Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Prof. Dr. Josef Teichmann
14th January 2022

Functional Analysis I
 FS 2021/2022
 Mock exam - Solution

Exercise 1. Multiple Choice, $10(=2+2+2+2+2)$ points

MC 1. (2 points) Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed \mathbb{R}-vector spaces. $L(X, Y)$ shall denote the space of bounded linear operators mapping from $\left(X,\|\cdot\|_{X}\right)$ to $\left(Y,\|\cdot\|_{Y}\right)$, equipped with the operator norm $\|\cdot\|_{L(X, Y)}$. Which one of the following statements 1) is true and 2) is such that it is not implied by another true statement out of the four statements?
$\square\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is complete if $\left(X,\|\cdot\|_{X}\right)$ is complete.
Solution: Let $X=\mathbb{R}$, let $\left(Y,\|\cdot\|_{Y}\right)$ be non-complete (and such spaces exist, e.g., $\left.\left(c_{c},\|\cdot\|_{\ell \infty}\right)\right)$, let $\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq Y$ be a Cauchy sequence which does not have a limit in $\left(Y,\|\cdot\|_{Y}\right)$, and define, for $n \in \mathbb{N}$, the linear operator $A_{n}: \mathbb{R} \rightarrow Y$ via $A_{n}(r)=r y_{n}$ (for all $r \in \mathbb{R}$). Clearly, $\left(A_{n}\right)_{n \in \mathbb{N}} \subseteq L(\mathbb{R}, Y)$ is a Cauchy sequence. But if it had a limit $A_{\infty} \in L(\mathbb{R}, Y)$ (which would be the case if $\left(L(\mathbb{R}, Y),\|\cdot\|_{L(\mathbb{R}, Y)}\right)$ was complete), then $\left(y_{n}\right)_{n \in \mathbb{N}}$ would converge to $A_{\infty}(1)$ in Y as $n \rightarrow \infty$, contradicting the choice of $\left(y_{n}\right)_{n \in \mathbb{N}}$ as Cauchy sequence without limit.

- $\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is complete if $\left(Y,\|\cdot\|_{Y}\right)$ is complete.

Solution: See Theorem 2.2.4 in M. Struwe's script or exercise 3.1(c).
$\square\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is complete if both $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are complete.
Solution: This statement is true, but it is implied by the second statement (and it is indeed strictly less general than that statement because of the existence of non-complete vector spaces).
$\square\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is always complete.
Solution: This statement is false since the first statement (which would be implied by this one) is also false.

MC 2. (2 points) Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed \mathbb{R}-vector spaces and let $\left(A_{k}\right)_{k \in \mathbb{N}} \subseteq L(X, Y)$ and $A_{\infty}: X \rightarrow Y$ be linear operators (where, for $k \in \mathbb{N}, A_{k}$ is continuous w.r.t. the norm topologies on $\left(X,\|\cdot\|_{X}\right)$ and $\left.\left(Y,\|\cdot\|_{Y}\right)\right)$ such that for every $x \in X$ it holds that $\lim \sup _{k \rightarrow \infty}\left\|A_{k} x-A_{\infty} x\right\|_{Y}=0$. Which one of the following statements 1) is true and 2) is such that it is not implied by another true statement out of the four statements?

- A_{∞} is continuous if $\left(X,\|\cdot\|_{X}\right)$ is complete.

Solution: By the Banach-Steinhaus theorem, $\sup _{n \in \mathbb{N}}\left\|A_{n}\right\|_{L(X, Y)}<\infty$ because $\sup _{n \in \mathbb{N}}\left\|A_{n} x\right\|_{Y}<\infty$ for every $x \in X$ (if ($X,\|\cdot\|_{X}$) is complete) and therefore, A_{∞} is bounded. See also Theorem 3.1.1 in M. Struwe's script (or the application 'Anwendung 3.1.1' following it).
$\square A_{\infty}$ is continuous if $\left(Y,\|\cdot\|_{Y}\right)$ is complete.
Solution: Let $\left(X,\|\cdot\|_{X}\right)=\left(c_{c},\|\cdot\|_{\ell \infty}\right),\left(Y,\|\cdot\|_{Y}\right)=\left(c_{0},\|\cdot\|_{\ell_{\infty}}\right)$ and define, for $k \in \mathbb{N}$, the operator $A_{k}: X \rightarrow Y$ as

$$
A_{k} x=\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots, k x_{k}, 0,0, \ldots\right) \quad \text { for all } x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{c} .
$$

Clearly, for every $k \in \mathbb{N}, A_{k} \in L(X, Y)$ (with $\left\|A_{k}\right\|_{L(X, Y)}=k$). Moreover, for every $x \in c_{c},\left(A_{k} x\right)_{k \in \mathbb{N}}$ is eventually constant (if $N \in \mathbb{N}$ is such that $x_{n}=0$ for all $n>N$, then $A_{n} x=A_{N} x$ for all $\left.n>N\right)$ and therefore converging. The limit operator $A_{\infty}: X \rightarrow Y$ is given by

$$
A_{\infty} x=\left(n x_{n}\right)_{n \in \mathbb{N}} \quad \text { for all } x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{c} .
$$

But A_{∞} is clearly not bounded.
$\square A_{\infty}$ is continuous if $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are complete.
Solution: This statement is true. But it is implied by the first statement and it is strictly less general than the first statement.
$\square A_{\infty}$ is always continuous.
Solution: This statement is false as the second statement, which would be implied by this one, is already false.

MC 3. (2 points) Which one of the following statements is false?
$\square\left(L^{2}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{2}([0,1], \mathbb{R})$.
Solution: For every $p \in[1, \infty),\left(L^{p}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{p^{*}}([0,1], \mathbb{R})$, where $p^{*} \in[1, \infty]$ is such that $\frac{1}{p}+\frac{1}{p^{*}}=1$ (with the convention that $\left.\frac{1}{\infty}=0\right)$. For $p=2$, it holds that $p^{*}=2$, so that $\left(L^{2}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{2}([0,1], \mathbb{R})$. Alternatively, since $L^{2}([0,1], \mathbb{R})$ is a real Hilbert space, Riesz's representation theorem for Hilbert spaces implies that $L^{2}([0,1], \mathbb{R})$ is isometrically isomorphic to its dual.
$\square\left(L^{1}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{\infty}([0,1], \mathbb{R})$.
Solution: For every $p \in[1, \infty),\left(L^{p}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{p^{*}}([0,1], \mathbb{R})$, where $p^{*} \in[1, \infty]$ is such that $\frac{1}{p}+\frac{1}{p^{*}}=1$ (with the convention that $\left.\frac{1}{\infty}=0\right)$. For $p=1$, it holds that $p^{*}=\infty$, so that $\left(L^{1}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{\infty}([0,1], \mathbb{R})$.

- $\left(L^{\infty}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{1}([0,1], \mathbb{R})$.

Solution: If $L^{1}([0,1], \mathbb{R})$ was isomorphic to $\left(L^{\infty}([0,1], \mathbb{R})\right)^{*}$, then the dual space of $L^{\infty}([0,1], \mathbb{R})$ would be separable (since $L^{1}([0,1], \mathbb{R})$ is separable). This, in turn, would imply that $L^{\infty}([0,1], \mathbb{R})$ is separable. This is a contradiction (see, e.g., exercise 2.7).
$\square\left(L^{4}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{4 / 3}([0,1], \mathbb{R})$.
Solution: For every $p \in[1, \infty),\left(L^{p}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{p^{*}}([0,1], \mathbb{R})$, where $p^{*} \in[1, \infty]$ is such that $\frac{1}{p}+\frac{1}{p^{*}}=1$ (with the convention that $\left.\frac{1}{\infty}=0\right)$. For $p=4$, it holds that $p^{*}=\frac{4}{3}$, so that $\left(L^{4}([0,1], \mathbb{R})\right)^{*}$ is isometrically isomorphic to $L^{4 / 3}([0,1], \mathbb{R})$.

