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Functional Analysis I
FS 2021/2022

Mock exam – Solution

Exercise 1. Multiple Choice, 10(=2+2+2+2+2) points

MC 1. (2 points) Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed R-vector spaces. L(X, Y )
shall denote the space of bounded linear operators mapping from (X, ‖·‖X) to (Y, ‖·‖Y ),
equipped with the operator norm ‖·‖L(X,Y ). Which one of the following statements
1) is true and 2) is such that it is not implied by another true statement out of
the four statements?

� (L(X, Y ), ‖·‖L(X,Y )) is complete if (X, ‖·‖X) is complete.

Solution: Let X = R, let (Y, ‖·‖Y ) be non-complete (and such spaces exist, e.g.,
(cc, ‖·‖`∞)), let (yn)n∈N ⊆ Y be a Cauchy sequence which does not have a limit in
(Y, ‖·‖Y ), and define, for n ∈ N, the linear operator An : R→ Y via An(r) = ryn
(for all r ∈ R). Clearly, (An)n∈N ⊆ L(R, Y ) is a Cauchy sequence. But if it
had a limit A∞ ∈ L(R, Y ) (which would be the case if (L(R, Y ), ‖·‖L(R,Y )) was
complete), then (yn)n∈N would converge to A∞(1) in Y as n→∞, contradicting
the choice of (yn)n∈N as Cauchy sequence without limit.

� (L(X, Y ), ‖·‖L(X,Y )) is complete if (Y, ‖·‖Y ) is complete.

Solution: See Theorem 2.2.4 in M. Struwe’s script or exercise 3.1(c).

� (L(X, Y ), ‖·‖L(X,Y )) is complete if both (X, ‖·‖X) and (Y, ‖·‖Y ) are complete.

Solution: This statement is true, but it is implied by the second statement (and
it is indeed strictly less general than that statement because of the existence of
non-complete vector spaces).

� (L(X, Y ), ‖·‖L(X,Y )) is always complete.

Solution: This statement is false since the first statement (which would be
implied by this one) is also false.
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MC 2. (2 points) Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed R-vector spaces and let
(Ak)k∈N ⊆ L(X, Y ) and A∞ : X → Y be linear operators (where, for k ∈ N, Ak is
continuous w.r.t. the norm topologies on (X, ‖·‖X) and (Y, ‖·‖Y )) such that for every
x ∈ X it holds that lim supk→∞‖Akx − A∞x‖Y = 0. Which one of the following
statements 1) is true and 2) is such that it is not implied by another true
statement out of the four statements?

� A∞ is continuous if (X, ‖·‖X) is complete.

Solution: By the Banach–Steinhaus theorem, supn∈N ‖An‖L(X,Y ) <∞ because
supn∈N ‖Anx‖Y < ∞ for every x ∈ X (if (X, ‖·‖X) is complete) and therefore,
A∞ is bounded. See also Theorem 3.1.1 in M. Struwe’s script (or the application
’Anwendung 3.1.1’ following it).

� A∞ is continuous if (Y, ‖·‖Y ) is complete.

Solution: Let (X, ‖·‖X) = (cc, ‖·‖`∞), (Y, ‖·‖Y ) = (c0, ‖·‖`∞) and define, for
k ∈ N, the operator Ak : X → Y as

Akx = (x1, 2x2, 3x3, . . . , kxk, 0, 0, . . .) for all x = (xn)n∈N ∈ cc.

Clearly, for every k ∈ N, Ak ∈ L(X, Y ) (with ‖Ak‖L(X,Y ) = k). Moreover, for
every x ∈ cc, (Akx)k∈N is eventually constant (if N ∈ N is such that xn = 0 for
all n > N , then Anx = ANx for all n > N) and therefore converging. The limit
operator A∞ : X → Y is given by

A∞x = (nxn)n∈N for all x = (xn)n∈N ∈ cc.

But A∞ is clearly not bounded.

� A∞ is continuous if (X, ‖·‖X) and (Y, ‖·‖Y ) are complete.

Solution: This statement is true. But it is implied by the first statement and it
is strictly less general than the first statement.

� A∞ is always continuous.

Solution: This statement is false as the second statement, which would be
implied by this one, is already false.
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MC 3. (2 points) Which one of the following statements is false?

� (L2([0, 1],R))∗ is isometrically isomorphic to L2([0, 1],R).

Solution: For every p ∈ [1,∞), (Lp([0, 1],R))∗ is isometrically isomorphic to
Lp
∗([0, 1],R), where p∗ ∈ [1,∞] is such that 1

p
+ 1

p∗
= 1 (with the convention that

1
∞ = 0). For p = 2, it holds that p∗ = 2, so that (L2([0, 1],R))∗ is isometrically
isomorphic to L2([0, 1],R). Alternatively, since L2([0, 1],R) is a real Hilbert
space, Riesz’s representation theorem for Hilbert spaces implies that L2([0, 1],R)
is isometrically isomorphic to its dual.

� (L1([0, 1],R))∗ is isometrically isomorphic to L∞([0, 1],R).

