C
mathfrakgl(fg) be a Lie algebra. If X € g is nilpotent, then ad(X) is nilpotent.

If X € g,letlx,tx € End(g) be the commuting endomorphisms defined as
[x(YV):=XYandtx(Y) =Y X.

Since X is nilpotent, [ and v are nilpotent as well. Thus ad(X) = [x — tx € End(g) is
nilpotent. 0l

[Proof of Theorem 4.3] The proof will be by induction on dim g and in fact it will be similar

to the proof of Lie’s Theorem with the due modifications.

Let us assume that dimg = 1 and let 0 # X € g. Since p(X) nilpotent, let n € N be the
smallest integer such that p(X )™ = 0. Then there exists v € V such that p(X)"~'v # 0. But
0= p(X)"v = p(X)(p(X)" 1), so p(X )" v is anull vector of X and thus of RX = g.

Let us suppose now that dim g > 1. Assume that every Lie algebra of dimension smaller than
dim g satisfies the theorem. We can assume that p is faithful, otherwise g/ ker p would be a Lie

algebra of smaller dimension, for which the assertion is true. The proof consists of two steps:

1. We write g = RX( & h where § is an ideal in g.

2. We find a null vector for X in the space of common null vectors for b.

1. Let h be a maximal proper subalgebra and consider adg(X): g — gfor X € g. If X € b,
since b is a subalgebra we have ady(X)(h) C h. Thus there is a representation of h on g/b,
ad: h — gl(g/h). Since g = p(g) consists of nilpotent elements, so does h, and hence so does
ad(h) C gl(g/h) by Lemma 4.4. By the inductive hypothesis there exists 0 # X € g/b such that
ad(h)Xo = 0 € g/b, thatis ad(h) Xo C h. Thus

[RXo ® b, RXo @ b] = R[Xo, Xo] + R[Xo,b] + R[h,h] CO+h+b =D,

that is RX( & b is a subalgebra that contains §. Since h was maximal, RXy & h = g and § is an

ideal.

2. By inductive hypothesis the space W of null vectors of p(h) is non-zero. If we can prove
that it is X-invariant, then we can apply the inductive hypothesis to p: RXy — gl(W) and find a
null vector in TV that will be a null vector for g. So let w € W, that is p(X)w = 0 for all X € b.
We want to show that p(Xo)w € W, thatis p(X)p(Xo)w = 0 for all X € h. Since b is an ideal,
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then X Xo — XoX = [X, Xo] € b. Thus

p(X)p(Xo)w = p([X, Xo])w + p(Xo)p(X)w = 0+ p(Xo)0 = 0.

In the course of the proof, we have also obtained the following:

Corollary 4.7

If g is nilpotent, and Y is a maximal subalgebra of g, then by is an ideal, [g, g] C b and b has

codimension 1. v,

We have proved this under the assumption that elements of g are nilpotent. The proof of this

fact only needed that elements of ad(g) are nilpotent, and so assuming that g is nilpotent is enough.

Definition 4.10. Unipotent linear group

Let G < GL(V) be a linear group. Then G is unipotent if
G <{geGLV): (g— Ty =0},

where ndim V. &

Corollary 4.8

If G < GL(V) is a unipotent group there exists a basis of V such that G <
1 *

€ GL(V) p. Thus any unipotent connected linear group is nilpotent.

O

4.2.1 The Killing Form

There are other characterizations of nilpotent and solvable Lie algebras that use the Killing

form, a particular case of the trace form.

Let V' be a vector space over a field K = R or C. We recall that the trace of A € End(V)
is defined as trA = )_ \;, where \; are the eigenvalues of A. Note that a priori tr(A) will take

values in the algebraic closure of K. The following properties are satisfied:

1 tr(XAX~!) = trA for all X € GL(V), that is tr: GL(V) — K is independent of the

choice of basis in V.
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2. tr(AB) = tr(BA);
3. If we choose a basis of V" and let (a;;);; be the matrix representation of A with respect to it,
then trA = > aj;.

Definition 4.11. Trace form and Killing form
Let K =R orC.
1. The trace form is the bilinear symmetric form

B: K™ x K™ — K
(X,Y) e tr(XY).

Let g be a Lie algebra over K.
2. If p: g — gl(n,K) is a Lie algebra representation, the trace form of p is

B,:gxg — K
(X,Y) = B(p(X), p(Y)) = tr(p(X)p(Y)).
3. The Killing form of g is By := Baq: g X g — K that is
By(X,Y) = tr(ad(X)ad(Y)).

&
Let V be a vector space over K, f: V x V — K a bilinear form, G < GL(V), g C gl(V).

1. fis G-invariant if f(AX,AY) = f(X,Y) forall X, Y € V and all A € G.

2. fis g-invariant if f(DX,Y) + f(X,DY)=0forall X,Y € V and all D € g. Iy
Let V be a finite dimensional vector space over K f: V x V' — K be a bilinear form and
A € End(V). The following are equivalent:

I f(AX,Y) + f(X,AY) = 0forall X,Y € V

2. f((exptA)X, (exptA)Y) = f(X,Y) forall XY € Vand allt € R. .

Proof (2. <= 1.) This follows just from differentiating the expression f((exptA)X, (exptA)Y) =
fFX,Y).

(1. = 2.) We will show that ¢(t) := f((exptA)X, (exptA)Y) and ¢(t) = f(X,Y) are both
solutions of the differential equation % = 0 with 2(0) = f(X,Y’). Obviously this is the case for
1 (t). By differentiating ¢ () we obtain

¢'(t) = f(A(exptA) X, (exptA)Y) + f((exptA)X, A(exptA)Y).
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Then using 1. after replacing X by (exptA)X and Y by (exptA)Y, we obtain that ¢'(¢t) = 0. [

Corollary 4.9

Let G < GL(V) be a closed subgroup with Lie algebra g and let f : V xV — R be a

bilinear form. Then f is G-invariant if and only if it is g-invariant.