MC 4. (2 points) Let $\left(X,\|\cdot\|_{X}\right)$ be a normed \mathbb{R}-vector space and let $A, B \subseteq X$ be non-empty disjoint convex sets. In which of the following situations is it assured that there exists $\varphi \in X^{*}$ such that $\sup _{a \in A} \varphi(a)<\inf _{b \in B} \varphi(b)$?A open, B closed.
Solution: Consider, for example, $X=\mathbb{R}, A=(-\infty, 0)$ and $B=[0, \infty)$.A compact, B open.
Solution: Consider, for example, $X=\mathbb{R}, A=[-1,0]$ and $B=(0, \infty)$.

- A closed, B compact.

Solution: See Theorem 4.5.1 in the script.A closed, B closed.
Solution: See exercise 7.4 for a counterexample.

MC 5. (2 points) Let $c_{c}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}: \exists N \in \mathbb{N}\right.$ s.t. $x_{n}=0$ for all $\left.n>N\right\}$ denote the space of real-valued sequences with at most finitely many non-zero elements and let $\ell^{2}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty\right\}$ denote the (\mathbb{R}-Hilbert) space of real-valued square integrable sequences, equipped with the scalar product $\langle\cdot \cdot \cdot\rangle_{\ell^{2}}$ satisfying for all $x=\left(x_{n}\right)_{n \in \mathbb{N}}, y=\left(y_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}$ that $\langle x, y\rangle_{\ell^{2}}=\sum_{n=1}^{\infty} x_{n} y_{n}$. Let $A: c_{c} \subseteq \ell^{2} \rightarrow \ell^{2}$ be given by $A x=\left(n x_{n}\right)_{n \in \mathbb{N}}$ for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{c}$. Which one of the following statements is true?
$\square A$ is closed.
Solution: A counterexample is given, for example, by the sequence $\left(x^{(n)}\right)_{n \in \mathbb{N}} \subseteq$ c_{c}, defined via

$$
x_{k}^{(n)}= \begin{cases}\frac{1}{k^{2}} & : k \leq n, \\ 0 & : k>n,\end{cases}
$$

for all $k, n \in \mathbb{N}$. Since $x^{(n)} \rightarrow\left(\frac{1}{k^{2}}\right)_{k \in \mathbb{N}} \in \ell^{2}$ as $n \rightarrow \infty$ and $A x^{(n)} \rightarrow\left(\frac{1}{k}\right)_{k \in \mathbb{N}} \in \ell^{2}$ as $n \rightarrow \infty$, but $\left(\frac{1}{k^{2}}\right)_{k \in \mathbb{N}} \notin c_{c}, A$ is not closed.A is injective and has closed range.
Solution: $\operatorname{im}(A)=c_{c}$ is dense, but not closed.A is surjective.
Solution: $\operatorname{im}(A)=c_{c} \neq \ell^{2}$.

- A^{*} is surjective.

Solution: Indeed, A^{*} is given by $D_{A^{*}}=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}:\left(n x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}\right\}$ and $A^{*}\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=\left(n x_{n}\right)_{n \in \mathbb{N}}$ for every $\left(x_{n}\right)_{n \in \mathbb{N}} \in D_{A^{*}}$. This operator is clearly surjective.

Exercise 2. 11 ($=1+2+3+2+3$) points

Let ℓ^{2} be defined as

$$
\ell^{2}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty\right\},
$$

equipped as usual with the norm $\|\cdot\|_{\ell^{2}}$ satisfying for every $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}$ that $\|x\|_{\ell^{2}}:=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}\right)^{1 / 2}$. For $s \in(0, \infty)$, let W^{s} be defined as

$$
W^{s}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}: \sum_{n=1}^{\infty} n^{2 s}\left|x_{n}\right|^{2}<\infty\right\} .
$$

(a) (1 point) Prove for every $s \in(0, \infty)$ that W^{s} is a dense subspace of $\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)$.

Solution: Let $c_{c}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}: \exists N \in \mathbb{N}: x_{n}=0\right.$ for all $\left.n>N\right\}$. Clearly, $c_{c} \subseteq W^{s}$ for every $s \in(0, \infty)$. Since c_{c} lies dense in $\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right), W^{s}$ is a dense subset of $\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)$. Moreover, for all $s \in(0, \infty), x=\left(x_{n}\right)_{n \in \mathbb{N}}, y=\left(y_{n}\right)_{n \in \mathbb{N}} \in W^{s}, \alpha \in \mathbb{R}$, it holds that

$$
\sum_{n=1}^{\infty} n^{2 s}\left|\alpha x_{n}+y_{n}\right|^{2} \leq 2|\alpha|^{2} \sum_{n=1}^{\infty} n^{2 s}\left|x_{n}\right|^{2}+2 \sum_{n=1}^{\infty} n^{2 s}\left|y_{n}\right|^{2}<\infty
$$

i.e., $\alpha x+y \in W^{s}$.
(b) (2 points) Prove that $\left(W^{s},\|\cdot\|_{W^{s}}\right)$ is a Hilbert space where

$$
\|x\|_{W^{s}}:=\left(\sum_{n=1}^{\infty} n^{2 s}\left|x_{n}\right|^{2}\right)^{1 / 2} \quad \text { for all } x=\left(x_{n}\right)_{n \in \mathbb{N}} \in W^{s} .
$$

Solution: From (a), we know that W^{s} is an \mathbb{R}-vector space. Define $\langle\cdot, \cdot\rangle_{W^{s}}: W^{s} \times$ $W^{s} \rightarrow \mathbb{R}$ via

$$
\langle x, y\rangle_{W^{s}}:=\sum_{n=1}^{\infty} n^{2 s} x_{n} y_{n} \quad \text { for all } x=\left(x_{n}\right)_{n \in \mathbb{N}}, y=\left(y_{n}\right)_{n \in \mathbb{N}} \in W^{s} .
$$

Clearly, for all $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}} \in W^{s}$, it holds by Hölder's inequality (or CauchySchwarz) that

$$
\sum_{n=1}^{\infty} n^{2 s}\left|x_{n}\right|\left|y_{n}\right| \leq\left(\sum_{n=1}^{\infty} n^{2 s}\left|x_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{n=1}^{\infty} n^{2 s}\left|y_{n}\right|^{2}\right)^{1 / 2}<\infty
$$