Solution: For every p ∈ [1,∞), (Lp([0, 1],R))∗ is isometrically isomorphic to
Lp
∗([0, 1],R), where p∗ ∈ [1,∞] is such that 1

p
+ 1

p∗
= 1 (with the convention that

1
∞ = 0). For p = 1, it holds that p∗ =∞, so that (L1([0, 1],R))∗ is isometrically
isomorphic to L∞([0, 1],R).

� (L∞([0, 1],R))∗ is isometrically isomorphic to L1([0, 1],R).

Solution: If L1([0, 1],R) was isomorphic to (L∞([0, 1],R))∗, then the dual space
of L∞([0, 1],R) would be separable (since L1([0, 1],R) is separable). This, in
turn, would imply that L∞([0, 1],R) is separable. This is a contradiction (see,
e.g., exercise 2.7).

� (L4([0, 1],R))∗ is isometrically isomorphic to L4/3([0, 1],R).

Solution: For every p ∈ [1,∞), (Lp([0, 1],R))∗ is isometrically isomorphic to
Lp
∗([0, 1],R), where p∗ ∈ [1,∞] is such that 1

p
+ 1

p∗
= 1 (with the convention that

1
∞ = 0). For p = 4, it holds that p∗ = 4

3 , so that (L4([0, 1],R))∗ is isometrically
isomorphic to L4/3([0, 1],R).
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MC 4. (2 points) Let (X, ‖·‖X) be a normed R-vector space and let A,B ⊆ X be
non-empty disjoint convex sets. In which of the following situations is it assured that
there exists ϕ ∈ X∗ such that supa∈A ϕ(a) < infb∈B ϕ(b)?

� A open, B closed.

Solution: Consider, for example, X = R, A = (−∞, 0) and B = [0,∞).

� A compact, B open.

Solution: Consider, for example, X = R, A = [−1, 0] and B = (0,∞).

� A closed, B compact.

Solution: See Theorem 4.5.1 in the script.

� A closed, B closed.

Solution: See exercise 7.4 for a counterexample.
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MC 5. (2 points) Let cc := {(xn)n∈N ⊆ R : ∃N ∈ N s.t. xn = 0 for all n > N} denote
the space of real-valued sequences with at most finitely many non-zero elements and
let `2 := {(xn)n∈N ⊆ R : ∑∞n=1|xn|2 <∞} denote the (R-Hilbert) space of real-valued
square integrable sequences, equipped with the scalar product 〈·, ·〉`2 satisfying for all
x = (xn)n∈N, y = (yn)n∈N ∈ `2 that 〈x, y〉`2 = ∑∞

n=1 xnyn. Let A : cc ⊆ `2 → `2 be given
by Ax = (nxn)n∈N for all x = (xn)n∈N ∈ cc. Which one of the following statements is
true?

� A is closed.

Solution: A counterexample is given, for example, by the sequence (x(n))n∈N ⊆
cc, defined via

x
(n)
k =


1
k2 : k ≤ n,

0 : k > n,

for all k, n ∈ N. Since x(n) → ( 1
k2 )k∈N ∈ `2 as n→∞ and Ax(n) → ( 1

k
)k∈N ∈ `2

as n→∞, but ( 1
k2 )k∈N /∈ cc, A is not closed.

� A is injective and has closed range.

Solution: im(A) = cc is dense, but not closed.

� A is surjective.

Solution: im(A) = cc 6= `2.

� A∗ is surjective.

Solution: Indeed, A∗ is given by DA∗ = {x = (xn)n∈N ∈ `2 : (nxn)n∈N ∈ `2}
and A∗((xn)n∈N) = (nxn)n∈N for every (xn)n∈N ∈ DA∗ . This operator is clearly
surjective.
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Exercise 2. 11(=1+2+3+2+3) points

Let `2 be defined as

`2 :=
{

(xn)n∈N ⊆ R :
∞∑
n=1
|xn|2 <∞

}
,

equipped as usual with the norm ‖·‖`2 satisfying for every x = (xn)n∈N ∈ `2 that
‖x‖`2 := (∑∞n=1|xn|2)1/2. For s ∈ (0,∞), let W s be defined as

W s :=
{

(xn)n∈N ∈ `2 :
∞∑
n=1

n2s|xn|2 <∞
}
.

(a) (1 point) Prove for every s ∈ (0,∞) that W s is a dense subspace of (`2, ‖·‖`2).

Solution: Let cc := {(xn)n∈N ⊆ R : ∃N ∈ N : xn = 0 for all n > N}. Clearly, cc ⊆ W s

for every s ∈ (0,∞). Since cc lies dense in (`2, ‖·‖`2), W s is a dense subset of (`2, ‖·‖`2).
Moreover, for all s ∈ (0,∞), x = (xn)n∈N, y = (yn)n∈N ∈ W s, α ∈ R, it holds that

∞∑
n=1

n2s|αxn + yn|2 ≤ 2|α|2
∞∑
n=1

n2s|xn|2 + 2
∞∑
n=1

n2s|yn|2 <∞,

i.e., αx+ y ∈ W s.

(b) (2 points) Prove that (W s, ‖·‖W s) is a Hilbert space where

‖x‖W s :=
( ∞∑
n=1

n2s|xn|2
)1/2

for all x = (xn)n∈N ∈ W s.

