Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Prof. Dr. Josef Teichmann

Functional Analysis I
 FS 2021/2022
 Mock exam

Student ID: (your student ID will be preprinted here)

- Duration: 180 minutes.
- Place your student ID on your desk.
- Switch off your mobile phone and store it in your bag.
- Start every new exercise on a separate piece of paper and write your student ID on every page you want to hand in. Please leave 2 cm margins on each side of each page for the correction.
- The solutions to exercises $2-4$ shall be thoroughly justified.
- Exercise 1 consists of 5 multiple choice (MC) questions. Every question has exactly one correct answer. A MC question is awarded 2 points if and only if the correct answer and only the correct answer is clearly marked. In any other case (incorrect answer, no answer, several answers, unclear answer, ...) 0 points are awarded.
- Please use unerasable black or blue pens. In particular, do not use red or green pens.

Please do not fill out the table below!

Ex.	1	2	3	4	Tot.
Pts.	${ }_{[10]}$	[11]	${ }^{[11]}$	${ }_{[10]}$	${ }^{[42]}$
Corr.					
Completeness					
Grade					

Exercise 1. Multiple Choice, $10(=2+2+2+2+2)$ points

MC 1. (2 points) Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed \mathbb{R}-vector spaces. $L(X, Y)$ shall denote the space of bounded linear operators mapping from $\left(X,\|\cdot\|_{X}\right)$ to $\left(Y,\|\cdot\|_{Y}\right)$, equipped with the operator norm $\|\cdot\|_{L(X, Y)}$. Which one of the following statements 1) is true and 2) is such that it is not implied by another true statement out of the four statements?$\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is complete if $\left(X,\|\cdot\|_{X}\right)$ is complete.
$\square\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is complete if $\left(Y,\|\cdot\|_{Y}\right)$ is complete.
$\square\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is complete if both $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are complete.
$\square\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is always complete.

MC 2. (2 points) Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed \mathbb{R}-vector spaces and let $\left(A_{k}\right)_{k \in \mathbb{N}} \subseteq L(X, Y)$ and $A_{\infty}: X \rightarrow Y$ be linear operators (where, for $k \in \mathbb{N}, A_{k}$ is continuous w.r.t. the norm topologies on $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$) such that for every $x \in X$ it holds that $\lim \sup _{k \rightarrow \infty}\left\|A_{k} x-A_{\infty} x\right\|_{Y}=0$. Which one of the following statements 1) is true and 2) is such that it is not implied by another true statement out of the four statements?
$\square A_{\infty}$ is continuous if $\left(X,\|\cdot\|_{X}\right)$ is complete.
$\square A_{\infty}$ is continuous if $\left(Y,\|\cdot\|_{Y}\right)$ is complete.
$\square A_{\infty}$ is continuous if $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are complete.A_{∞} is always continuous.

MC 3. (2 points) Which one of the following statements is false?$\left(L^{2}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{2}([0,1], \mathbb{R})$.$\left(L^{1}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{\infty}([0,1], \mathbb{R})$.$\left(L^{\infty}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{1}([0,1], \mathbb{R})$.$\left(L^{4}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{4 / 3}([0,1], \mathbb{R})$.

MC 4. (2 points) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed \mathbb{R}-vector space and let $A, B \subseteq X$ be non-empty disjoint convex sets. In which of the following situations is it assured that there exists $\varphi \in X^{*}$ such that $\sup _{a \in A} \varphi(a)<\inf _{b \in B} \varphi(b)$?A open, B closed.A compact, B open.A closed, B compact.A closed, B closed.

MC 5. (2 points) Let $c_{c}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}: \exists N \in \mathbb{N}\right.$ s.t. $x_{n}=0$ for all $\left.n>N\right\}$ denote the space of real-valued sequences with at most finitely many non-zero elements and let $\ell^{2}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty\right\}$ denote the (\mathbb{R}-Hilbert) space of real-valued square integrable sequences, equipped with the scalar product $\langle\cdot, \cdot\rangle_{\ell^{2}}$ satisfying for all $x=\left(x_{n}\right)_{n \in \mathbb{N}}, y=\left(y_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}$ that $\langle x, y\rangle_{\ell^{2}}=\sum_{n=1}^{\infty} x_{n} y_{n}$. Let $A: c_{c} \subseteq \ell^{2} \rightarrow \ell^{2}$ be given by $A x=\left(n x_{n}\right)_{n \in \mathbb{N}}$ for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{c}$. Which one of the following statements is true?A is closed.A is injective and has closed range.A is surjective.A^{*} is surjective.