so that $\langle\cdot, \cdot\rangle_{W^{s}}: W^{s} \times W^{s} \rightarrow \mathbb{R}$ is well-defined. Clearly, $\langle\cdot, \cdot\rangle_{W^{s}}: W^{s} \times W^{s} \rightarrow \mathbb{R}$ is bilinear, $\langle x, x\rangle_{W^{s}} \geq 0$ for every $x \in W^{s}$ and $\|x\|_{W^{s}}=\sqrt{\langle x, x\rangle_{W^{s}}}$ for every $x \in W^{s}$. Finally, if $\langle x, x\rangle_{W^{s}}=0$ for $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in W^{s}$, then $n^{2 s}\left|x_{n}\right|^{2}=0$ for all $n \in \mathbb{N}$, i.e.,
$x_{n}=0$ for all $n \in \mathbb{N}$. Thus, $\langle\cdot, \cdot\rangle_{W^{s}}: W^{s} \times W^{s} \rightarrow \mathbb{R}$ is a scalar product on W^{s}. It remains to show that $\left(W^{s},\|\cdot\|_{W^{s}}\right)$ is complete. For this, let $\left(x^{(n)}\right)_{n \in \mathbb{N}} \subseteq W^{s}$ (where $x^{(n)}=\left(x_{k}^{(n)}\right)_{k \in \mathbb{N}}$ for every $\left.n \in \mathbb{N}\right)$ be Cauchy w.r.t. $\|\cdot\|_{W^{s}}$. This means nothing else but that $\left(y^{(n)}\right)_{n \in \mathbb{N}} \subseteq \ell^{2}$, given by $y_{k}^{(n)}=k^{s} x_{k}^{(n)}$ for all $k, n \in \mathbb{N}$, is a Cauchy sequence in $\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)$. As $\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)$ is complete, there exists $y^{(\infty)}=\left(y_{k}^{(\infty)}\right)_{k \in \mathbb{N}} \in \ell^{2}$ so that $\lim \sup _{n \rightarrow \infty}\left\|y^{(n)}-y^{(\infty)}\right\|_{\ell^{2}}=0$. Clearly, the sequence $x^{(\infty)}=\left(x_{k}^{(\infty)}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}$, defined by $x_{k}^{(\infty)}=k^{-s} y_{k}^{(\infty)}$ for every $k \in \mathbb{N}$, belongs to ℓ^{2} (since $s>0$ and $y^{(\infty)} \in \ell^{2}$) and to W^{s} (since $y^{(\infty)} \in \ell^{2}$) and

$$
\limsup _{n \rightarrow \infty}\left\|x^{(n)}-x^{(\infty)}\right\|_{W^{s}}=\limsup _{n \rightarrow \infty}\left\|y^{(n)}-y^{(\infty)}\right\|_{\ell^{2}}=0
$$

This shows that $\left(W^{s},\|\cdot\|_{W^{s}}\right)$ is complete. Since $\|\cdot\|_{W^{s}}$ is induced by the scalar product $\langle\cdot, \cdot\rangle_{W^{s}}$, it is even a Hilbert space.
Alternatively, consider the bounded linear operator $A: \ell^{2} \rightarrow \ell^{2}$, defined by $A x=$ $\left(n^{-s} x_{n}\right)_{n \in \mathbb{N}}$ for $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}$. Then, clearly, A is a bijection onto its image and $W^{s}=\operatorname{im}(A)$. Moreover, equipping $W^{s}=\operatorname{im}(A)$ with the norm $\|\cdot\|_{W^{s}}$ turns A into an isometry between $\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)$ and $\left(W^{s},\|\cdot\|_{W^{s}}\right)$. Hence, $\left(W^{s},\|\cdot\|_{W^{s}}\right)$ is a Hilbert space and the scalar product is given by

$$
\langle x, y\rangle_{W^{s}}=\left\langle A^{-1} x, A^{-1} y\right\rangle_{\ell^{2}}=\sum_{n=1}^{\infty} n^{2 s} x_{n} y_{n} \quad \text { for all } x=\left(x_{n}\right)_{n \in \mathbb{N}}, y=\left(y_{n}\right)_{n \in \mathbb{N}} \in W^{s} .
$$

(c) (3 points) Prove for every $s \in(0, \infty)$ that the embedding $\iota:\left(W^{s},\|\cdot\|_{W^{s}}\right) \rightarrow$ $\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)$, defined by $\iota(x)=x$ for every $x \in W^{s}$, is a compact operator.
Solution: Way 1) Let $\left(x^{(n)}\right)_{n \in \mathbb{N}} \subseteq W^{s}$ be a sequence with $\left\|x^{(n)}\right\|_{W^{s}} \leq 1$ for all $n \in \mathbb{N}$, i.e.,

$$
\begin{equation*}
\sum_{k=1}^{\infty}|k|^{2 s}\left|x_{k}^{(n)}\right|^{2} \leq 1 \quad \text { for all } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

On one hand, this implies that $\sup _{n \in \mathbb{N}}\left|x_{k}^{(n)}\right| \leq \frac{1}{k^{s}} \leq 1$ for all $k \in \mathbb{N}$. Passing to a subsequence (by subsequently choosing subsequences and then using the usual diagonal trick), if necessary, we may assume that there exists $x^{(\infty)}=\left(x_{k}^{(\infty)}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}$ such that

$$
\limsup _{n \rightarrow \infty}\left|x_{k}^{(n)}-x_{k}^{(\infty)}\right|=0 \quad \text { for all } k \in \mathbb{N}
$$

Combining this with (1), we obtain in addition that

$$
\begin{align*}
\sum_{k=1}^{\infty} k^{2 s}\left|x_{k}^{(\infty)}\right|^{2} & =\sup _{N \in \mathbb{N}}\left(\sum_{k=1}^{N} k^{2 s}\left|x_{k}^{(\infty)}\right|^{2}\right) \leq \sup _{N \in \mathbb{N}} \sup _{n \in \mathbb{N}}\left(\sum_{k=1}^{N} k^{2 s}\left|x_{k}^{(n)}\right|^{2}\right) \tag{2}\\
& \leq \sup _{n \in \mathbb{N}}\left(\sum_{k=1}^{\infty} k^{2 s}\left|x_{k}^{(n)}\right|^{2}\right) \leq 1
\end{align*}
$$

Moreover, (1) implies in particular for all $n, N \in \mathbb{N}$ that

$$
N^{2 s} \sum_{k=N}^{\infty}\left|x_{k}^{(n)}\right|^{2} \leq \sum_{k=N}^{\infty} k^{2 s}\left|x_{k}^{(n)}\right|^{2} \leq 1
$$

(and (2) implies that $\sum_{k=N}^{\infty}\left|x_{k}^{(\infty)}\right|^{2} \leq \frac{1}{N^{2 s}}$ for all $N \in \mathbb{N}$). This implies for all $N \in \mathbb{N}$ that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty}\left|x_{k}^{(n)}-x_{k}^{(\infty)}\right|^{2}\right) & \leq \underbrace{\limsup _{n \rightarrow \infty}\left(\sum_{k=1}^{N}\left|x_{k}^{(n)}-x_{k}^{(\infty)}\right|^{2}\right)}_{=0}+\limsup _{n \rightarrow \infty}\left(\sum_{k>N}\left|x_{k}^{(n)}-x_{k}^{(\infty)}\right|^{2}\right) \\
& \leq 2 \limsup _{n \rightarrow \infty}\left(\sum_{k>N}\left|x_{k}^{(n)}\right|^{2}\right)+2 \limsup _{n \rightarrow \infty}\left(\sum_{k>N}\left|x_{k}^{(\infty)}\right|^{2}\right) \leq \frac{4}{N^{2 s}},
\end{aligned}
$$

which, in turn, proves that $\lim \sup _{n \rightarrow \infty}\left\|x^{(n)}-x^{(\infty)}\right\|_{\ell^{2}}=0$. Thus, we demonstrated that ι is a compact operator by showing that bounded sets in $\left(W^{s},\|\cdot\|_{W^{s}}\right)$ are relatively compact when considered as subsets of $\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)$.
Way 2) Define, for every $n \in \mathbb{N}$, the operator $I_{n}:\left(W^{s},\|\cdot\|_{W^{s}}\right) \rightarrow\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)$ by

$$
I_{n}(x)=\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0, \ldots\right) \quad \text { for every } x=\left(x_{k}\right)_{k \in \mathbb{N}} \in\left(W^{s},\|\cdot\|_{W^{s}}\right) .
$$