Solution: From (a), we know that W s is an R-vector space. Define 〈·, ·〉W s : W s ×
W s → R via

〈x, y〉W s :=
∞∑
n=1

n2sxnyn for all x = (xn)n∈N, y = (yn)n∈N ∈ W s.

Clearly, for all (xn)n∈N, (yn)n∈N ∈ W s, it holds by Hölder’s inequality (or Cauchy–
Schwarz) that

∞∑
n=1

n2s|xn||yn| ≤
( ∞∑
n=1

n2s|xn|2
)1/2 ( ∞∑

n=1
n2s|yn|2

)1/2

<∞,

so that 〈·, ·〉W s : W s ×W s → R is well-defined. Clearly, 〈·, ·〉W s : W s ×W s → R is
bilinear, 〈x, x〉W s ≥ 0 for every x ∈ W s and ‖x‖W s =

√
〈x, x〉W s for every x ∈ W s.

Finally, if 〈x, x〉W s = 0 for x = (xn)n∈N ∈ W s, then n2s|xn|2 = 0 for all n ∈ N, i.e.,
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xn = 0 for all n ∈ N. Thus, 〈·, ·〉W s : W s ×W s → R is a scalar product on W s. It
remains to show that (W s, ‖·‖W s) is complete. For this, let (x(n))n∈N ⊆ W s (where
x(n) = (x(n)

k )k∈N for every n ∈ N) be Cauchy w.r.t. ‖·‖W s . This means nothing else
but that (y(n))n∈N ⊆ `2, given by y(n)

k = ksx
(n)
k for all k, n ∈ N, is a Cauchy sequence

in (`2, ‖·‖`2). As (`2, ‖·‖`2) is complete, there exists y(∞) = (y(∞)
k )k∈N ∈ `2 so that

lim supn→∞‖y(n) − y(∞)‖`2 = 0. Clearly, the sequence x(∞) = (x(∞)
k )k∈N ⊆ R, defined

by x(∞)
k = k−sy

(∞)
k for every k ∈ N, belongs to `2 (since s > 0 and y(∞) ∈ `2) and to

W s (since y(∞) ∈ `2) and

lim sup
n→∞

‖x(n) − x(∞)‖W s = lim sup
n→∞

‖y(n) − y(∞)‖`2 = 0.

This shows that (W s, ‖·‖W s) is complete. Since ‖·‖W s is induced by the scalar product
〈·, ·〉W s , it is even a Hilbert space.

Alternatively, consider the bounded linear operator A : `2 → `2, defined by Ax =
(n−sxn)n∈N for x = (xn)n∈N ∈ `2. Then, clearly, A is a bijection onto its image and
W s = im(A). Moreover, equipping W s = im(A) with the norm ‖·‖W s turns A into an
isometry between (`2, ‖·‖`2) and (W s, ‖·‖W s). Hence, (W s, ‖·‖W s) is a Hilbert space
and the scalar product is given by

〈x, y〉W s = 〈A−1x,A−1y〉`2 =
∞∑
n=1

n2sxnyn for all x = (xn)n∈N, y = (yn)n∈N ∈ W s.

(c) (3 points) Prove for every s ∈ (0,∞) that the embedding ι : (W s, ‖·‖W s) →
(`2, ‖·‖`2), defined by ι(x) = x for every x ∈ W s, is a compact operator.

Solution: Way 1) Let (x(n))n∈N ⊆ W s be a sequence with ‖x(n)‖W s ≤ 1 for all n ∈ N,
i.e.,

∞∑
k=1
|k|2s|x(n)

k |2 ≤ 1 for all n ∈ N. (1)

On one hand, this implies that supn∈N|x
(n)
k | ≤ 1

ks ≤ 1 for all k ∈ N. Passing to a
subsequence (by subsequently choosing subsequences and then using the usual diagonal
trick), if necessary, we may assume that there exists x(∞) = (x(∞)

k )k∈N ⊆ R such that

lim sup
n→∞

|x(n)
k − x

(∞)
k | = 0 for all k ∈ N.

Combining this with (1), we obtain in addition that
∞∑
k=1

k2s|x(∞)
k |2 = sup

N∈N

(
N∑
k=1

k2s|x(∞)
k |2

)
≤ sup

N∈N
sup
n∈N

(
N∑
k=1

k2s|x(n)
k |2

)

≤ sup
n∈N

( ∞∑
k=1

k2s|x(n)
k |2

)
≤ 1.

(2)
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Moreover, (1) implies in particular for all n,N ∈ N that

N2s
∞∑
k=N
|x(n)
k |2 ≤

∞∑
k=N

k2s|x(n)
k |2 ≤ 1

(and (2) implies that ∑∞k=N |x
(∞)
k |2 ≤ 1

N2s for all N ∈ N). This implies for all N ∈ N
that

lim sup
n→∞

( ∞∑
k=1
|x(n)
k − x

(∞)
k |2

)
≤ lim sup

n→∞

(
N∑
k=1
|x(n)
k − x

(∞)
k |2

)
︸ ︷︷ ︸

=0

+ lim sup
n→∞

∑
k>N

|x(n)
k − x

(∞)
k |2



≤ 2 lim sup
n→∞

∑
k>N

|x(n)
k |2

+ 2 lim sup
n→∞

∑
k>N

|x(∞)
k |2

 ≤ 4
N2s ,

which, in turn, proves that lim supn→∞ ‖x(n) − x(∞)‖`2 = 0. Thus, we demonstrated
that ι is a compact operator by showing that bounded sets in (W s, ‖·‖W s) are relatively
compact when considered as subsets of (`2, ‖·‖`2).