Exercise 2. 11 ($=1+2+3+2+3)$ points
Let ℓ^{2} be defined as

$$
\ell^{2}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty\right\},
$$

equipped as usual with the norm $\|\cdot\|_{\ell^{2}}$ satisfying for every $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}$ that $\|x\|_{\ell^{2}}:=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}\right)^{1 / 2}$. For $s \in(0, \infty)$, let W^{s} be defined as

$$
W^{s}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}: \sum_{n=1}^{\infty} n^{2 s}\left|x_{n}\right|^{2}<\infty\right\} .
$$

(a) (1 point) Prove for every $s \in(0, \infty)$ that W^{s} is a dense subspace of $\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)$.
(b) (2 points) Prove that $\left(W^{s},\|\cdot\|_{W^{s}}\right)$ is a Hilbert space where

$$
\|x\|_{W^{s}}:=\left(\sum_{n=1}^{\infty} n^{2 s}\left|x_{n}\right|^{2}\right)^{1 / 2} \quad \text { for all } x=\left(x_{n}\right)_{n \in \mathbb{N}} \in W^{s} .
$$

(c) (3 points) Prove for every $s \in(0, \infty)$ that the embedding $\iota:\left(W^{s},\|\cdot\|_{W^{s}}\right) \rightarrow$ $\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)$, defined by $\iota(x)=x$ for every $x \in W^{s}$, is a compact operator.
(d) (2 points) Prove for every $F \in\left(W^{s},\|\cdot\|_{W^{s}}\right)^{*}$ that there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ with $\sum_{n=1}^{\infty} \frac{\left|f_{n}\right|^{2}}{n^{2 s}}<\infty$ such that $F(x)=\sum_{n=1}^{\infty} f_{n} x_{n}$ for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in$ W^{s}.
(e) (3 points) Prove for all $s_{1}>s_{2}>0$ that $W^{s_{1}} \subsetneq W^{s_{2}}$ and that $W^{s_{1}}$ is meager in $\left(W^{s_{2}},\|\cdot\|_{W^{s_{2}}}\right)$.

Exercise 3. 11 $(=2+3+2+4)$ points
Let $m \in \mathbb{N}$, let $p \in(1, \infty)$, let $\emptyset \neq \Omega \subseteq \mathbb{R}^{m}$ be a bounded open set, let $k \in$ $L^{\frac{p}{p-1}}(\Omega \times \Omega, \mathbb{R})$, and let $K: L^{p}(\Omega, \mathbb{R}) \rightarrow L^{\frac{p}{p-1}}(\Omega, \mathbb{R})$ be defined by

$$
(K f)(x)=\int_{\Omega} k(x, y) f(y) d y \quad \text { for a.e. } x \in \Omega \text { for all } f \in L^{p}(\Omega, \mathbb{R})
$$

(a) (2 points) Prove that K is a well-defined bounded linear operator with operator norm $\|K\|_{L\left(L^{p}(\Omega, \mathbb{R}), L^{p /(p-1)}(\Omega, \mathbb{R})\right)} \leq\|k\|_{L^{p /(p-1)}(\Omega \times \Omega, \mathbb{R})}$.
(b) (3 points) Prove that K is compact.
(c) (2 points) Determine the dual operator K^{*}.
(d) (4 points) Assume in addition that $1<p \leq 2$ and show that, for $g \in$ $L^{p /(p-1)}(\Omega, \mathbb{R})$, there exists $f \in L^{p}(\Omega, \mathbb{R})$ such that

$$
f(x)-(K f)(x)=g(x) \quad \text { for a.e. } x \in \Omega
$$

if and only if $\int_{\Omega} g \varphi d x=0$ for all $\varphi \in L^{p}(\Omega, \mathbb{R})$ satisfying

$$
\varphi(x)=\int_{\Omega} k(y, x) \varphi(y) d y \quad \text { for a.e. } x \in \Omega .
$$

Exercise 4. $10(=2+4+4)$ points
Let $m \in \mathbb{N}$, let $p \in(1, \infty)$, let $s \in(0, \infty)$, let $\emptyset \neq \Omega \subseteq \mathbb{R}^{m}$ be a bounded open set, let $g \in L^{\frac{p}{p-1}}\left(\mathbb{R}^{m}, \mathbb{R}\right)$, let $h \in L^{p}(\Omega, \mathbb{R})$, and let $V: L^{p}(\Omega, \mathbb{R}) \rightarrow \mathbb{R}$ and $E: L^{p}(\Omega, \mathbb{R}) \rightarrow \mathbb{R}$ be defined by

$$
V(f)=\int_{\Omega} \int_{\Omega} g(x-y) f(y) f(x) d y d x \quad \text { for all } f \in L^{p}(\Omega, \mathbb{R})
$$

and

$$
E(f)=V(f)+\|f-h\|_{L^{p}(\Omega, \mathbb{R})}^{s} \quad \text { for all } f \in L^{p}(\Omega, \mathbb{R}) .
$$

(a) (2 points) Prove that V is well-defined.
(b) (4 points) Prove that V is weakly sequentially continuous.
(c) (4 points) Prove that $\left.E\right|_{\left\{f \in L^{p}(\Omega, \mathbb{R}): f \geq 0 \text { a.e. }\right\}}$ attains a global minimum under the additional assumption that $g \geq 0$ almost everywhere.