It clearly holds for every $n \in \mathbb{N}$ that $I_{n} \in L\left(\left(W^{s},\|\cdot\|_{W^{s}}\right),\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)\right)$. Moreover, since I_{n} has finite-dimensional range for every $n \in \mathbb{N}$, the operators I_{n} are all compact operators. In addition, it holds for every $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in W^{s}$ that

$$
\left\|I_{n} x-\iota x\right\|_{\ell^{2}}^{2}=\sum_{k=n+1}^{\infty}\left|x_{k}\right|^{2} \leq \frac{1}{n^{2 s}} \sum_{k=n+1}^{\infty} k^{2 s}\left|x_{k}\right|^{2} \leq \frac{1}{n^{2 s}}\|x\|_{W^{s}}^{2} .
$$

This implies that

$$
\limsup _{n \rightarrow \infty}\left\|I_{n}-\iota\right\|_{L\left(\left(W^{s},\|\cdot\| \|_{W^{s}}\right),\left(\ell^{2},\|\cdot\| \|_{\ell^{2}}\right)\right)}=0 .
$$

Since the space of compact operators $K\left(\left(W^{s},\|\cdot\|_{W^{s}}\right),\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)\right)$ is a closed subspace of $L\left(\left(W^{s},\|\cdot\|_{W^{s}}\right),\left(\ell^{2},\|\cdot\|_{\ell^{2}}\right)\right.$) (equipped with the operator norm), the limit ι is also compact.

Way 3) Let $\left(x^{(n)}\right)_{n \in \mathbb{N}} \subseteq W^{s}$ be a weakly converging sequence in $\left(W^{s},\|\cdot\|_{W^{s}}\right)$ with weak $\overline{\text { limit } x^{(\infty)}} \in W^{s}$. This implies, in particular, for every $k \in \mathbb{N}$ that

$$
\limsup _{n \rightarrow \infty}\left|k^{2 s} x_{k}^{(n)}-k^{2 s} x_{k}^{(\infty)}\right|=0
$$

Moreover, since $\left(x^{(n)}\right)_{n \in \mathbb{N}}$ is weakly converging, it holds (by the Banach-Steinhaus theorem) that

$$
C:=\sup _{n \in \mathbb{N}}\left(\sum_{k=1}^{\infty} k^{2 s}\left|x_{k}^{(n)}\right|^{2}\right)<\infty .
$$

The convergence of $\left(x_{k}^{(n)}\right)_{n \in \mathbb{N}}$ to $x_{k}^{(\infty)}$ in \mathbb{R} as $n \rightarrow \infty$ (for every $k \in \mathbb{N}$) also implies that $\sum_{k=1}^{\infty} k^{2 s}\left|x_{k}^{(\infty)}\right|^{2} \leq C<\infty$. The rest of the argument can now be carried out similar to Way 1), that is, noting that for all $N \in \mathbb{N}$ it holds that

$$
\sup _{n \in \mathbb{N}}\left(\sum_{k=N}^{\infty}\left|x_{k}^{(n)}\right|^{2}\right) \leq \frac{C}{N^{2 s}} \quad \text { and } \quad \sum_{k=N}^{\infty}\left|x_{k}^{(\infty)}\right|^{2} \leq \frac{C}{N^{2 s}}
$$

we estimate for all $N \in \mathbb{N}$ that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty}\left|x_{k}^{(n)}-x_{k}^{(\infty)}\right|^{2}\right) & \leq \underbrace{\limsup _{n \rightarrow \infty}\left(\sum_{k=1}^{N}\left|x_{k}^{(n)}-x_{k}^{(\infty)}\right|^{2}\right)}_{=0}+\limsup _{n \rightarrow \infty}\left(\sum_{k>N}\left|x_{k}^{(n)}-x_{k}^{(\infty)}\right|^{2}\right) \\
& \leq 2 \limsup _{n \rightarrow \infty}\left(\sum_{k>N}\left|x_{k}^{(n)}\right|^{2}\right)+2 \limsup _{n \rightarrow \infty}\left(\sum_{k>N}\left|x_{k}^{(\infty)}\right|^{2}\right) \leq \frac{4 C}{N^{2 s}}
\end{aligned}
$$

which implies that $\lim \sup _{n \rightarrow \infty}\left\|x^{(n)}-x^{(\infty)}\right\|_{\ell^{2}}=0$.
(d) (2 points) Prove for every $F \in\left(W^{s},\|\cdot\|_{W^{s}}\right)^{*}$ that there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ with $\sum_{n=1}^{\infty} \frac{\left|f_{n}\right|^{2}}{n^{2 s}}<\infty$ such that $F(x)=\sum_{n=1}^{\infty} f_{n} x_{n}$ for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in$ W^{s}.

Solution: Let $F \in\left(W^{s},\|\cdot\|_{W^{s}}\right)^{*}$ be arbitrary. Since $\left(W^{s},\|\cdot\|_{W^{s}}\right)$ is a real Hilbert space according to (b), it holds by Riesz's representation theorem for Hilbert spaces that there exists $\varphi=\left(\varphi_{n}\right)_{n \in \mathbb{N}} \in W^{s}$ such that

$$
F(x)=\langle\varphi, x\rangle_{W^{s}}=\sum_{n=1}^{\infty} n^{2 s} \varphi_{n} x_{n} \quad \text { for every } x=\left(x_{n}\right)_{n \in \mathbb{N}} \in W^{s} .
$$

Defining $f_{n}:=n^{2 s} \varphi_{n}$ for every $n \in \mathbb{N}$, we obtain that

$$
F(x)=\sum_{n=1}^{\infty} f_{n} x_{n} \quad \text { for every } x=\left(x_{n}\right)_{n \in \mathbb{N}} \in W^{s}
$$

and

$$
\sum_{n=1}^{\infty} \frac{\left|f_{n}\right|^{2}}{n^{2 s}}=\sum_{n=1}^{\infty} n^{2 s}\left|\varphi_{n}\right|^{2}=\|\varphi\|_{W^{s}}^{2}<\infty .
$$

(e) (3 points) Prove for all $s_{1}>s_{2}>0$ that $W^{s_{1}} \subsetneq W^{s_{2}}$ and that $W^{s_{1}}$ is meager in $\left(W^{s_{2}},\|\cdot\|_{W^{s_{2}}}\right)$.

Solution: Let $s_{1}, s_{2} \in(0, \infty)$ with $s_{1}>s_{2}$. For all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in W^{s_{1}}$ it holds that

$$
\sum_{n=1}^{\infty} n^{2 s_{2}}\left|x_{n}\right|^{2}=\sum_{n=1}^{\infty} \underbrace{n^{2\left(s_{2}-s_{1}\right)}}_{\leq 1} n^{2 s_{1}}\left|x_{n}\right|^{2} \leq \sum_{n=1}^{\infty} n^{2 s_{1}}\left|x_{n}\right|^{2}=\|x\|_{W^{s_{1}}}^{2}<\infty
$$

(since $s_{2}<s_{1}$). Hence, $W^{s_{1}} \subseteq W^{s_{2}}$ (and the embedding is continuous).
Setting $\alpha:=\frac{s_{1}+s_{2}+1}{2}$, we observe that the sequence $z=\left(z_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}$, given by $z_{n}=n^{-\alpha}$ for every $n \in \mathbb{N}$, satisfies that

- $z \in W^{s_{2}}$ as

$$
\sum_{n=1}^{\infty}\left|z_{n}\right|^{2} \leq \sum_{n=1}^{\infty} n^{2 s_{2}}\left|z_{n}\right|^{2}=\sum_{n=1}^{\infty} n^{2 s_{2}-2 \alpha}=\sum_{n=1}^{\infty} n^{2 s_{2}-s_{1}-s_{2}-1}=\sum_{n=1}^{\infty} n^{s_{2}-s_{1}-1}<\infty
$$