Way 2) Define, for every n ∈ N, the operator In : (W s, ‖·‖W s)→ (`2, ‖·‖`2) by

In(x) = (x1, x2, . . . , xn, 0, 0, . . .) for every x = (xk)k∈N ∈ (W s, ‖·‖W s).

It clearly holds for every n ∈ N that In ∈ L((W s, ‖·‖W s), (`2, ‖·‖`2)). Moreover, since
In has finite-dimensional range for every n ∈ N, the operators In are all compact
operators. In addition, it holds for every x = (xk)k∈N ∈ W s that

‖Inx− ιx‖2
`2 =

∞∑
k=n+1

|xk|2 ≤
1
n2s

∞∑
k=n+1

k2s|xk|2 ≤
1
n2s‖x‖

2
W s .

This implies that
lim sup
n→∞

‖In − ι‖L((W s,‖·‖W s ),(`2,‖·‖`2 )) = 0.

Since the space of compact operators K((W s, ‖·‖W s), (`2, ‖·‖`2)) is a closed subspace
of L((W s, ‖·‖W s), (`2, ‖·‖`2)) (equipped with the operator norm), the limit ι is also
compact.

Way 3) Let (x(n))n∈N ⊆ W s be a weakly converging sequence in (W s, ‖·‖W s) with weak
limit x(∞) ∈ W s. This implies, in particular, for every k ∈ N that

lim sup
n→∞

|k2sx
(n)
k − k2sx

(∞)
k | = 0.
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Moreover, since (x(n))n∈N is weakly converging, it holds (by the Banach–Steinhaus
theorem) that

C := sup
n∈N

( ∞∑
k=1

k2s|x(n)
k |2

)
<∞.

The convergence of (x(n)
k )n∈N to x(∞)

k in R as n → ∞ (for every k ∈ N) also implies
that ∑∞k=1 k

2s|x(∞)
k |2 ≤ C < ∞. The rest of the argument can now be carried out

similar to Way 1), that is, noting that for all N ∈ N it holds that

sup
n∈N

( ∞∑
k=N
|x(n)
k |2

)
≤ C

N2s and
∞∑
k=N
|x(∞)
k |2 ≤

C

N2s

we estimate for all N ∈ N that

lim sup
n→∞

( ∞∑
k=1
|x(n)
k − x

(∞)
k |2

)
≤ lim sup

n→∞

(
N∑
k=1
|x(n)
k − x

(∞)
k |2

)
︸ ︷︷ ︸

=0

+ lim sup
n→∞

∑
k>N

|x(n)
k − x

(∞)
k |2



≤ 2 lim sup
n→∞

∑
k>N

|x(n)
k |2

+ 2 lim sup
n→∞

∑
k>N

|x(∞)
k |2

 ≤ 4C
N2s ,

which implies that lim supn→∞‖x(n) − x(∞)‖`2 = 0.

(d) (2 points) Prove for every F ∈ (W s, ‖·‖W s)∗ that there exists a sequence
(fn)n∈N ⊆ R with ∑∞n=1

|fn|2
n2s <∞ such that F (x) = ∑∞

n=1 fnxn for all x = (xn)n∈N ∈
W s.

Solution: Let F ∈ (W s, ‖·‖W s)∗ be arbitrary. Since (W s, ‖·‖W s) is a real Hilbert
space according to (b), it holds by Riesz’s representation theorem for Hilbert spaces
that there exists ϕ = (ϕn)n∈N ∈ W s such that

F (x) = 〈ϕ, x〉W s =
∞∑
n=1

n2sϕnxn for every x = (xn)n∈N ∈ W s.

Defining fn := n2sϕn for every n ∈ N, we obtain that

F (x) =
∞∑
n=1

fnxn for every x = (xn)n∈N ∈ W s

and
∞∑
n=1

|fn|2

n2s =
∞∑
n=1

n2s|ϕn|2 = ‖ϕ‖2
W s <∞.
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(e) (3 points) Prove for all s1 > s2 > 0 that W s1 ( W s2 and that W s1 is meager in
(W s2 , ‖·‖W s2 ).

Solution: Let s1, s2 ∈ (0,∞) with s1 > s2. For all x = (xn)n∈N ∈ W s1 it holds that
∞∑
n=1

n2s2|xn|2 =
∞∑
n=1

n2(s2−s1)︸ ︷︷ ︸
≤1

n2s1|xn|2 ≤
∞∑
n=1

n2s1 |xn|2 = ‖x‖2
W s1 <∞

(since s2 < s1). Hence, W s1 ⊆ W s2 (and the embedding is continuous).