Proposition 4.8

Let g be a Lie algebra, p: g — gl(n,KK) a representation. Then B, is ad(g)-invariant. In

Q©

particular the Killing form is ad(g)-invariant.

o
Proof Recall thatif S, T € End(V), then tr(ST') = tr(7'S). If X,Y, Z € g then
By(ad(X)Y, Z) = By([X, Y], Z) = tr(p([X, Y])p(Z))
= tr(p(X)p(Y)p(Z) — p(Y)p(X)p(Z))
tr(p(Y)p(2)p(X) — p(Y)p(X)p(2))
= tr(p(Y)p([Z, X]) = —tr(p(Y)p([X, Z]))
— “B,(Y,[X, Z]) = B, (Y, ad(X)2).
0l

We will see that the Killing form is a powerful tool in the theory of Lie groups and Lie algebras.

For example we have:

Corollary 4.10. Cartan’s Criterion for solvability

Let g be a Lie algebra with Killing form By. Then g is solvable if and only if By |g(1) @ EO @

The proof of Cartan’s Criterion relies upon the following theorem, where the meat of the

argument is and which we prove at the end of this section.

Theorem 4.4

Let V' be a finite dimensional complex vector space and let g C &£(V )be Lie algebra. If
tr(XY) = 0forall X,Y € g, then there exists a basis of V with respect to which g is

strictly upper triangular, In particular g(l) is nilpotent and g is solvable.

Q©

We will start the proof of Cartan’s Criterion with a preliminary result:

Let )y C g be an ideal. Then By = Bylyxp. o
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To have that ady(X) = adg(X)]y for all X € b it is enough that b is a subalgebra. To
say that By = By« we need that b is an ideal.

[Proof of Lemma 4.5] Let V' be a linear complement of h, so g = h & V. Then
adg(X):h®V — h@® Vissuchthatif X € b, then
. adg(X)Y = [X,Y] € hif Y € b (since b is a subalgebra) but also
2. adg(X)Y = [X,Y] e hif Y € V (since b is an ideal).

Hence
adh (X) *
adg (X) = 0 0
~~ ~~~
b is a subalgebra b is an ideal
so that tr(ady(X)adg(Y)) = tr(ady(X)ady(Y)) forall X, Y € b. O

[Proof of Corollary 4.10] (=) Suppose that g is solvable. Then by Proposition 4.6
g = [g, g] is nilpotent. Hence by Corollary 4.6 ad(g(!)) is strictly upper triangular. This implies
that Bg|g<1) «g) = By = 0, where we applied the previous lemma to the ideal g <.

(<) By Theorem 4.4 applied to ad(g)") = ad(g(V), if X,Y € g and 0 = By(X,Y) =
tr(ad(X)ad(Y)), then [ad(g(M)),ad(g™M)] = ad([gM),gM]) = ad(g?) is strictly upper

triangular and hence nilpotent, hence solvable. We need to go show that g is solvable.

Since ad(g®) is a solvable ideal in ad(g")) and ad(g™M)/ad(g®) = ad(gV)/g?) is
Abelian, hence solvable, ad(g(!)) is solvable. Analogously, ad(g(")) is a solvable ideal in ad(g)
and ad(g)/ad(g™")) = ad(g/g") is Abelian, hence solvable, so ad(g) is solvable. Finally the
short exact sequence 0 — Z(g) — g — ad(g) — 0 shows that g is solvable. O

In order to prove Theorem 4.4 we need a result that is a corollary of the Jordan canonical form
over C.
Let V' be a finite dimensional vector space over C and let A € End(V'). Then there exist a
diagonalizable S € End(V') and a nilpotent N € End(V') such that
1. A=S+N;
2. SN =NS;
3. S and N are uniquely determined, and
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4. there exit polynomials s(X),n(X) € C[X] without constant terms, such that

S=s(A) and N =n(A). N

We say that N is the nilpotent component of A amd S is the semisimple component of A. For
a proof of Proposition 4.9 see [7, Proposition 12.19].
Example 4.6 Let X € gl(n,C). Then X = S+ N andad(X) € gl(gl(n, C)) has adecomposition
ad(X) = ad(S) +ad(N). 4.2)
In fact:
1. S is diagonalizable and hence ad(S) is diagonalizable;

2. N is nilpotent and hence ad(NV) is nilpotent;
3. [NV, S] = 0 and hence [ad(N),ad(S)] = ad([N, S]) = 0.

Thus (4.2) is the decomposition of ad(X ). Moreover ad(/V) and ad(.S) are polynomial in ad(X).
Notice that this is not obvious a priori, since ad is only a Lie algebra homomorphism and not an
algebra homomorphism. Hence if S = s(X) and N = n(X), there exist n’, s’ € C[X] such that
n'(ad(X)) =ad(N) and s'(ad(X)) = ad(S). 4.3)
In particular if g C gl(,C) and X € g, it follows from (4.3) that ad(S) and ad(NN) leave g

invariant.

[Proof of Theorem 4.4] Because of Engel’s Theorem, it will be enough to prove that every
A e g is nilpotent. We know from Proposition 4.9 that A = S + N, where S is diagonalizable
and N is nilpotent. Hence it will be enough to show that .S = 0. To this purpose we will show that
if
M 0 A 0
S = . and S = . ,
0 An 0 An
then tr(SS) = 3" \;\; = 0, hence showing that S = 0.
Since A = S + N, we have that
tr(SS) = tr((A — N)S) = tr(AS) — tr(NS),.
Observe that, by hypothesis, tr(XY) = 0 forall X,Y € g, but a priori S and N are only in gl(V)

and not necessarily in g. We will hence show the following facts:

I. tr(AS) = 0;
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2. tr(NS) =

To prove both statements it will be useful to consider a polynomial p € C[X] be a polynomial
such that p()\;) = \; fori = 1,...,n. For example one can take p(z) = > A [Tz 5= byev )\
Then p(S) = S.

To prove 1. remember that A € g(!), so that A Z 11X, Yi]. Then

k k k
tr(AS) = tr (Z[XuYz]S> =tr (Z Z >

i=1 i=1 i=1
k
=> = (ViSX; - SYiX,) Ztr v;, S| X Ztr (ad(S)Y;) X;) .
i=1
Since X; € g and we know that tr(XY) = 0 for all X|Y € g, it will be enough to show that
ad(S)Y; € g, that is that ad(S)(g) C g. But S = p(S) and S is a polynomial in A, so that S as
well is a polynomial in A By the Example 4.6, ad(q(A)) = ¢’(ad(A)), thatis ad(q(A4))g C g.