(since $s_{2}>0$ and $s_{2}-s_{1}-1<-1$) and

- $z \notin W^{s_{1}}$ as

$$
\sum_{n=1}^{\infty} n^{2 s_{1}}\left|z_{n}\right|^{2}=\sum_{n=1}^{\infty} n^{2 s_{1}-2 \alpha}=\sum_{n=1}^{\infty} n^{2 s_{1}-s_{1}-s_{2}-1}=\sum_{n=1}^{\infty} n^{s_{1}-s_{2}-1}=\infty
$$

(since $s_{1}-s_{2}-1>-1$),
so that $z \in W^{s_{2}} \backslash W^{s_{1}}$.
Finally, to prove that $W^{s_{1}}$ is a meagre subset of $\left(W^{s_{2}},\|\cdot\|_{W^{s_{2}}}\right)$, consider the sets A_{n}, $n \in \mathbb{N}$, given by

$$
A_{n}:=\left\{x=\left(x_{k}\right)_{k \in \mathbb{N}} \in W^{s_{2}}: \sum_{k=1}^{\infty} k^{2 s_{1}}\left|x_{k}\right|^{2} \leq n^{2}\right\} .
$$

Clearly, $\bigcup_{n \in \mathbb{N}} A_{n}=W^{s_{1}} \cap W^{s_{2}}=W^{s_{1}}$. Moreover, it holds for every $n \in \mathbb{N}$ that A_{n} is closed. Indeed, if $n \in \mathbb{N}$ and $\left(x^{(k)}\right)_{k \in \mathbb{N}} \subseteq A_{n}$ converges to $x^{(\infty)}$ in ($W^{s_{2}},\|\cdot\|_{W^{s_{2}}}$) as $k \rightarrow \infty$, then, clearly, $x_{l}^{(k)} \rightarrow x_{l}^{(\infty)}$ for every $l \in \mathbb{N}$ as $k \rightarrow \infty$ and therefore, for every $N \in \mathbb{N}$:

$$
\sum_{l=1}^{N} l^{2 s_{1}}\left|x_{l}^{(\infty)}\right|^{2}=\lim _{k \rightarrow \infty}\left(\sum_{l=1}^{N} l^{2 s_{1}}\left|x_{l}^{(k)}\right|^{2}\right) \leq \limsup _{k \rightarrow \infty}\left\|x^{(k)}\right\|_{W^{s_{1}}}^{2} \leq n^{2}
$$

which implies $x^{(\infty)} \in A_{n}$. It remains to show for every $n \in \mathbb{N}$ that the interior of A_{n} is empty. For this, let $n \in \mathbb{N}$ and $y \in A_{n}$ be arbitrary and let $x \in W^{s_{2}} \backslash W^{s_{1}}$. Then it holds for every $k \in \mathbb{N}$ that $y+\frac{1}{k} x \in W^{s_{2}} \backslash W^{s_{1}} \subseteq W^{s_{2}} \backslash A_{n}$. Moreover, it holds that $y+\frac{1}{k} x \rightarrow y$ in $\left(W^{s_{2}},\|\cdot\|_{W^{s_{2}}}\right)$ as $k \rightarrow \infty$.

Exercise 3. 11 $(=2+3+2+4)$ points

Let $m \in \mathbb{N}$, let $p \in(1, \infty)$, let $\emptyset \neq \Omega \subseteq \mathbb{R}^{m}$ be a bounded open set, let $k \in$ $L^{\frac{p}{p-1}}(\Omega \times \Omega, \mathbb{R})$, and let $K: L^{p}(\Omega, \mathbb{R}) \rightarrow L^{\frac{p}{p-1}}(\Omega, \mathbb{R})$ be defined by

$$
(K f)(x)=\int_{\Omega} k(x, y) f(y) d y \quad \text { for a.e. } x \in \Omega \text { for all } f \in L^{p}(\Omega, \mathbb{R})
$$

(a) (2 points) Prove that K is a well-defined bounded linear operator with operator norm $\|K\|_{L\left(L^{p}(\Omega, \mathbb{R}), L^{p /(p-1)}(\Omega, \mathbb{R})\right)} \leq\|k\|_{L^{p /(p-1)}(\Omega \times \Omega, \mathbb{R})}$.
Solution: We only argue for well-definedness and boundedness as linearity is clear. By Hölder's inequality, it holds for every $f \in L^{p}(\Omega, \mathbb{R})$ that

$$
\begin{aligned}
\int_{\Omega}\left|\int_{\Omega}\right| k(x, y) f(y)|d y|^{\frac{p}{p-1}} d x & \leq \int_{\Omega} \int_{\Omega}|k(x, y)|^{\frac{p}{p-1}} d y\|f\|_{L^{p}(\Omega, \mathbb{R})}^{\frac{p}{p-1}} d x \\
& =\|k\|_{L^{p /(p-1)}(\Omega \times \Omega, \mathbb{R})}^{\frac{p}{p-1}}\|f\|_{L^{p}(\Omega, \mathbb{R})}^{\frac{p}{p-1}} .
\end{aligned}
$$

The Fubini-Tonelli theorem hence implies that $K f \in L^{p /(p-1)}(\Omega, \mathbb{R})$ for every $f \in$ $L^{p}(\Omega, \mathbb{R})$. Moreover, the above computation demonstrates that $\|K\|_{L\left(L^{p}(\Omega, \mathbb{R}), L^{p /(p-1)}(\Omega, \mathbb{R})\right)} \leq$ $\|k\|_{L^{p /(p-1)}(\Omega \times \Omega, \mathbb{R})}$.
(b) (3 points) Prove that K is compact.

Solution: Since $L^{p}(\Omega, \mathbb{R})$ is reflexive (as $p \in(1, \infty)$), for proving compactness of K it is sufficient to prove that K maps weakly converging sequences to strongly converging sequences as every bounded sequence in $L^{p}(\Omega, \mathbb{R})$ possesses a weakly converging subsequence.
Now, let $\left(f_{n}\right)_{n \in \mathbb{N}} \subseteq L^{p}(\Omega, \mathbb{R})$ and $f_{\infty} \in L^{p}(\Omega, \mathbb{R})$ be such that $f_{n} \stackrel{\mathbf{w}}{ } f_{\infty}$ in $L^{p}(\Omega, \mathbb{R})$ as $n \rightarrow \infty$. We are going to prove that $K f_{n} \rightarrow K f_{\infty}$ strongly in $L^{p /(p-1)}(\Omega, \mathbb{R})$ as $n \rightarrow \infty$. Note that, since for a.e. $x \in \Omega, k(x, \cdot) \in L^{p /(p-1)}(\Omega, \mathbb{R})$, and since $f_{n}{ }^{\mathrm{w}} f_{\infty}$ in $L^{p}(\Omega, \mathbb{R})$ as $n \rightarrow \infty$, it holds for a.e. $x \in \Omega$ that

$$
\begin{align*}
& \limsup _{n \rightarrow \infty}\left|\left(K f_{n}\right)(x)-\left(K f_{\infty}\right)(x)\right| \\
& =\limsup _{n \rightarrow \infty}\left|\int_{\Omega} k(x, y) f_{n}(y) d y-\int_{\Omega} k(x, y) f_{\infty}(y) d y\right|=0 . \tag{3}
\end{align*}
$$

