1.1. Completeness, closedness, compactness, and metric spaces

Let (X, d) be a metric space. Prove the following statements:
(a) If $Y \subseteq X$ is a complete subspace (i.e., $Y \subseteq X$ and $\left(Y,\left.d\right|_{Y \times Y}\right)$ is complete), then Y is closed (i.e., a closed subset of X).
(b) If (X, d) is complete, then every closed subset $Y \subseteq X$ is complete (i.e., $\left(Y,\left.d\right|_{Y \times Y}\right)$ is complete).
(c) If (X, d) is compact, then (X, d) is complete.

1.2. Metrics on sequence spaces

Let (M, d) be a non-empty metric space. Consider the set of all M-valued sequences

$$
S=\left\{\left(s_{n}\right)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N}: s_{n} \in M\right\} .
$$

Let the function $\delta: S \times S \rightarrow[0, \infty)$ be defined by

$$
\delta\left(\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}\right)=\sum_{n \in \mathbb{N}} 2^{-n} \frac{d\left(x_{n}, y_{n}\right)}{1+d\left(x_{n}, y_{n}\right)} .
$$

(a) Show that δ is a metric on S.
(b) Prove that (S, δ) is a complete metric space if (M, d) is a complete metric space.

1.3. Bounded metrics

Let (X, d) be a metric space and let \mathcal{T} be the topology on X which is induced by d. Prove that there exists a bounded metric δ on X which induces the same topology \mathcal{T}.

1.4. Cantor's intersection theorem

The diameter of a subset A of a metric space (X, d) is defined by

$$
\operatorname{diam}(A)=\sup (\{0\} \cup\{d(x, y) \mid x, y \in A\})
$$

(a) Prove that a metric space (X, d) is complete if and only if it holds for every nested sequence $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \ldots$ of non-empty closed subsets $A_{n} \subseteq X, n \in \mathbb{N}$, with $\operatorname{diam}\left(A_{n}\right) \rightarrow 0$ for $n \rightarrow \infty$ that $\bigcap_{n \in \mathbb{N}} A_{n} \neq 0$. Moreover, prove that in this case $\bigcap_{n \in \mathbb{N}} A_{n}$ has exactly one element.
(b) Find an example of a complete metric space and a nested sequence of non-empty closed bounded subsets with empty intersection.

1.5. Intrinsic Characterisations

Let V be a vector space over \mathbb{R}. Prove the following equivalences.
(a) The norm $\|\cdot\|$ is induced by a scalar product $\langle\cdot, \cdot\rangle$ (in the sense that there exists a scalar product $\langle\cdot, \cdot\rangle$ such that $\left.\forall x \in V:\|x\|^{2}=\langle x, x\rangle\right)$
\Leftrightarrow the norm satisfies the parallelogram identity, i. e. $\forall x, y \in V$:

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) .
$$

Hint. If $\|\cdot\|$ satisfies the parallelogram identity, consider $\langle x, y\rangle:=\frac{1}{4}\|x+y\|^{2}-\frac{1}{4}\|x-y\|^{2}$. Prove $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$ first for $\lambda \in \mathbb{N}$, then for $\lambda \in \mathbb{Q}$ and finally for $\lambda \in \mathbb{R}$.
(b) The metric $d(\cdot, \cdot)$ is induced by a norm $\|\cdot\|$ (in the sense that there exists a norm $\|\cdot\|$ such that $\forall x, y \in V: d(x, y)=\|x-y\|)$
\Leftrightarrow the metric is translation invariant and homogeneous, i. e. $\forall v, x, y \in V \forall \lambda \in \mathbb{R}$:

$$
\begin{aligned}
d(x+v, y+v) & =d(x, y), \\
d(\lambda x, \lambda y) & =|\lambda| d(x, y) .
\end{aligned}
$$

1.6. A classic

Let (X, d) be a non-empty complete metric space, let $\lambda \in[0,1)$, and let $\Phi: X \rightarrow X$ be a mapping which satisfies for all $x, y \in X$ that $d(\Phi(x), \Phi(y)) \leq \lambda d(x, y)$. Show that there exists a unique $z \in X$ which satisfies $\Phi(z)=z$.