To prove 2. recall that [S, N] = 0. Moreover [S, N] = 0, since, if N commutes with S, it
commutes with all powers of S, and hence with a polynomial in S. Thus (NS)¢ = N 5" = 0 as
soon as N* = 0. 0l

4.3 Semisimplicity

We start by describing Lie algebras that, contrary to nilpotent and solvable ones, have no

ideals.

Definition 4.13. (Semi)simplicity

a) A Lie algebra g is simple if

(i) It is not Abelian;
(ii) Its only ideals are {0} and g.
b) A Lie algebra is semisimple if it is the direct sum of simple ideals.
c) A connected Lie group is simple (respectively semisimple) if its Lie algebra is simple

(respectively semisimple). &

Theorem 4.5. (Dieudonné)

Let g be a Lie algebra. Then g is semisimple if and only if By is non-degenerate.
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4.3 1If b is an ideal in g and g = h @ V/, then using that adg(h)(g) C b and adg(g)(h) C b,

ad * %
adg(h) C ( ?)(h) O) and adg(g) C <0 *> :

Henceif X € hand Y € g, then

e R [ R

We will need the following lemma.

we have that

Let g be a Lie algebra and let by C g be an ideal. Then
bt ={X €g: By(X,A) = 0forall Ac b}

is also an ideal.

Let X € b, thatis By(X, A) = 0 for all A € h. We want to show that for all Y € g, if

By(X,A) =0forall A€ b,thenalso By([X,Y], A) =0forall A€ h. In fact:
By([X, Y], A) = = Bg(ad(Y)(X), A) = By(X, ad(Y)(A)) = By(X, [Y; A]) = 0

since [Y, A] € b. O

[Proof of Theorem 4.5] (=) Since g = € gi, where the g; are simple ideals, then
By = 3 By, and we may as well assume that g is simple. Let g= = {V € g : By(X,Y) =
0 for all X € g}. Then g™ is an ideal by the previous lemma, and since g is simple either g = (0)
or gt = g. If gt = g, then By = 0, and so g is solvable by Cartan’s first criterion. Hence

g+ = (0), and so B, is non-degenerate.
<) The proof will follow the following steps. Assume that B, is non-degenerate.
(<) The p g step g g

1. There are no Abelian ideals.
2. If h C g is a non-trivial ideal, then g = h & b,
3. By and By, are non-degenerate.

4. Argue by induction.

0 =
1. If a were an Abelian ideal, then Z,(a) = a and so adg(A) = (0 O) for all A € a. Thus

=<
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forallY € g

0 = ok 0 =
Bg<A,Y>=tr<adg<A>adg<Y>>=tr((O 0) (O *>>:tr<<o O)):o,

hence By would be degenerate.

2. Because of the previous lemma we need to check that h N h* = (0). In fact:
(a). h N bt is an ideal, being the intersection of ideals.
(b). h N bt is Abelian. In factif X, Y € h N b+, then for all Z € g:
By([X.Y], 2) = ~By(Y, [X, Z]) € By(h,b*) = 0.
Since B, is non-degenerate, this implies that [X, Y] = 0 for all X, Y € h N h.
Thus (a) and (b) imply that h & b= C g. Moreover, since By is non-degenerate,

dimg = dim b + dim h*+ — dim h N h* = dim b + dim h*, and so equality holds.

3. Let X € hand Y € g be such that By(X,Y) # 0 and let Y = Yy, + Y;1 with ¥y € b and
Yy € h. Then

O%BQ(KY)=tr(adg(X)ad9(Y>):tr<<o 0) (0 *>> :tr<<o 0)) -

= tr(adg(X)ady(Y)[y) = tr(adg(X)adg(Yy)|y + adg<X>adg(th))’h)> =
% tr(ady(X)adg(¥h)l) = tr(ady(X)ady (¥5)) = By (X, ).
where () follows since ad(h=)|, = 0 because [h*, ] C h-Nh = {0} and (*x) from Remark 4.3.

Thus By is non-degenerate. Similarly, h' is non-degenerate.

4. If h and b are simple we have found a decomposition of g as direct sum of simple ideals. If
either one is not, we choose an ideal and repeat the argument. Since dim h < dim g, the process

ends with a decomposition as direct sum of ideals. O

To see how to determine the non-degeneracy of the Killing form, we prove the following

theorem:

Let K =R or C. If g C gl(n,K) is self-adjoint with respect to some inner product in K"
and Zy(g) = {0}, then By is non-degenerate.

1. Since ker ad = Z(g) is an ideal, then Z(g) = {0} is obviously necessary.
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2. There is a theorem of Mostow that states that any semisimple Lie algebra has a faithful linear
representation whose image is self-adjoint, hence the above theorem gives somehow a necessary
and sufficient condition for semisimplicity.

Example 4.7
1. sl(n,R) = sl(n,R)* and sl(n, C) = sl(n, C)*.
so(n,R) =so(n,R)*,n > 3.

s0(p, q) = s0(p, q)".
su(n) = su(n)*.

»oN

b

Hence these are all semisimple (and in fact, simple) Lie algebras.

Let K =RorC.
[. The trace form is non-degenerate.
2. If W C K™ is a subspace that is self-adjoint with respect to some inner product in

K", then B|w xw is non-degenerate.

1. For X € K™*™ let X* be the adjoint with respect to the usual inner product in K", that
is X* ='X if K=Rand X* =X if K = C. Let us define

B*(X,Y):= B(X,Y") = tr(XY*) = > X;;V;
2%

Then B* is the usual inner product on K"*" and B(X, X) = B*(X, X*) = || X|? > 0if X # 0,

so that B is non-degenerate.