Moreover, since $\left(f_{n}\right)_{n \in \mathbb{N}} \subseteq L^{p}(\Omega, \mathbb{R})$ is bounded (by the uniform boundedness principle) and since $\left\|f_{\infty}\right\|_{L^{p}(\Omega, \mathbb{R})} \leq \sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{L^{p}(\Omega, \mathbb{R})}$ (by the fact that $f_{\infty} \in \overline{\operatorname{conv}}\left(f_{n}: n \in \mathbb{N}\right.$) or Mazur's lemma or the weak lower semicontinuity of the norm), we obtain for almost every $x \in \Omega$ that

$$
\begin{align*}
\sup _{n \in \mathbb{N}}\left|\left(K f_{n}\right)(x)-\left(K f_{\infty}\right)(x)\right| & =\sup _{n \in \mathbb{N}}\left|\int_{\Omega} k(x, y)\left(f_{n}(y)-f_{\infty}(y)\right) d y\right| \\
& \leq 2\left[\int_{\Omega}|k(x, y)|^{\frac{p}{p-1}} d y\right]^{\frac{p-1}{p}} \sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{L^{p}(\Omega, \mathbb{R})} \tag{4}
\end{align*}
$$

where the function (in x) on the right hand side (more precisely, the equivalence class of functions) belongs to $L^{p /(p-1)}(\Omega, \mathbb{R})$. By (3) and (4), Lebesgue's dominated convergence theorem implies that

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left\|K f_{n}-K f_{\infty}\right\|_{L^{p /(p-1)}(\Omega, \mathbb{R})} \\
& =\limsup _{n \rightarrow \infty}\left[\int_{\Omega}\left|\int_{\Omega} k(x, y)\left(f_{n}(y)-f_{\infty}(y)\right) d y\right|^{\frac{p}{p-1}} d x\right]^{\frac{p-1}{p}}=0,
\end{aligned}
$$

i.e., K is compact.
(c) (2 points) Determine the dual operator K^{*}.

Solution: For every $q \in(1, \infty)$, let $J_{q}: L^{q /(q-1)}(\Omega, \mathbb{R}) \rightarrow\left(L^{q}(\Omega, \mathbb{R})\right)^{*}$ be given by

$$
\left(J_{q} g\right)(f)=\int_{\Omega} g f d x \quad \text { for all } f \in L^{q}(\Omega, \mathbb{R}), g \in L^{q /(q-1)}(\Omega, \mathbb{R})
$$

Riesz's representation theorem ensures for every $q \in(1, \infty)$ that J_{q} is an isometric isomorphism. Thus, we obtain - using Fubini's theorem - for all $f, g \in L^{p}(\Omega, \mathbb{R})$ and $\varphi:=J_{p /(p-1)} g \in\left(L^{p /(p-1)}(\Omega, \mathbb{R})\right)^{*}$ that

$$
\begin{aligned}
\varphi(K f) & =\left(J_{p /(p-1)} g\right)(K f)=\int_{\Omega} g(x)(K f)(x) d x \\
& =\int_{\Omega} g(x) \int_{\Omega} k(x, y) f(y) d y d x \\
& =\int_{\Omega} \int_{\Omega} k(y, x) g(y) d y f(x) d x \\
& =\int_{\Omega}(\tilde{K} g)(x) f(x) d x,
\end{aligned}
$$

where $\tilde{K}: L^{p}(\Omega, \mathbb{R}) \rightarrow L^{p /(p-1)}(\Omega, \mathbb{R})$ shall be defined as

$$
(\tilde{K} h)(x)=\int_{\Omega} k(y, x) h(y) d y \quad \text { for a.e. } x \in \Omega \text { for all } h \in L^{p}(\Omega, \mathbb{R})
$$

(Well-definedness, boundedness and linearity of \tilde{K} are clear by (a).) Continuing the previous calculation, we obtain for all $f, g \in L^{p}(\Omega, \mathbb{R})$ and $\varphi:=J_{p /(p-1)} g \in$ $\left(L^{p /(p-1)}(\Omega, \mathbb{R})\right)^{*}$ that

$$
\left(K^{*} \varphi\right)(f)=\varphi(K f)=\left(J_{p} \tilde{K} g\right)(f)=\left(J_{p} \tilde{K} J_{p /(p-1)}^{-1} \varphi\right)(f),
$$

which implies that $K^{*}=J_{p} \tilde{K} J_{p /(p-1)}^{-1}$. Or, sloppily speaking, identifying $\left(L^{p}(\Omega, \mathbb{R})\right)^{*}$ with $L^{p /(p-1)}(\Omega, \mathbb{R})$ and $\left(L^{p /(p-1)}(\Omega, \mathbb{R})\right)$ with $L^{p}(\Omega, \mathbb{R})$ (via J_{p} and $J_{p /(p-1)}$, respectively) K^{*} can be considered as a linear operator from $L^{p}(\Omega, \mathbb{R})$ to $L^{p /(p-1)}(\Omega, \mathbb{R})$ and, as such, coincides with \tilde{K} defined above since $\int_{\Omega}(K f)(x) g(x) d x=\int_{\Omega} f(x)(\tilde{K} g)(x) d x$ for all $f, g \in L^{p}(\Omega, \mathbb{R})$.
(d) (4 points) Assume in addition that $1<p \leq 2$ and show that, for $g \in$ $L^{p /(p-1)}(\Omega, \mathbb{R})$, there exists $f \in L^{p}(\Omega, \mathbb{R})$ such that

$$
f(x)-(K f)(x)=g(x) \quad \text { for a.e. } x \in \Omega
$$

if and only if $\int_{\Omega} g \varphi d x=0$ for all $\varphi \in L^{p}(\Omega, \mathbb{R})$ satisfying

$$
\varphi(x)=\int_{\Omega} k(y, x) \varphi(y) d y \quad \text { for a.e. } x \in \Omega
$$

Solution: First, note that if $g \in L^{p /(p-1)}(\Omega, \mathbb{R})$ satisfies $g(x)=f(x)-(K f)(x)$ for a.e. $x \in \Omega$ for some $f \in L^{p}(\Omega, \mathbb{R})$, then - since $K f \in L^{p /(p-1)}(\Omega, \mathbb{R})-f$ has also to belong to $L^{p /(p-1)}(\Omega, \mathbb{R})$. That is, it is enough to consider the restriction of K to $L^{p /(p-1)}(\Omega, \mathbb{R})$. Since $p \in(1,2]$, we obtain that $\frac{p}{p-1} \geq 2 \geq p$ so that, as Ω is bounded, $L^{p /(p-1)}(\Omega, \mathbb{R})$ embeds continuously into $L^{p}(\Omega, \mathbb{R})$. Letting $\iota: L^{p /(p-1)}(\Omega, \mathbb{R}) \rightarrow L^{p}(\Omega, \mathbb{R})$ denote the canonical embedding, we obtain from the above considerations that $g \in L^{p /(p-1)}(\Omega, \mathbb{R})$ satisfies that $g(x)=f(x)-(K f)(x)$ for a.e. $x \in \Omega$ for some $f \in L^{p}(\Omega, \mathbb{R})$ if and only if $f \in L^{p /(p-1)}(\Omega, \mathbb{R})$ and $g=f-K \iota f$ (as equality in $\left.L^{p /(p-1)}(\Omega, \mathbb{R})\right)$. Since K is compact and ι is bounded, $K \iota$ is a compact operator from $L^{p /(p-1)}(\Omega, \mathbb{R})$ to itself. Since $K \iota$ is compact, we know that $\operatorname{id}_{L^{p /(p-1)}(\Omega, \mathbb{R})}-K \iota$ (where $\operatorname{id}_{L^{p /(p-1)}(\Omega, \mathbb{R})}$ shall denote here the identity operator on $L^{p /(p-1)}(\Omega, \mathbb{R})$) has closed range. Banach's closed range theorem (cf. Theorem 6.2.1 in M. Struwe's script) hence ensures that

$$
\operatorname{im}\left(\operatorname{id}_{L^{p /(p-1)}(\Omega, \mathbb{R})}-K \iota\right)=^{\perp} \operatorname{ker}\left(\left(\operatorname{id}_{L^{p /(p-1)}(\Omega, \mathbb{R})}-K \iota\right)^{*}\right)
$$

