1.1. Completeness, closedness, compactness, and metric spaces

Let (X, d) be a metric space. Prove the following statements:

(a) If $Y \subseteq X$ is a complete subspace (i.e., $Y \subseteq X$ and $(Y, d|_{Y \times Y})$ is complete), then Y is closed (i.e., a closed subset of X).

(b) If (X, d) is complete, then every closed subset $Y \subseteq X$ is complete (i.e., $(Y, d|_{Y \times Y})$ is complete).

(c) If (X, d) is compact, then (X, d) is complete.

1.2. Metrics on sequence spaces

Let (M, d) be a non-empty metric space. Consider the set of all M-valued sequences

 $S = \{ (s_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} \colon s_n \in M \}.$

Let the function $\delta \colon S \times S \to [0, \infty)$ be defined by

$$\delta((x_n)_{n \in \mathbb{N}}, (y_n)_{n \in \mathbb{N}}) = \sum_{n \in \mathbb{N}} 2^{-n} \frac{d(x_n, y_n)}{1 + d(x_n, y_n)}.$$

(a) Show that δ is a metric on S.

(b) Prove that (S, δ) is a complete metric space if (M, d) is a complete metric space.

1.3. Bounded metrics

Let (X, d) be a metric space and let \mathcal{T} be the topology on X which is induced by d. Prove that there exists a bounded metric δ on X which induces the same topology \mathcal{T} .

1.4. Cantor's intersection theorem

The diameter of a subset A of a metric space (X, d) is defined by

$$diam(A) = \sup(\{0\} \cup \{d(x, y) \mid x, y \in A\}).$$

(a) Prove that a metric space (X, d) is complete if and only if it holds for every nested sequence $A_1 \supseteq A_2 \supseteq A_3 \supseteq \ldots$ of non-empty closed subsets $A_n \subseteq X$, $n \in \mathbb{N}$, with diam $(A_n) \to 0$ for $n \to \infty$ that $\bigcap_{n \in \mathbb{N}} A_n \neq 0$. Moreover, prove that in this case $\bigcap_{n \in \mathbb{N}} A_n$ has exactly one element.

(b) Find an example of a complete metric space and a nested sequence of non-empty closed bounded subsets with empty intersection.

1.5. Intrinsic Characterisations

Let V be a vector space over \mathbb{R} . Prove the following equivalences.

(a) The norm $\|\cdot\|$ is induced by a scalar product $\langle \cdot, \cdot \rangle$ (in the sense that there exists a scalar product $\langle \cdot, \cdot \rangle$ such that $\forall x \in V : \|x\|^2 = \langle x, x \rangle$)

 \Leftrightarrow the norm satisfies the *parallelogram identity*, i.e. $\forall x, y \in V$:

 $||x + y||^{2} + ||x - y||^{2} = 2(||x||^{2} + ||y||^{2}).$

Hint. If $\|\cdot\|$ satisfies the parallelogram identity, consider $\langle x, y \rangle := \frac{1}{4} \|x+y\|^2 - \frac{1}{4} \|x-y\|^2$. Prove $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ first for $\lambda \in \mathbb{N}$, then for $\lambda \in \mathbb{Q}$ and finally for $\lambda \in \mathbb{R}$.

(b) The metric $d(\cdot, \cdot)$ is induced by a norm $\|\cdot\|$ (in the sense that there exists a norm $\|\cdot\|$ such that $\forall x, y \in V : d(x, y) = \|x - y\|$)

 \Leftrightarrow the metric is translation invariant and homogeneous, i. e. $\forall v, x, y \in V \ \forall \lambda \in \mathbb{R}$:

$$d(x + v, y + v) = d(x, y),$$
$$d(\lambda x, \lambda y) = |\lambda| d(x, y).$$

1.6. A classic

Let (X, d) be a non-empty complete metric space, let $\lambda \in [0, 1)$, and let $\Phi: X \to X$ be a mapping which satisfies for all $x, y \in X$ that $d(\Phi(x), \Phi(y)) \leq \lambda d(x, y)$. Show that there exists a unique $z \in X$ which satisfies $\Phi(z) = z$.