2. Follows from the proof of 1., since if X € W then X* € W. O

[Proof of Theorem 4.6] We start with a few observations. Let tr: gl(n, K) x gl(n,K) — K

be the trace form. Then the Killing form is the composition of the following maps:

adgxad i t
g x g —— adg(g) x adg(g) = gll(g) x gl(g) — K.
If Z(g) = {0} then g = ady(g), so it will be enough to show that:
Claim 4.3.1. If g C gl(n,K) is self-adjoint with respect to an inner product in K", then
adg(g) C gl(g) is self-adjoint with respect to an inner product in K™"*".

In fact, assuming the claim, we can apply Lemma 4.7 (2) with W = adg(g) and conclude the
proof.

=<
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To prove the claim we will need two lemmas.

Let (-, )1 : gl(n,K) x gl(n, K) — K be the inner product defined by (X,Y ) = tr(XY™),
and let adgy(, k) : gl(n, K) — gl(gl(n, K)) be the adjoint representation of gl(n, K).

Then adg(n k) (A)* = adg(n k) (A*), where A* is the adjoint with respect to the usual inner
product in K™ and adgy(, x)(A)* is the adjoint with respect to the inner product (-, -) ;.

We need to verify that (X, adg(, k) (A%)Y )+ = (adgnx)(A) X, Y) 1. In fact

(X, adgin 1) (A")Y) 1 = (X, [A, Y]) 1 = tr(X[A", V]") = tr(X(A"Y — Y A))
=tr(X(Y*A — AY™)) = tr(XY*A) — tr(XAY™)
=tr(AXY") — tr(XAY™) = tr((AX — XA)Y™)

tr([A, X]Y7) = ([A, X], Y )+ = (adgi(n,x) (A) X, V).

O

The point of the lemma is that now we know that if g C gl(n,K) is self-adjoint, then
adgi(n,x)(9) € gl(gl(n, K)) is self-adjoint. This is however not quite enough, as we want to see
that ady(g) C gl(g) is self-adjoint. Since g C gl(n, K) is a subalgebra, it is easy to see that

adg(g)
ad K (g) C : )
gl(n,K) 0 0
that is if A € g C gl(n, K), then adg(A) = adg(,x)(A)g. It will be hence enough to prove the

following lemma, with g = V, adg(, k) (g) = b and n? =m.

Let K =R or C. Ifh C gl(m,K) is a self-adjoint Lie algebra, with respect to some inner

product on K™ and V' C K™ is an b-invariant subspace, then Y|y is self-adjoint.

Since h = b*, then if V is h-invariant so is V. In fact, let K = V & VL. Forall H € |
we have HV C V, and if v € V- we want to see that Hv € V- as well for all H € ). But
Hv € V* if and only if (Hv,w) = 0 for all w € V. In fact (Hv,w) = (v, H*w) = 0, since
H* € handso H*w € V. Soif H € h, wecanwrite H = Hy @ Hyrand H* = Hj; ® Hy,, . U

O
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Let V be a C-vector space. If g C sl(V') is an irreducible and self-adjoint Lie algebra (with

respect to some inner product on V'), then Zy(g) = {0} and hence By is non-degenerate.

Here irreducible means as an algebra of endomorphisms that is, there are no non-trivial g-
invariant subspaces in V. For example the Lie algebras s[(V') and su(n) act respectively on V' and

C™ irreducibly, hence we deduce that they are semisimple.

The proof of Corollary 4.11 relies upon this classical result in representation theory. There

are several version of it, but we will need the most elementary one.

Let g be a Lie algebra acting irreducibly on a complex vector space V andlet A: V — V

be an endomorphism that commutes with g. Then A = cl for some ¢ € C.

Let A € C be an eigenvalue of A and consider the endomorphism A — Ald, which also
commutes with g. It is straightforward to check that ker(A — AId) is a g-invariant subspace.
Since the action of g is irreducible and ker(A — AId) # {0}, then ker(A — AId) = V/, that is
A = Md. O

[Proof of Corollary 4.11] Let A € g C gl(V') be an endomorphism that commutes with g.
Then A = cI by Schur’s Lemma. Now if A € Zy(g) C g C sl(V), then 0 = trA = cdim V, and
so A=0. O

The non-degeneracy of By characterizes semisimple Lie algebras, but in general By is
not definite. In fact, we will see that the definiteness of By is equivalent to compactness within the

semisimple Lie algebras.

Before we move to the next section, we give a bit more details on the structure of semisimple

Lie algebras.

Proposition 4.10

Let g = @, 9: be the direct sum of simple ideals. Then any ideal b C g is of the form

Let J C I be the smallest subset such that h C P, ; g;. We are going to show that there
is equality. Leti € J. Then [h,g;] C g, since g; is an ideal; moreover, since [, g;] is a simple
ideal, either [h, g;] = g; or [h, g;] = {0}. We will show that [h, g;] # {0} for every i € .J, so that
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gi = [b, 9;] C b, which implies that h = P, ; g;-

To see that [h, g;] # {0}, let X € b be such that X = X; + --- + X,, with X; € g;
and |J| = n. If [h,g;] = {0}, the in particular [X, g;] = {0}, so that [ X}, g;] = {0}. Thus
X €C Zg,(g:i) = 0, contradicting the minimality of .J. O

Corollary 4.12

1. Any semisimple Lie algebras has a finite number of ideals.

2. Any connected semisimple Lie group with finite center has a finite number of connected

normal subgroups.

@
Let g be a Lie algebra. The following are equivalent:
1. g is semisimple;
2. g has no Abelian ideals;
3. @ has no solvable ideals. o

Corollary 4.13

1. G is a connected simple Lie group if and only if every connected normal proper
subgroup of G is trivial. In particular the center Z(G) of a connected simple Lie
group is discrete.

2. G is a connected semisimple Lie group if and only if it has no connected normal
Abelian subgroups.

3. G is a connected semisimple Lie group if and only if it has no connected normal

solvable subgroups.

Proof [Proof of Proposition 4.11] (1. = 2.) This is clear from Proposition 4.10.

(2. = 3.) If there exists a solvable ideal b, then there would be a descending series ) D H >
D) = {0} and h(=1) would be Abelian. Moreover, since the h(?) are characteristic ideals,

(=1 would be an Abelian ideal in g.