Setting α := s1+s2+1
2 , we observe that the sequence z = (zn)n∈N ⊆ R, given by zn = n−α

for every n ∈ N, satisfies that

• z ∈ W s2 as
∞∑
n=1
|zn|2 ≤

∞∑
n=1

n2s2 |zn|2 =
∞∑
n=1

n2s2−2α =
∞∑
n=1

n2s2−s1−s2−1 =
∞∑
n=1

ns2−s1−1 <∞

(since s2 > 0 and s2 − s1 − 1 < −1) and

• z /∈ W s1 as
∞∑
n=1

n2s1|zn|2 =
∞∑
n=1

n2s1−2α =
∞∑
n=1

n2s1−s1−s2−1 =
∞∑
n=1

ns1−s2−1 =∞

(since s1 − s2 − 1 > −1),

so that z ∈ W s2 \W s1 .

Finally, to prove that W s1 is a meagre subset of (W s2 , ‖·‖W s2 ), consider the sets An,
n ∈ N, given by

An :=
{
x = (xk)k∈N ∈ W s2 :

∞∑
k=1

k2s1 |xk|2 ≤ n2
}
.

Clearly, ⋃n∈NAn = W s1 ∩W s2 = W s1 . Moreover, it holds for every n ∈ N that An
is closed. Indeed, if n ∈ N and (x(k))k∈N ⊆ An converges to x(∞) in (W s2 , ‖·‖W s2 ) as
k →∞, then, clearly, x(k)

l → x
(∞)
l for every l ∈ N as k →∞ and therefore, for every

N ∈ N:
N∑
l=1

l2s1|x(∞)
l |2 = lim

k→∞

(
N∑
l=1

l2s1|x(k)
l |2

)
≤ lim sup

k→∞
‖x(k)‖2

W s1 ≤ n2,

which implies x(∞) ∈ An. It remains to show for every n ∈ N that the interior of An is
empty. For this, let n ∈ N and y ∈ An be arbitrary and let x ∈ W s2 \W s1 . Then it
holds for every k ∈ N that y + 1

k
x ∈ W s2 \W s1 ⊆ W s2 \ An. Moreover, it holds that

y + 1
k
x→ y in (W s2 , ‖·‖W s2 ) as k →∞.
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Exercise 3. 11(=2+3+2+4) points

Let m ∈ N, let p ∈ (1,∞), let ∅ 6= Ω ⊆ Rm be a bounded open set, let k ∈
L

p
p−1 (Ω× Ω,R), and let K : Lp(Ω,R)→ L

p
p−1 (Ω,R) be defined by

(Kf)(x) =
∫

Ω
k(x, y)f(y) dy for a.e. x ∈ Ω for all f ∈ Lp(Ω,R).

(a) (2 points) Prove that K is a well-defined bounded linear operator with operator
norm ‖K‖L(Lp(Ω,R),Lp/(p−1)(Ω,R)) ≤ ‖k‖Lp/(p−1)(Ω×Ω,R).

Solution: We only argue for well-definedness and boundedness as linearity is clear.
By Hölder’s inequality, it holds for every f ∈ Lp(Ω,R) that∫

Ω

∣∣∣∣∫
Ω
|k(x, y)f(y)| dy

∣∣∣∣ p
p−1

dx ≤
∫

Ω

∫
Ω
|k(x, y)|

p
p−1 dy ‖f‖

p
p−1
Lp(Ω,R) dx

= ‖k‖
p

p−1
Lp/(p−1)(Ω×Ω,R)‖f‖

p
p−1
Lp(Ω,R).

The Fubini–Tonelli theorem hence implies that Kf ∈ Lp/(p−1)(Ω,R) for every f ∈
Lp(Ω,R). Moreover, the above computation demonstrates that ‖K‖L(Lp(Ω,R),Lp/(p−1)(Ω,R)) ≤
‖k‖Lp/(p−1)(Ω×Ω,R).

(b) (3 points) Prove that K is compact.

Solution: Since Lp(Ω,R) is reflexive (as p ∈ (1,∞)), for proving compactness of K it
is sufficient to prove that K maps weakly converging sequences to strongly converging
sequences as every bounded sequence in Lp(Ω,R) possesses a weakly converging
subsequence.

Now, let (fn)n∈N ⊆ Lp(Ω,R) and f∞ ∈ Lp(Ω,R) be such that fn w−⇀ f∞ in Lp(Ω,R)
as n → ∞. We are going to prove that Kfn → Kf∞ strongly in Lp/(p−1)(Ω,R) as
n→∞. Note that, since for a.e. x ∈ Ω, k(x, ·) ∈ Lp/(p−1)(Ω,R), and since fn w−⇀ f∞
in Lp(Ω,R) as n→∞, it holds for a.e. x ∈ Ω that

lim sup
n→∞

|(Kfn)(x)− (Kf∞)(x)|

= lim sup
n→∞

∣∣∣∣∫
Ω
k(x, y)fn(y) dy −

∫
Ω
k(x, y)f∞(y) dy

∣∣∣∣ = 0.
(3)