Using the same notation as in (c), we know already that $K^{*}=J_{p} \tilde{K} J_{p /(p-1)}^{-1}$. For ι^{*}, we obtain for all $f, g \in L^{p /(p-1)}(\Omega, \mathbb{R})$ and $\varphi:=J_{p} g \in\left(L^{p}(\Omega, \mathbb{R})\right)^{*}$ that

$$
\begin{aligned}
\left(\iota^{*} \varphi\right)(f) & =\varphi(\iota f)=\left(J_{p} g\right)(\iota f)=\int_{\Omega} g(x)(\iota f)(x) d x \\
& =\int_{\Omega} g(x) f(x) d x=\int_{\Omega}(\iota g)(x) f(x) d x \\
& =\left(J_{p /(p-1)} \iota g\right)(f)=\left(J_{p /(p-1)} \iota J_{p}^{-1} \varphi\right)(f),
\end{aligned}
$$

which leads to $\iota^{*}=J_{p /(p-1)} \iota J_{p}^{-1}$. This implies that

$$
\begin{aligned}
\left(\mathrm{id}_{L^{p /(p-1)}(\Omega, \mathbb{R})}-K \iota\right)^{*} & =\left(\operatorname{id}_{L^{p /(p-1)}(\Omega, \mathbb{R})}\right)^{*}-\iota^{*} K^{*} \\
& =\operatorname{id}_{\left(L^{p /(p-1)}(\Omega, \mathbb{R})\right)^{*}}-J_{p /(p-1)} \iota \tilde{K} J_{p /(p-1)}^{-1} \\
& =J_{p /(p-1)}\left(\operatorname{id}_{L^{p}(\Omega, \mathbb{R})}-\iota \tilde{K}\right) J_{p /(p-1)}^{-1} .
\end{aligned}
$$

Hence, $\psi \in \operatorname{ker}\left(\left(\operatorname{id}_{L^{p /(p-1)}(\Omega, \mathbb{R})}-K \iota\right)^{*}\right)$ if and only if $\psi=J_{p /(p-1)} \varphi$ for some $\varphi \in L^{p}(\Omega, \mathbb{R})$ and $\varphi \in \operatorname{ker}\left(\operatorname{id}_{L^{p}(\Omega, \mathbb{R})}-\iota \tilde{K}\right)$. Above closed range theorem related considerations now imply that $g \in \operatorname{im}\left(\operatorname{id}_{L^{p /(p-1)}(\Omega, \mathbb{R})}-K \iota\right)$ if and only if it holds for all $\varphi \in \operatorname{ker}\left(\mathrm{id}_{L^{p}(\Omega, \mathbb{R})}-\iota \tilde{K}\right)$ (which means nothing else than $\varphi \in L^{p}(\Omega)$ and $\varphi(x)=\int_{\Omega} k(y, x) \varphi(y) d y$ for a.e. $x \in \Omega$) that $0=\left(J_{p /(p-1)} \varphi\right)(g)=\int_{\Omega} g \varphi d x$.

Exercise 4. 10 $=2+4+4)$ points

Let $m \in \mathbb{N}$, let $p \in(1, \infty)$, let $s \in(0, \infty)$, let $\emptyset \neq \Omega \subseteq \mathbb{R}^{m}$ be a bounded open set, let $g \in L^{\frac{p}{p-1}}\left(\mathbb{R}^{m}, \mathbb{R}\right)$, let $h \in L^{p}(\Omega, \mathbb{R})$, and let $V: L^{p}(\Omega, \mathbb{R}) \rightarrow \mathbb{R}$ and $E: L^{p}(\Omega, \mathbb{R}) \rightarrow \mathbb{R}$ be defined by

$$
V(f)=\int_{\Omega} \int_{\Omega} g(x-y) f(y) f(x) d y d x \quad \text { for all } f \in L^{p}(\Omega, \mathbb{R})
$$

and

$$
E(f)=V(f)+\|f-h\|_{L^{p}(\Omega, \mathbb{R})}^{s} \quad \text { for all } f \in L^{p}(\Omega, \mathbb{R})
$$

(a) (2 points) Prove that V is well-defined.

Solution: For all $f \in L^{p}(\Omega, \mathbb{R})$, it holds by Hölder's inequality that

$$
\begin{aligned}
\int_{\Omega} \int_{\Omega}|g(x-y) f(y) f(x)| d y d x & =\int_{\Omega} \int_{\Omega}|g(x-y) f(y)| d y|f(x)| d x \\
& \leq \int_{\Omega}\left[\int_{\Omega}|g(x-y)|^{\frac{p}{p-1}} d y\right]^{\frac{p-1}{p}}\|f\|_{L^{p}(\Omega, \mathbb{R})}|f(x)| d x \\
& \leq\|g\|_{L^{p /(p-1)}\left(\mathbb{R}^{m}, \mathbb{R}\right)}\|f\|_{L^{p}(\Omega, \mathbb{R})} \int_{\Omega}|f(x)| d x \\
& \leq\|g\|_{L^{p /(p-1)}\left(\mathbb{R}^{m}, \mathbb{R}\right)}\|f\|_{L^{p}(\Omega, \mathbb{R})}^{2}|\Omega|^{\frac{p-1}{p}}<\infty,
\end{aligned}
$$

where $|\Omega|$ shall denote the Lebesgue measure of Ω. Thus, V is well-defined.
(b) (4 points) Prove that V is weakly sequentially continuous.

Solution: Let $\left(f_{n}\right)_{n \in \mathbb{N}} \subseteq L^{p}(\Omega, \mathbb{R})$ be a weakly converging sequence with weak limit $f_{\infty} \in L^{p}(\Omega, \mathbb{R})$. We have to show that $\lim _{\sup _{n \rightarrow \infty}}\left|V\left(f_{n}\right)-V\left(f_{\infty}\right)\right|=0$.

Due to $g \in L^{\frac{p}{p-1}}\left(\mathbb{R}^{m}, \mathbb{R}\right)$ and the Hölder inequality, it holds for every $\varphi \in L^{p}(\Omega, \mathbb{R})$ and every $x \in \Omega$ that

$$
\int_{\Omega}|g(x-y) \varphi(y)| d y \leq\|g\|_{L^{p /(p-1)}\left(\mathbb{R}^{m}, \mathbb{R}\right)}\|\varphi\|_{L^{p}(\Omega, \mathbb{R})}<\infty
$$

