

13th January 2022

Functional Analysis I FS 2021/2022 Mock exam

Student ID: (your student ID will be preprinted here)

- Duration: 180 minutes.
- Place your student ID on your desk.
- Switch off your mobile phone and store it in your bag.

• Start every new exercise on a separate piece of paper and write your student ID on every page you want to hand in. Please leave 2 cm margins on each side of each page for the correction.

• The solutions to exercises 2–4 shall be thoroughly justified.

• Exercise 1 consists of 5 multiple choice (MC) questions. Every question has **exactly one correct answer**. A MC question is awarded 2 points if and only if the correct answer and only the correct answer is clearly marked. In any other case (incorrect answer, no answer, several answers, unclear answer, ...) 0 points are awarded.

• Please use unerasable black or blue pens. In particular, do not use red or green pens.

Ex.	1	2	3	4	Tot.
Pts.	[10]	[11]	[11]	[10]	[42]
Corr.					
Completeness					
Grade					

Please do not fill out the table below!

Exercise 1. Multiple Choice, 10(=2+2+2+2+2) points

MC 1. (2 points) Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed \mathbb{R} -vector spaces. L(X, Y) shall denote the space of bounded linear operators mapping from $(X, \|\cdot\|_X)$ to $(Y, \|\cdot\|_Y)$, equipped with the operator norm $\|\cdot\|_{L(X,Y)}$. Which one of the following statements 1) is **true** and 2) is such that it is **not implied by another true statement** out of the four statements?

- \Box $(L(X,Y), \|\cdot\|_{L(X,Y)})$ is complete if $(X, \|\cdot\|_X)$ is complete.
- \Box $(L(X,Y), \|\cdot\|_{L(X,Y)})$ is complete if $(Y, \|\cdot\|_Y)$ is complete.
- \Box $(L(X,Y), \|\cdot\|_{L(X,Y)})$ is complete if both $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are complete.
- \Box $(L(X,Y), \|\cdot\|_{L(X,Y)})$ is always complete.

,

MC 2. (2 points) Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed \mathbb{R} -vector spaces and let $(A_k)_{k\in\mathbb{N}} \subseteq L(X,Y)$ and $A_{\infty} \colon X \to Y$ be linear operators (where, for $k \in \mathbb{N}$, A_k is continuous w.r.t. the norm topologies on $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$) such that for every $x \in X$ it holds that $\limsup_{k\to\infty} \|A_k x - A_\infty x\|_Y = 0$. Which one of the following statements 1) is **true** and 2) is such that it is **not implied by another true statement** out of the four statements?

- \square A_{∞} is continuous if $(X, \|\cdot\|_X)$ is complete.
- \square A_{∞} is continuous if $(Y, \|\cdot\|_Y)$ is complete.
- \square A_{∞} is continuous if $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are complete.
- $\Box A_{\infty}$ is always continuous.

MC 3. (2 points) Which one of the following statements is false?

- \square $(L^2([0,1],\mathbb{R}))^*$ is isometrically isomorphic to $L^2([0,1],\mathbb{R})$.
- \square $(L^1([0,1],\mathbb{R}))^*$ is isometrically isomorphic to $L^{\infty}([0,1],\mathbb{R})$.
- \square $(L^{\infty}([0,1],\mathbb{R}))^*$ is isometrically isomorphic to $L^1([0,1],\mathbb{R})$.
- \square $(L^4([0,1],\mathbb{R}))^*$ is isometrically isomorphic to $L^{4/3}([0,1],\mathbb{R})$.

MC 4. (2 points) Let $(X, \|\cdot\|_X)$ be a normed \mathbb{R} -vector space and let $A, B \subseteq X$ be non-empty disjoint convex sets. In which of the following situations is it assured that there exists $\varphi \in X^*$ such that $\sup_{a \in A} \varphi(a) < \inf_{b \in B} \varphi(b)$?

 \Box A open, B closed.

,

- \Box A compact, B open.
- \Box A closed, B compact.
- \Box A closed, B closed.

MC 5. (2 points) Let $c_c := \{(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} : \exists N \in \mathbb{N} \text{ s.t. } x_n = 0 \text{ for all } n > N\}$ denote the space of real-valued sequences with at most finitely many non-zero elements and let $\ell^2 := \{(x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} : \sum_{n=1}^{\infty} |x_n|^2 < \infty\}$ denote the (\mathbb{R} -Hilbert) space of real-valued square integrable sequences, equipped with the scalar product $\langle \cdot, \cdot \rangle_{\ell^2}$ satisfying for all $x = (x_n)_{n \in \mathbb{N}}, y = (y_n)_{n \in \mathbb{N}} \in \ell^2$ that $\langle x, y \rangle_{\ell^2} = \sum_{n=1}^{\infty} x_n y_n$. Let $A : c_c \subseteq \ell^2 \to \ell^2$ be given by $Ax = (nx_n)_{n \in \mathbb{N}}$ for all $x = (x_n)_{n \in \mathbb{N}} \in c_c$. Which one of the following statements is **true**?

- $\Box \ A$ is closed.
- \Box A is injective and has closed range.
- \Box A is surjective.
- $\Box A^*$ is surjective.