(3. = 1.) It is enough to see that By is non-degenerate. Let h C g be the kernel of By, that is
h={X: By(X,Y)=0forallY € g}. Since By is adg-invariant, then b is an ideal and, by
Lemma 4.5, By = Bglyxp. Thus h would be solvable, which contradicts the hypothesis. Thus
h = {0} and hence By is non-degenerate. O
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Proposition 4.12

If g is semisimple, then g = [g, g]. N

Proof Let g = P,c; 9 where |[I| < oo and the g; are simple ideals. If i # j,
[9i,9;] C g:Ng; = {0}, while [g;,g;] is an ideal in g;. Since the g; are simple, hence in
particular not Abelian, [g;, g;| = g;. Thus

l9,0] = [@gi,@gi] = Ploi gl =Poi=0.

el el il el

4.4 Levi Decomposition

We see now how to put together semisimplicity and solvability in a general Lie group.

If a and b are solvable ideals in a Lie algebra g, then a + b is a solvable ideal. v

Proof The assertion is immediate from the short exact sequence

{0} a¢ a+b a+b/a~b/anb—={0}.
O

There is an analogous statement for nilpotent ideals. The proof requires some more work, but

it is easy to convince oneself that the statement is true by looking at the effect of taking the bracket.

Remark. We can only write a + b and not a @ b as, a priori, a N b # .

Corollary 4.14

For any Lie algebra g there exists a unique maximal solvable ideal v C g and g/t is

semisimple. Thus g is semisimple if and only if t = {0}. O
Definition 4.14. (Solvable) radical

The unique maximal solvable ideal of g is called the (solvable) radical of g. &

Proof [Proof of Corollary 4.14] The existence and uniqueness follows from Lemma 4.11 and from
the finite dimensionality of g. To show that g/t is semisimple, let /v C g/t be a solvable ideal in
g/t. Then h C g is an ideal and since v and b/t are solvable, it follows that b is solvable. Since ¢

is maximal, then h C v, so that h/t = {0} and g/t has no solvable ideals. O
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On the group level we have the following:

Let G be a connected Lie group and R the connected subgroup corresponding to t C g.

Then R is a solvable connected closed normal subgroup and G /| R is a semisimple Lie group.

The only thing to show is that R is closed. Let R be the closure of R and let t’ be the
corresponding Lie algebra. By maximality of t, it will be enough to show that v’ is solvable.

Observe that if H is a connected Lie subgroup with Lie(H) = b, then
H is solvable < b is solvable
& ad(h®) = ad(h)® is upper triangular
< Ad(H )(C is upper triangular.
Thus, since R is solvable, Ad(R)C is upper triangular and, by continuity, Ad(R)C is upper

triangular, that is R is solvable and t’ is solvable.

Even though R is the maximal closed connected normal solvable subgroups, there might

be larger solvable subgroups that are not connected.
For a general Lie algebra g we have then the short exact sequence

{0} —t——g —=g/vt —{0},

where t is the radical of g and g/t is semisimple. It is natural to ask whether or not the sequence

splits, that is whether or not we can write g = s @ t, where t is the solvable radical and s is a

semisimple subalgebra isomorphic to g/t.

Given any finite dimensional Lie algebra g there exists a semisimple subalgebra s C g such
that g = s @ ¢ as vector spaces and s ~ g/t as Lie algebras. Then s is called the Levi
subalgebra or Levi factor or semisimple factor of g.

The ideal ¢ is canonically determined by g, but if s is a Levi subalgebra and ¢ € Aut(g),
then ¢(s) is another Levi subalgebra and any Levi subalgebra arises in this way. Moreover

Levi subalgebras are maximal with respect to the property of being semisimple.

To better understand Levi’s theorem we need the notion of semidirect product of Lie algebras

and Lie groups.

We saw in § 2.1 the definition of semidirect product of topological groups H, N. It is easy
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to see that if H, NV are two Lie groups the semidirect product H x N is the Lie group with the

manifold structure of the product H x N.

Definition 4.15

Let h,n be two Lie algebras and p: ) — Der(n) a Lie algebra homomorphism. The

semidirect product by X , n is the vector space ) x n with bracket
[(H1, N1), (Hz, N2)] := ([H1, Ha], [p(H2) N1, Na]) -

Thus b x n is a Lie algebra (with Jacobi identity following from the fact that p is a Lie

algebra homomorphism) and w is an ideal in b x , n.

&

Parallel to Lemma 2.1, in the case of Lie algebras we have the following

Let g be a Lie algebra, i) C g a subalgebra andn C ganideal. The following are equivalent:
1. There exists a Lie algebra homomorphism p: b — Der(n) such that g = b x, n;
2.9=hdns
3. gis a Lie algebra extension of n by b, that is there exists a short exact sequence

{0} n—-g b {0},

that splits, that is the composition p o i: ) — g/n of the embedding i: h) — g and of

the natural projection p: g — g/n is a Lie algebra isomorphism.

Itis easy tosee thatif G = H x,, N is a semidirect product of Lie groups withn: H — Aut(N)
a smooth homomorphism, then g = h x, n is a semidirect product of Lie algebras, where

p:=dne: h — Der(n).

Hence Levi’s Theorem says that g is isomorphic as a vector space to s @ v and as a Lie algebra
to s X v with respect to some homomorphism p: § — Der(t). Clearly changing the Levi subalgebra
amounts to changing the homomorphism and there is no canonical Levi factor.

Example 4.8 Let V' € R" be asubspaceand g = {X € gl(n,R) : X(V) C V} = { <*(‘)/ *> }
*

0 = M0 . . . .
Letn = Cganda = A; € R » C g. Then n is a nilpotent ideal in g
0 0 0 Aol

and a is an Abelian subalgebra. We claim that a 4 n is a solvable ideal. In fact one can check that

[a+n,g] C nC a+n,soa+nisanideal. Furthermore [a+n,a+n] = [a,n]+ [a,a] + [n,n] C n,
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so [a + 1] = [a +n,a + n] C nis nilpotent, and hence a + n is solvable.

If dimV = k, it is easy to see that g/(a + n) is isomorphic to the Lie algebra
stk R) 0

°T ( 0  slin—kR)

g, s is aLevi factorand g = s X (a +n).