Hence, the mapping $K: L^{p}(\Omega, \mathbb{R}) \rightarrow L^{\infty}(\Omega, \mathbb{R})$, given by

$$
(K \varphi)(x)=\int_{\Omega} g(x-y) \varphi(y) d y \quad \text { for a.e. } x \in \Omega \text { and all } \varphi \in L^{p}(\Omega, \mathbb{R})
$$

is well-defined, linear and bounded. Since Ω is bounded, it holds for every $\varphi \in L^{p}(\Omega, \mathbb{R})$ that $K \varphi \in L^{p /(p-1)}(\Omega, \mathbb{R})$. Moreover, since $f_{n} \stackrel{\text { w }}{ } f_{\infty}$ in $L^{p}(\Omega, \mathbb{R})$ as $n \rightarrow \infty$ and $g \in L^{p /(p-1)}(\Omega, \mathbb{R})$, we obtain for almost every $x \in \Omega$ that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|\left(K f_{n}\right)(x)-\left(K f_{\infty}\right)(x)\right|=\underset{n \rightarrow \infty}{\limsup }\left|\int_{\Omega} g(x-y)\left(f_{n}(y)-f_{\infty}(y)\right) d y\right|=0 \tag{5}
\end{equation*}
$$

Furthermore, by the Banach-Steinhaus theorem and since $f_{\infty} \in \overline{\operatorname{conv}}\left(\left\{f_{n}: n \in \mathbb{N}\right\}\right)$, we have $\left\|f_{\infty}\right\|_{L^{p}(\Omega, \mathbb{R})} \leq \sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{L^{p}(\Omega, \mathbb{R})}<\infty$. Therefore, we obtain for almost every $x \in \Omega$ that

$$
\begin{align*}
\sup _{n \in \mathbb{N}}\left|\left(K f_{n}\right)(x)-\left(K f_{\infty}\right)(x)\right| & \leq \sup _{n \in \mathbb{N}}\left|\int_{\Omega} g(x-y)\left(f_{n}(y)-f_{\infty}(y)\right) d y\right| \tag{6}\\
& \leq 2\|g\|_{L^{p /(p-1)}\left(\mathbb{R}^{m}, \mathbb{R}\right)} \sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{L^{p}(\Omega, \mathbb{R})} .
\end{align*}
$$

Since Ω is bounded, (equivalence classes of) constant functions belong to $L^{p /(p-1)}(\Omega, \mathbb{R})$. Properties (5) and (6) allow to apply Lebesgue's dominated convergence theorem to infer that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|K f_{n}-K f_{\infty}\right\|_{L^{p /(p-1)}(\Omega, \mathbb{R})}=0 \tag{7}
\end{equation*}
$$

Finally, we conclude by

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|V\left(f_{n}\right)-V\left(f_{\infty}\right)\right| & =\limsup _{n \rightarrow \infty}\left|\int_{\Omega}\left(K f_{n}\right)(x) f_{n}(x) d x-\int_{\Omega}\left(K f_{\infty}\right)(x) f_{\infty}(x) d x\right| \\
& \leq \limsup _{n \rightarrow \infty}\left|\int_{\Omega}\left(\left(K f_{n}\right)(x)-\left(K f_{\infty}\right)(x)\right) f_{n}(x) d x\right| \\
& +\underbrace{\limsup _{n \rightarrow \infty}\left|\int_{\Omega}\left(K f_{\infty}\right)(x)\left(f_{n}(x)-f_{\infty}(x)\right) d x\right|}_{=0 \text { since } K f_{\infty} \in L^{p /(p-1)} \text { and } f_{n}{ }^{w} f_{\infty} \text { in } L^{p} \text { as } n \rightarrow \infty} \\
& \leq \underbrace{\limsup _{n \rightarrow \infty}\left\|K f_{n}-K f_{\infty}\right\|_{L^{p /(p-1)}(\Omega, \mathbb{R})}^{\sup _{k \in \mathbb{N}}\left\|f_{k}\right\|_{L^{p}(\Omega, \mathbb{R})}}=0 .}_{=0 \text { by }(7)}=<\infty \text { by unif. bdd. princ. }
\end{aligned}
$$

(c) (4 points) Prove that $\left.E\right|_{\left\{f \in L^{p}(\Omega, \mathbb{R}): f \geq 0 \text { a.e. }\right\}}$ attains a global minimum under the additional assumption that $g \geq 0$ almost everywhere.
Solution: Since $g \geq 0$ a.e., it holds for every $f \in L^{p}(\Omega, \mathbb{R})$ with $f \geq 0$ a.e. that $V(f) \geq 0$, and, consequentially, $E(f) \geq 0$. Hence (keeping in mind that $\{f \in$ $L^{p}(\Omega, \mathbb{R}): f \geq 0$ a.e. $\} \neq \emptyset$ as, e.g., 0 is contained), there exist $\left(f_{n}\right)_{n \in \mathbb{N}} \subseteq L^{p}(\Omega, \mathbb{R})$ satisfying $f_{n} \geq 0$ a.e. for all $n \in \mathbb{N}$ such that

$$
\limsup _{n \rightarrow \infty} E\left(f_{n}\right)=\inf _{\varphi \in L^{p}(\Omega, \mathbb{R}), \varphi \geq 0 \text { a.e. }} E(\varphi) \in[0, \infty)
$$

Moreover, since it holds for every $\varphi \in L^{p}(\Omega, \mathbb{R})$ with $\varphi \geq 0$ a.e. that

$$
E(\varphi) \geq\|\varphi-h\|_{L^{p}(\Omega, \mathbb{R})}^{s} \geq\left|\max \left\{\|\varphi\|_{L^{p}(\Omega, \mathbb{R})}-\|h\|_{L^{p}(\Omega, \mathbb{R})}, 0\right\}\right|^{s},
$$

we have that $E(\varphi) \rightarrow \infty$ as $\|\varphi\|_{L^{p}(\Omega, \mathbb{R})} \rightarrow \infty$ and, therefore, $\sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{L^{p}(\Omega, \mathbb{R})}<\infty$. Since $p \in(1, \infty), L^{p}(\Omega, \mathbb{R})$ is reflexive and we may - passing to a subsequence if
necessary - assume that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges weakly in $L^{p}(\Omega, \mathbb{R})$ to some (weak) limit f_{∞}. Since the set $\left\{\varphi \in L^{p}(\Omega, \mathbb{R}): \varphi \geq 0\right.$ a.e. $\}$ is (norm-)closed and convex, f_{∞} also belongs to it (otherwise, the Hahn-Banach theorem could be used to construct a linear functional separating f_{∞} from the closed convex hull of $\left\{f_{n}: n \in \mathbb{N}\right\}$, contradicting weak convergence). Finally, since V is weakly sequentially continuous by (b) and the norm is weakly sequentially lower semicontinuous, we conclude that

$$
\begin{aligned}
\inf _{\varphi \in L^{p}(\Omega, \mathbb{R}), \varphi \geq 0 \text { a.e. }} E(\varphi) \leq & E\left(f_{\infty}\right) \\
& =\underbrace{V\left(f_{\infty}\right)}_{=\lim _{n \rightarrow \infty} V\left(f_{n}\right) \text { by }(\mathrm{b})}+\underbrace{\left\|f_{\infty}-h\right\|_{L^{p}(\Omega, \mathbb{R})}^{s}}_{\leq \liminf _{n \rightarrow \infty}\left\|f_{n}-h\right\|_{L^{p}(\Omega, \mathbb{R})}^{s}} \\
\leq & \liminf _{n \rightarrow \infty}\left(V\left(f_{n}\right)+\left\|f_{n}-h\right\|_{L^{p}(\Omega, \mathbb{R})}^{s}\right) \\
& =\liminf _{n \rightarrow \infty} E\left(f_{n}\right)=\inf _{\varphi \in L^{p}(\Omega, \mathbb{R}), \varphi \geq 0 \text { a.e. }} E(\varphi),
\end{aligned}
$$

which shows that f_{∞} is a minimizer of $\left.E\right|_{\left\{\varphi \in L^{p}(\Omega, \mathbb{R}): \varphi \geq 0 \text { a.e. }\right\}}$.