Moreover, since (fn)n∈N ⊆ Lp(Ω,R) is bounded (by the uniform boundedness principle)
and since ‖f∞‖Lp(Ω,R) ≤ supn∈N‖fn‖Lp(Ω,R) (by the fact that f∞ ∈ conv(fn : n ∈ N) or
Mazur’s lemma or the weak lower semicontinuity of the norm), we obtain for almost
every x ∈ Ω that

sup
n∈N
|(Kfn)(x)− (Kf∞)(x)| = sup

n∈N

∣∣∣∣∫
Ω
k(x, y)(fn(y)− f∞(y)) dy

∣∣∣∣
≤ 2

[∫
Ω
|k(x, y)|

p
p−1 dy

] p−1
p

sup
n∈N
‖fn‖Lp(Ω,R),

(4)
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where the function (in x) on the right hand side (more precisely, the equivalence
class of functions) belongs to Lp/(p−1)(Ω,R). By (3) and (4), Lebesgue’s dominated
convergence theorem implies that

lim sup
n→∞

‖Kfn −Kf∞‖Lp/(p−1)(Ω,R)

= lim sup
n→∞

[∫
Ω

∣∣∣∣∫
Ω
k(x, y)(fn(y)− f∞(y)) dy

∣∣∣∣ p
p−1

dx

] p−1
p

= 0,

i.e., K is compact.

(c) (2 points) Determine the dual operator K∗.

Solution: For every q ∈ (1,∞), let Jq : Lq/(q−1)(Ω,R)→ (Lq(Ω,R))∗ be given by

(Jqg)(f) =
∫

Ω
gf dx for all f ∈ Lq(Ω,R), g ∈ Lq/(q−1)(Ω,R).

Riesz’s representation theorem ensures for every q ∈ (1,∞) that Jq is an isometric
isomorphism. Thus, we obtain – using Fubini’s theorem – for all f, g ∈ Lp(Ω,R) and
ϕ := Jp/(p−1)g ∈ (Lp/(p−1)(Ω,R))∗ that

ϕ(Kf) = (Jp/(p−1)g)(Kf) =
∫

Ω
g(x)(Kf)(x) dx

=
∫

Ω
g(x)

∫
Ω
k(x, y)f(y) dy dx

=
∫

Ω

∫
Ω
k(y, x)g(y) dy f(x) dx

=
∫

Ω
(K̃g)(x)f(x) dx,

where K̃ : Lp(Ω,R)→ Lp/(p−1)(Ω,R) shall be defined as

(K̃h)(x) =
∫

Ω
k(y, x)h(y) dy for a.e. x ∈ Ω for all h ∈ Lp(Ω,R).

(Well-definedness, boundedness and linearity of K̃ are clear by (a).) Continuing
the previous calculation, we obtain for all f, g ∈ Lp(Ω,R) and ϕ := Jp/(p−1)g ∈
(Lp/(p−1)(Ω,R))∗ that

(K∗ϕ)(f) = ϕ(Kf) = (JpK̃g)(f) = (JpK̃J−1
p/(p−1)ϕ)(f),

which implies that K∗ = JpK̃J
−1
p/(p−1). Or, sloppily speaking, identifying (Lp(Ω,R))∗

with Lp/(p−1)(Ω,R) and (Lp/(p−1)(Ω,R)) with Lp(Ω,R) (via Jp and Jp/(p−1), respectively)
K∗ can be considered as a linear operator from Lp(Ω,R) to Lp/(p−1)(Ω,R) and, as such,
coincides with K̃ defined above since

∫
Ω(Kf)(x)g(x) dx =

∫
Ω f(x)(K̃g)(x) dx for all

f, g ∈ Lp(Ω,R).

12



Mock Exam Functional Analysis I – Solution
Fall Semester 2021/2022

ETH Zürich
February 2022

(d) (4 points) Assume in addition that 1 < p ≤ 2 and show that, for g ∈
Lp/(p−1)(Ω,R), there exists f ∈ Lp(Ω,R) such that

f(x)− (Kf)(x) = g(x) for a.e. x ∈ Ω

if and only if
∫
Ω gϕ dx = 0 for all ϕ ∈ Lp(Ω,R) satisfying

ϕ(x) =
∫

Ω
k(y, x)ϕ(y) dy for a.e. x ∈ Ω.

Solution: First, note that if g ∈ Lp/(p−1)(Ω,R) satisfies g(x) = f(x) − (Kf)(x)
for a.e. x ∈ Ω for some f ∈ Lp(Ω,R), then – since Kf ∈ Lp/(p−1)(Ω,R) – f
has also to belong to Lp/(p−1)(Ω,R). That is, it is enough to consider the restric-
tion of K to Lp/(p−1)(Ω,R). Since p ∈ (1, 2], we obtain that p

p−1 ≥ 2 ≥ p so
that, as Ω is bounded, Lp/(p−1)(Ω,R) embeds continuously into Lp(Ω,R). Letting
ι : Lp/(p−1)(Ω,R) → Lp(Ω,R) denote the canonical embedding, we obtain from the
above considerations that g ∈ Lp/(p−1)(Ω,R) satisfies that g(x) = f(x)− (Kf)(x) for
a.e. x ∈ Ω for some f ∈ Lp(Ω,R) if and only if f ∈ Lp/(p−1)(Ω,R) and g = f −Kιf (as
equality in Lp/(p−1)(Ω,R)). SinceK is compact and ι is bounded,Kι is a compact opera-
tor from Lp/(p−1)(Ω,R) to itself. Since Kι is compact, we know that idLp/(p−1)(Ω,R)−Kι
(where idLp/(p−1)(Ω,R) shall denote here the identity operator on Lp/(p−1)(Ω,R)) has
closed range. Banach’s closed range theorem (cf. Theorem 6.2.1 in M. Struwe’s script)
hence ensures that

im(idLp/(p−1)(Ω,R)−Kι) = ⊥ ker((idLp/(p−1)(Ω,R)−Kι)∗).