), hence it is semisimple. Thus a + n is the solvable radical of

Let G be a simply connected Lie group and R its solvable radical. Then there exists a
semisimple simply connected Lie subgroup S of G such that G, as a Lie group, is the
semidirect product of S by R, G = S x R. All subgroups S < G that may occur in this

decomposition are isomorphic.
Example 4.9 Let G = GL(n,R),H = R",n : G — Aut(R"™) a homomorphism and let us

0
(A,v) € G’ acts on R" by 2 — n(A)x + v, and the multiplication in G’ is the composition of

G) R”
consider the group G x, R™ =: G’ of affine motions of R™. Then G’ = <77( ) ) ), where

affine transformations.

Since Z(G) consists of the group of scalar matrices, G = GL(n,R) is not semisimple and
hence G’ = G x,, R™ is not the Levi decomposition of G’. Let A = {\Id :, A € R} < GL(n,R)
and let us consider the group R = A x, R” < G x, R™. Then Lie(G’/R) = sl(n,R), SL(n,R)
is a Levi factor of G’ and A x R"™ is the radical of G'.

4.5 Compact Groups

Let V be a finite dimensional vector space over K = R or C, let G be a compact Lie group
and let 7: G — GL(V) be a representation. Then 7 is equivalent to an orthogonal representation
of G, that is there exists a positive-definite inner product (-, -) on V' such that 7(G) C O(V, (-, -)).

In fact, if (-, -) is any inner product on V' and y is the Haar measure of G, then one can show that
o) = | (rlg)v.mlg)w)into)
is a positive-definite inner product on V' that is 7w (G)-invariant by construction.

As a consequence we deduce the following:
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Corollary 4.17

Any compact subgroup K of GL(n,R) is conjugate to a subgroup of O(n, R). v

Proof Letw =1i: K — GL(n,R) be the inclusion. Then K < O(R", (-, -)) and all orthogonal

representations are conjugate to each other, so that a conjugate of K is contained in O(n,R). [

Corollary 4.18

O(n,R) is a maximal compact subgroup of GL(n,R) and it is unique up to conjugacy.

Corollary 4.19

Let G be a connected semisimple Lie group. The following are equivalent:

Q

1. G is compact;
2. By is negative-definite;

3. By is definite. O

Proof (1. = 2.) Let G be a compact connected semisimple Lie group. Then Adg(G) <
O(g, (-,-)) and ady4(g) < o(g, (-, -)), that is elements of ady(g) are skew-symmetric with respect
to the G-invariant inner product (-, -). In other words if X € gand A := ady(X), then
By(X, X) = tr(A2) = ZA”AJZ ==Y AP <0
]
and By(X, X) = 0if and only if ady(X) = 0. But since g is semisimple then ker(ady) = 0, so
By(X, X) = 0if and only if X = 0, and By is negative-definite.

(2. = 3.) Obvious.

(3. = 1.) If By is definite, then O(g, By) is a compact group. Since Adg(G) < O(g, By), then
Adg(G) is compact and semisimple (since G is semisimple). To conclude we need the following

result, whose proof (of sketch thereof) we postpone to the end of the section.

Remark Notice that for the implication (3. = 1.) we do not need the explicit hypothesis of
semisimplicity of g, as it is automatically verified if By is negative-definite, hence non-degenerate
(Theorem 4.5).

Theorem 4.8

Let G be a compact semisimple Lie group. Then its universal cover G is also compact.

Equivalently, m1(G) is finite. O

Hence G must be compact as well, since G is a covering of Adg(G). Maybe it’s worth adding
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this to the big proposition on homogeneous spaces: namely, if H is discrete then G — G/H is a

covering. Or maybe an exercise in that chapter, to reference. L]

Proposition 4.13

Let G be a compact Lie group with Lie algebra g. Then g = Z(g) @ ¢/, with By non-
degenerate (so that g is semisimple). In fact, |g,9] = ¢ and if Z(QG) is finite, then G is

semisimple.
. o

Proof Obviously, if we assume that if g = Z(g) @ g’ with g’ semisimple, then

g0l =[Z(e) @ ¢, Z(0) © 0’| = [0, 0] = ¢"
Moreover if Z(G) is finite, then Z(g) = 0 and so g = ¢’ is semisimple.

To see that g = Z(g) @ g/, let g’ = {X € g: (X,Y) = 0forall Y € Z(g)} = Z(g)*,
where (-, -) is the G-invariant inner product on g so that Adg(G) < O(g, (-, -)). Since Z(g) is an
ideal in g, then the same proof as for Lemma 4.6 (where we use the invariance of (-, -) shows that
Z(g)* = g’ isalsoanidealand g = Z(g) ® ¢'.

The only thing to show is that g’ is semisimple, or equivalently that By is non-degenerate.
Since g’ is an ideal in g, By = Bg|y <y (Lemma 4.5). This is non-degenerate, because as in the
proof of Corollary 4.19 we have that By(X, X) = 0 if and only if ady(X) = 0, if and only if
X € Z(g). So ¢ is semisimple. O

Corollary 4.20

Let G be a compact connected Lie group. Then G = TK, where T and K are closed
connected normal subgroups, T < Z(QG), K is compact and semisimple and T' N K is finite. O

Remark TK is an almost direct product, that is each element in G can be written as a product
of an element in 7" and an element in K but not uniquely (although only in finitely many ways).

However the product is still well-defined, since 7 is central, hence t1kitoks = ti1taki ka.

Proof Since g = Z(g) @ ¢/, then the connected group 7" such that Lie(T) = Z(g) is T = Z(G)°,
which is hence closed and normal. Given Proposition 4.13, the only thing to show is that K
is closed. In fact, since g = Z(g) @ g’ and G is compact, By is negative-definite. It follows
that if K < G is the connected subgroup with Lie algebra g/, then K is compact. Moreover
Lie(T) = Z(g) and T'N K is finite, since it is Abelian and normal in a semisimple group hence

discrete. OJ
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[Sketch of the Proof of Theorem 4.8] The fundamental group of a compact manifold is
finitely generated and the fundamental group of a topological group is Abelian. Thus by the

classification theorem for finitely generated Abelian groups, we have that

¢ q
m1(G) =~ @Z @ @Z/nJZ,
i=1 j=1
and we want to show that ¢ = 0. If H,(M,Z) denotes the singular homology of a manifold M
with integer coefficients, we have
mi(M)/[m (M), mi(M)] = Hi(M, Z),
but since G is a topological group and 71 (G) is Abelian, then [71(G), 71(G)] = {e} and hence
7T1(G) ~ Hl(G,Z) .