Exercise 2. 11(=1+2+3+2+3) points

Let ℓ^2 be defined as

,

$$\ell^2 := \left\{ (x_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \colon \sum_{n=1}^{\infty} |x_n|^2 < \infty \right\},\$$

equipped as usual with the norm $\|\cdot\|_{\ell^2}$ satisfying for every $x = (x_n)_{n \in \mathbb{N}} \in \ell^2$ that $\|x\|_{\ell^2} := (\sum_{n=1}^{\infty} |x_n|^2)^{1/2}$. For $s \in (0, \infty)$, let W^s be defined as

$$W^s := \left\{ (x_n)_{n \in \mathbb{N}} \in \ell^2 \colon \sum_{n=1}^{\infty} n^{2s} |x_n|^2 < \infty \right\}.$$

(a) (1 point) Prove for every $s \in (0, \infty)$ that W^s is a dense subspace of $(\ell^2, \|\cdot\|_{\ell^2})$.

(b) (2 points) Prove that $(W^s, \|\cdot\|_{W^s})$ is a Hilbert space where

$$||x||_{W^s} := \left(\sum_{n=1}^{\infty} n^{2s} |x_n|^2\right)^{1/2} \text{ for all } x = (x_n)_{n \in \mathbb{N}} \in W^s.$$

(c) (3 points) Prove for every $s \in (0, \infty)$ that the embedding $\iota: (W^s, \|\cdot\|_{W^s}) \to (\ell^2, \|\cdot\|_{\ell^2})$, defined by $\iota(x) = x$ for every $x \in W^s$, is a compact operator.

(d) (2 points) Prove for every $F \in (W^s, \|\cdot\|_{W^s})^*$ that there exists a sequence $(f_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ with $\sum_{n=1}^{\infty} \frac{|f_n|^2}{n^{2s}} < \infty$ such that $F(x) = \sum_{n=1}^{\infty} f_n x_n$ for all $x = (x_n)_{n \in \mathbb{N}} \in W^s$.

(e) (3 points) Prove for all $s_1 > s_2 > 0$ that $W^{s_1} \subsetneq W^{s_2}$ and that W^{s_1} is meager in $(W^{s_2}, \|\cdot\|_{W^{s_2}})$.

Exercise 3. 11(=2+3+2+4) points

,

Let $m \in \mathbb{N}$, let $p \in (1, \infty)$, let $\emptyset \neq \Omega \subseteq \mathbb{R}^m$ be a bounded open set, let $k \in L^{\frac{p}{p-1}}(\Omega \times \Omega, \mathbb{R})$, and let $K: L^p(\Omega, \mathbb{R}) \to L^{\frac{p}{p-1}}(\Omega, \mathbb{R})$ be defined by

$$(Kf)(x) = \int_{\Omega} k(x, y) f(y) \, dy$$
 for a.e. $x \in \Omega$ for all $f \in L^p(\Omega, \mathbb{R})$.

(a) (2 points) Prove that K is a well-defined bounded linear operator with operator norm $||K||_{L(L^p(\Omega,\mathbb{R}),L^{p/(p-1)}(\Omega,\mathbb{R}))} \leq ||k||_{L^{p/(p-1)}(\Omega\times\Omega,\mathbb{R})}$.

(b) (3 points) Prove that K is compact.

(c) (2 points) Determine the dual operator K^* .

(d) (4 points) Assume in addition that $1 and show that, for <math>g \in L^{p/(p-1)}(\Omega, \mathbb{R})$, there exists $f \in L^p(\Omega, \mathbb{R})$ such that

$$f(x) - (Kf)(x) = g(x)$$
 for a.e. $x \in \Omega$

if and only if $\int_{\Omega} g\varphi \, dx = 0$ for all $\varphi \in L^p(\Omega, \mathbb{R})$ satisfying

$$\varphi(x) = \int_{\Omega} k(y, x)\varphi(y) \, dy$$
 for a.e. $x \in \Omega$.

Exercise 4. 10(=2+4+4) points

Let $m \in \mathbb{N}$, let $p \in (1, \infty)$, let $s \in (0, \infty)$, let $\emptyset \neq \Omega \subseteq \mathbb{R}^m$ be a bounded open set, let $g \in L^{\frac{p}{p-1}}(\mathbb{R}^m, \mathbb{R})$, let $h \in L^p(\Omega, \mathbb{R})$, and let $V \colon L^p(\Omega, \mathbb{R}) \to \mathbb{R}$ and $E \colon L^p(\Omega, \mathbb{R}) \to \mathbb{R}$ be defined by

$$V(f) = \int_{\Omega} \int_{\Omega} g(x - y) f(y) f(x) \, dy \, dx \quad \text{for all } f \in L^p(\Omega, \mathbb{R})$$

and

,

$$E(f) = V(f) + ||f - h||_{L^p(\Omega,\mathbb{R})}^s \text{ for all } f \in L^p(\Omega,\mathbb{R}).$$

(a) (2 points) Prove that V is well-defined.

(b) (4 points) Prove that V is weakly sequentially continuous.

(c) (4 points) Prove that $E|_{\{f \in L^p(\Omega,\mathbb{R}): f \ge 0 \text{ a.e.}\}}$ attains a global minimum under the additional assumption that $g \ge 0$ almost everywhere.