Using the same notation as in (c), we know already that K∗ = JpK̃J
−1
p/(p−1). For ι∗, we

obtain for all f, g ∈ Lp/(p−1)(Ω,R) and ϕ := Jpg ∈ (Lp(Ω,R))∗ that

(ι∗ϕ)(f) = ϕ(ιf) = (Jpg)(ιf) =
∫

Ω
g(x)(ιf)(x) dx

=
∫

Ω
g(x)f(x) dx =

∫
Ω

(ιg)(x)f(x) dx

= (Jp/(p−1)ιg)(f) = (Jp/(p−1)ιJ
−1
p ϕ)(f),

which leads to ι∗ = Jp/(p−1)ιJ
−1
p . This implies that

(idLp/(p−1)(Ω,R)−Kι)∗ = (idLp/(p−1)(Ω,R))∗ − ι∗K∗

= id(Lp/(p−1)(Ω,R))∗ −Jp/(p−1)ιK̃J
−1
p/(p−1)

= Jp/(p−1)(idLp(Ω,R)−ιK̃)J−1
p/(p−1).
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Hence, ψ ∈ ker((idLp/(p−1)(Ω,R)−Kι)∗) if and only if ψ = Jp/(p−1)ϕ for some ϕ ∈ Lp(Ω,R)
and ϕ ∈ ker(idLp(Ω,R)−ιK̃). Above closed range theorem related considerations now im-
ply that g ∈ im(idLp/(p−1)(Ω,R)−Kι) if and only if it holds for all ϕ ∈ ker(idLp(Ω,R)−ιK̃)
(which means nothing else than ϕ ∈ Lp(Ω) and ϕ(x) =

∫
Ω k(y, x)ϕ(y) dy for a.e. x ∈ Ω)

that 0 = (Jp/(p−1)ϕ)(g) =
∫

Ω gϕ dx.
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Exercise 4. 10(=2+4+4) points

Let m ∈ N, let p ∈ (1,∞), let s ∈ (0,∞), let ∅ 6= Ω ⊆ Rm be a bounded open set, let
g ∈ L

p
p−1 (Rm,R), let h ∈ Lp(Ω,R), and let V : Lp(Ω,R) → R and E : Lp(Ω,R) → R

be defined by

V (f) =
∫

Ω

∫
Ω
g(x− y)f(y)f(x) dy dx for all f ∈ Lp(Ω,R)

and
E(f) = V (f) + ‖f − h‖sLp(Ω,R) for all f ∈ Lp(Ω,R).

(a) (2 points) Prove that V is well-defined.

Solution: For all f ∈ Lp(Ω,R), it holds by Hölder’s inequality that∫
Ω

∫
Ω
|g(x− y)f(y)f(x)| dy dx =

∫
Ω

∫
Ω
|g(x− y)f(y)| dy |f(x)| dx

≤
∫

Ω

[∫
Ω
|g(x− y)|

p
p−1 dy

] p−1
p

‖f‖Lp(Ω,R)|f(x)| dx

≤ ‖g‖Lp/(p−1)(Rm,R)‖f‖Lp(Ω,R)

∫
Ω
|f(x)| dx

≤ ‖g‖Lp/(p−1)(Rm,R)‖f‖2
Lp(Ω,R)|Ω|

p−1
p <∞,

where |Ω| shall denote the Lebesgue measure of Ω. Thus, V is well-defined.

(b) (4 points) Prove that V is weakly sequentially continuous.

Solution: Let (fn)n∈N ⊆ Lp(Ω,R) be a weakly converging sequence with weak limit
f∞ ∈ Lp(Ω,R). We have to show that lim supn→∞|V (fn)− V (f∞)| = 0.

Due to g ∈ L
p

p−1 (Rm,R) and the Hölder inequality, it holds for every ϕ ∈ Lp(Ω,R)
and every x ∈ Ω that∫

Ω
|g(x− y)ϕ(y)| dy ≤ ‖g‖Lp/(p−1)(Rm,R)‖ϕ‖Lp(Ω,R) <∞.