By the Universal Coeflicients Theorem

4 q
H'(G,R) ~ Hom(H; (G, Z),R) = Hom(my (G),R) = Hom | Dz o P Z/n;Z,R | ~R",
i=1 j=1

so that it will be enough to show that H!(G,R) = 0.

Recall that there is an isomorphism H*(G,R) ~ H;,(G) os the group cohomology with the

de Rham cohomology of (G. Recall moreover that:
1. If wis a 1-form on a manifold M, dw is the 2-form defined by
dw(X,Y) = X(@(Y)) — Y(w(X)) - w((X,Y]),
where X, Y € Vect(M).

2. (Cartan) If G'is a compact connected Lie group, then H;,(G) is isomorphic to the homology

of complex *(G)% of G-invariant differential forms on G.

Thus to show that H*(G,R) = 0 it will be enough to show that if w is closed (that is dw = 0),
then w = 0.

Let X,.,Y, € T.G and let X, Y € Vect(G)“ the corresponding G-invariant vector fields. By

invariance of w and of X, Y, we have that w(X) and w(Y") are both constant, so that
0=dw(X,Y)e = (X(w(Y)))e = (Y(w(X)))e = (WX, Y]))e = 0= 0+ (w([X, Y]))e -

Since g is semisimple and hence g = [g, g, from dw = 0 follows that w = 0. O

= Chapter 4 Exercise <
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1. Prove Lie Theorem for Lie algebras.

2. If g is nilpotent, then g€ is nilpotent.
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A.1 Topological Preliminaries

We recall now a few well known concepts from topology.

Definition A.1. Basis of a topology

A basis B of a topology T C P(X) on a set X is a family B C T such that every element
of T is the union of elements of B.

L]

Example A.1 The family
B:={B(x): 1€ Qs9, z€Q"}

is a basis of the Euclidean topology on R".

Lemma A.1. Characterization of a basis
Let X be a set and T C P(X) a topology. A family B C T is a basis if and only if
o X = UyepY, and
o If B, By € B and By N By # (), then for every x € By N By there exists By € B
with x € By C B1 N Ba.

Then the topology is the family consisting of all possible unions of elements in B.

Definition A.2. Subbasis
A subbasis S of a topology T C P(X) on a set X is a family of sets such that the family B

obtained by taking all finite intersections of elements in S is a basis.

)
Definition A.3. Hausdorff topology
A topological space X is Hausdorft if any two distinct points have disjoint neighborhood. &

Definition A.4. Local Compactness

A topological space X is locally compact if each point has a neighborhood basis consisting

of compact sets, that is if for every x € X there exists a set B, of compact neighborhoods
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of x such that any neighborhood A, of x contains an element B, € B,.

)

Ay

Let X be a locally compact Hausdorff topological space. Every closed subset and every

open subset of X is locally compact with respect to the induced topology. v

For any topological spaces X, Y one can define different topologies on the set
YX={f: X =Y},
or more specifically on the set
C(X,Y):{f: X =Y : fiscontinuous}.

Definition A.5

Let X, Y be topological spaces.

o The sets
S(C,U):={f e C(X,Y),f(C) CU}
where C' C X is a compact set and U C Y is an open set, form a subbasis of the
compact-open topology on C(X,Y).
o The sets
Sz, U):={feCX,Y): f(z) eU}

form a subbasis of the topology of the pointwise open (or pointwise convergence)
topology on C(X,Y)

L]

Remark Let X be a topological space and (Y, d) a metric space. The sets
Bo(f,€) =19 € C(X,Y) : supd(f(w),g(x)) < e},
re

where C' C X is a compact set, ¢ > 0 and f € C(X,Y) form a basis of the topology of the
compact-open topology. The set B¢ ( f, €) consists of all functions g € C'(X,Y) that are e-close
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to f in all points in the compact set C'. It is easy to see that if { f,,} C C(X,Y), then f,, — f in
the compact-open topology if and only if f,,|c — f|c uniformly on all compact sets C' C X. In
other words, if Y is a metric space the compact-open topology is nothing but the topology of the

uniform convergence on compact sets.

In general the pointwise convergence is weaker than the uniform convergence on compact sets,
which, in turn, is weaker that the uniform convergence. Of course the first two coincide on a set

with the discrete topology and the last two on a compact set.

A.2 Functional Analytical Preliminaries

Let (X,dx) and (Y, dy) be compact metric spaces and let us consider the Banach space
C(X,Y) of continuous functions f: X — Y with the metric

d(f,g) := sup d(f(z), g(z)).

zeX
Let F C C(X,Y) be a subfamily of continuous functions. Then F is relatively compact if

and only if it is equicontinuous, that is for every € > 0 there exists § > 0 such that

dy (f(2), f(y)) <e
for every f € F, whenever dx (x,y) < 6.

This is the form of the theorem that we need. Notice however that

o X need not be a metric space for the theorem to hold, and
o IfY is not compact then the theorem still holds, provided we add the assumption that the set

{f(x): f e F}isrelatively compact for all z € X.
If £, F' are normed spaces, let us consider the normed space
B(E,F):={T: E — F : T is continuous and linear } ,
with [T := supya) oo I 7()l|r-

If T € B(E, F) is bijective and the inverse is continuous, then 7" is an isomorphism of £ with
F. If in particular E = F, then T is an automorphism of F, and we denote Aut(E) C B(FE) the

subspace of automorphisms. If in particular £ is of finite dimension n, then Aut(E) = GL(E).
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Definition A.6. Topologies on B(E, F')
Let (Ty)nen € B(E, F).

1. We say that T,, — T in the norm topology if and only if lim,,_ ||T,, — T|| = 0,
where || - || is the norm on B(E, F).

2. We say that T,, — T in the strong operator topology if and only if lim,,_,~ || Tnx —
Txz||p=0forallz € E.

3. We say that T,, — T in the weak operator topology if lim,,_,oo AN(T),z) = A(Tx) for
all A € F*. Y

In particular if E is a normed vector space over k = Ror k = C and F' = k, then B(E, k)
is nothing but the dual E* of E and the strong operator topology on B(E, k) is nothing but the
weak-x-topology on E*,

If H is a Hilbert space and ¥ = F' = H, then the space of isometric isomorphisms of F

Iso(E) is the space of unitary operators U (). On U(H) the strong operator topology and the

weak operator topology coincide.

Let GG be a topological group and F a topological vector space. A continuous representation
of G on E is a homomorphism 7: G — Aut(E), which is continuous with respect to a topology
on Aut(FE). If in particular, E is a normed space, then 7 is an isometric representation if

m: G — Iso(F). An isometric representation of a Hilbert space is called unitary.

Let G be a topological group acting continuously on a locally compact space X. Let C.(X)
be the space of continuous functions with compact support on X with the norm topology.

Then the representation : G — Iso(C.(X)) defined by
(9)f () = fg~'x)

forx € X and g € G is a continuous representation if 1so(C.(X)) is endowed with the

strong operator topology.

If £, F are topological vector spaces and 1" € B(E, F'), the adjoint T* : F* — E* is defined
by

T*(\):=AoT.

In particular, if F is a topological vector space on which G acts via a representation 7, and £* is
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endowed with the weak-*-topology, then
™(g9) = n(g"H)*: E* - E*

is continuous.

Definition A.7. regular Borel measure

1. Let X be a locally compact Hausdor[f space. A measure on the o-algebra Borel sets

of X is called a Borel measure if it is finite on every compact set.
2. A Borel measure 1 is said to be regular if
(a). forevery Borel setY, u(Y') = sup p(K) over all compact subsets K C 'Y, and
(b). for every o-bounded set Y, u(Y) = inf u(U) over all open o-bounded set
U DY forevery set Uin B(X).

L

Recall that a set Y is o-bounded if it is contained in the countable union of compact sets.

Definition A.8. Separability

Let ‘H be a complex Hilbert space. We say that H is separable if it contains a countable

dense subset.

)

A.3 Differentiable Manifolds

Definition A.9. Paracompactness

A topological space X is paracompact if every open covering {Uq }oc A has a locally finite

refinement, that is there exists a covering {V3}gcp such that

o Forevery 3 € B there exists at least one o € A such that Vg C Uy, and

o forevery p € X there exists a neighborhood W of x that intersects finitely many V. Iy

For us a smooth manifold will always be Hausdorff, locally Euclidean with countable basis

and paracompact.

Definition A.10. Germs

Given p € M, we denote by C*(p) the algebra of germs of smooth functions at p. This is
the algebra of smooth functions defined in an open neighborhood of p, where two functions

are identified if they coincide on a neighborhood of p. &
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Recall that the tangent space T,,M to the manifold M at the point p is the set of all linear
functionals X,,: C*°(p) — R such that for all o, 5 € Rand all f,g € C*(p):

1. Xp(af + Bg) = aX,(f) + BXp(g) (linearity);
2. Xp(fg9) = Xp(f) - 9(p) + f(p)Xp(g) (Leibniz rule).

The linear map X, € T}, M is called a tangent vector to M at p and the tangent space T, M has the

structure of real vector space with operations:

L (Xp +Y)(f) = Xp(f) + Y5 (f);
2. (aXp)(f) == aXp(f).
Let f: M — N be a smooth map of smooth manifolds and let p € M. The differential of f
at p is the linear map d, f : T, M — T'y(,,) N defined as follows: if X, € T,M and ¢ € C*°(f(p)),
then

dpf(Xp) = Xp(do f).
In other words, the tangent vector d, f(X,,) applied to the function ¢ takes the derivative of the
function ¢ o f at the point p € M in the direction of the tangent vector X,.

The tangent bundle to M is TM = |J T, M. It can be made into a manifold with coordinate
peEM
charts (U x R", ¢ x 1), where (U, ¢) is a coordinate chart on M and ¢: R® — T, M is an

isomorphism. With this smooth structure the projection 7w: T'M — M is smooth.

Definition A.11. Smooth vector field

A smooth vector field is smooth section of the tangent bundle

X:M—->TM
mo X =idy. In other words, it is a map
X M- TM
p— Xp €T,M
that assigns to each point p € M a tangent vector X,, to M at p, and such that the map
Xf:M— R
p = Xp(f)

is smooth, for every f € C*°(M).




A.3 Differentiable Manifolds - 138 -

It can be proven that if p € M, then

Xp(f) = pf(Xp) ) (A.1)

that is X,(f) is the differential of the function f at the point p in the direction of X,.

Definition A.12

Let p : M — N be a smooth map of smooth manifolds. Then:

1. ¢ is an immersion if dpp is non-singular for all p € M.

2. (M) is a submanifold or an immersed sumbanifold of N if ¢ is a one-to-one
immersion.

3. If v is a one-to-one immersion that is also a a homeomorphism of M onto its image,

then ¢ is an embedding and o(M ) is an embedded submanifold.

L

In the following pictures in green we see two immersion and in red two immersed submanifolds.
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An embedded submanifold has the smooth structure coming from the ambient manifold and

the concept of embedded submanifold are essentially equivalent to that of regular submanifold that

we recall now.

Definition A.13. (Regular Submanifold)

Let M be a smooth m-dimensional manifold.
1. A subset N C M has the submanifold property if every p € N has a coordinate
neighborhood (U, @) in M with local coordinates x1, . . . , X, such that
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(a). o(p) = 0;
(b). ©(U) is an open cube (—e, €)™ of side length 2¢;
(c) pUNN)={z e (—c,e)™: Tpt1 ="z, =0}

2. A regular submanifold of M is any subset N C M with the submanifold property
and the smooth structure determined by the coordinate neighborhoods defined by the

submanifold property. &
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Example A.2 The following is not a regular submanifold of R2.

N

The point of a regular submanifold is that the topology and the differentiable structure are

those derived from M.
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