Hence, the mapping K : Lp(Ω,R)→ L∞(Ω,R), given by

(Kϕ)(x) =
∫

Ω
g(x− y)ϕ(y) dy for a.e. x ∈ Ω and all ϕ ∈ Lp(Ω,R),

is well-defined, linear and bounded. Since Ω is bounded, it holds for every ϕ ∈ Lp(Ω,R)
that Kϕ ∈ Lp/(p−1)(Ω,R). Moreover, since fn w−⇀ f∞ in Lp(Ω,R) as n → ∞ and
g ∈ Lp/(p−1)(Ω,R), we obtain for almost every x ∈ Ω that

lim sup
n→∞

|(Kfn)(x)− (Kf∞)(x)| = lim sup
n→∞

∣∣∣∣∫
Ω
g(x− y)(fn(y)− f∞(y)) dy

∣∣∣∣ = 0. (5)
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Furthermore, by the Banach–Steinhaus theorem and since f∞ ∈ conv({fn : n ∈ N}),
we have ‖f∞‖Lp(Ω,R) ≤ supn∈N‖fn‖Lp(Ω,R) <∞ . Therefore, we obtain for almost every
x ∈ Ω that

sup
n∈N
|(Kfn)(x)− (Kf∞)(x)| ≤ sup

n∈N

∣∣∣∣∫
Ω
g(x− y)(fn(y)− f∞(y)) dy

∣∣∣∣
≤ 2‖g‖Lp/(p−1)(Rm,R) sup

n∈N
‖fn‖Lp(Ω,R).

(6)

Since Ω is bounded, (equivalence classes of) constant functions belong to Lp/(p−1)(Ω,R).
Properties (5) and (6) allow to apply Lebesgue’s dominated convergence theorem to
infer that

lim sup
n→∞

‖Kfn −Kf∞‖Lp/(p−1)(Ω,R) = 0. (7)

Finally, we conclude by

lim sup
n→∞

|V (fn)− V (f∞)| = lim sup
n→∞

∣∣∣∣∫
Ω

(Kfn)(x)fn(x) dx−
∫

Ω
(Kf∞)(x)f∞(x) dx

∣∣∣∣
≤ lim sup

n→∞

∣∣∣∣∫
Ω

((Kfn)(x)− (Kf∞)(x))fn(x) dx
∣∣∣∣

+ lim sup
n→∞

∣∣∣∣∫
Ω

(Kf∞)(x)(fn(x)− f∞(x)) dx
∣∣∣∣︸ ︷︷ ︸

=0 since Kf∞∈Lp/(p−1) and fn
w−⇀f∞ in Lp as n→∞

≤ lim sup
n→∞

‖Kfn −Kf∞‖Lp/(p−1)(Ω,R)︸ ︷︷ ︸
=0 by (7)

sup
k∈N
‖fk‖Lp(Ω,R)︸ ︷︷ ︸

<∞ by unif. bdd. princ.

= 0.

(c) (4 points) Prove that E|{f∈Lp(Ω,R) : f≥0 a.e.} attains a global minimum under the
additional assumption that g ≥ 0 almost everywhere.

Solution: Since g ≥ 0 a.e., it holds for every f ∈ Lp(Ω,R) with f ≥ 0 a.e. that
V (f) ≥ 0, and, consequentially, E(f) ≥ 0. Hence (keeping in mind that {f ∈
Lp(Ω,R) : f ≥ 0 a.e.} 6= ∅ as, e.g., 0 is contained), there exist (fn)n∈N ⊆ Lp(Ω,R)
satisfying fn ≥ 0 a.e. for all n ∈ N such that

lim sup
n→∞

E(fn) = inf
ϕ∈Lp(Ω,R),ϕ≥0 a.e.

E(ϕ) ∈ [0,∞).

Moreover, since it holds for every ϕ ∈ Lp(Ω,R) with ϕ ≥ 0 a.e. that

E(ϕ) ≥ ‖ϕ− h‖sLp(Ω,R) ≥ |max{‖ϕ‖Lp(Ω,R) − ‖h‖Lp(Ω,R), 0}|s,

we have that E(ϕ) → ∞ as ‖ϕ‖Lp(Ω,R) → ∞ and, therefore, supn∈N‖fn‖Lp(Ω,R) < ∞.
Since p ∈ (1,∞), Lp(Ω,R) is reflexive and we may – passing to a subsequence if
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necessary – assume that (fn)n∈N converges weakly in Lp(Ω,R) to some (weak) limit
f∞. Since the set {ϕ ∈ Lp(Ω,R) : ϕ ≥ 0 a.e.} is (norm-)closed and convex, f∞ also
belongs to it (otherwise, the Hahn–Banach theorem could be used to construct a linear
functional separating f∞ from the closed convex hull of {fn : n ∈ N}, contradicting
weak convergence). Finally, since V is weakly sequentially continuous by (b) and the
norm is weakly sequentially lower semicontinuous, we conclude that

inf
ϕ∈Lp(Ω,R),ϕ≥0 a.e.

E(ϕ) ≤ E(f∞)

= V (f∞)︸ ︷︷ ︸
=limn→∞ V (fn) by (b)

+ ‖f∞ − h‖sLp(Ω,R)︸ ︷︷ ︸
≤lim infn→∞‖fn−h‖s

Lp(Ω,R)

≤ lim inf
n→∞

(
V (fn) + ‖fn − h‖sLp(Ω,R)

)
= lim inf

n→∞
E(fn) = inf

ϕ∈Lp(Ω,R),ϕ≥0 a.e.
E(ϕ),

which shows that f∞ is a minimizer of E|{ϕ∈Lp(Ω,R) : ϕ≥0 a.e.}.
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