3.1. The space of bounded linear operators

Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed \mathbb{K}-vector spaces with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. Let $L(X, Y)$ be the space of bounded \mathbb{K}-linear operators $T: X \rightarrow Y$, equipped with the norm $\|\cdot\|_{L(X, Y)}: L(X, Y) \rightarrow[0, \infty)$, defined by

$$
\|T\|_{L(X, Y)}=\sup _{x \neq 0} \frac{\|T x\|_{Y}}{\|x\|_{X}} \quad \text { for all } T \in L(X, Y)
$$

(a) Prove that

$$
\|T\|_{L(X, Y)}=\sup _{\|x\|_{X} \leq 1}\|T x\|_{Y}=\sup _{\|x\|_{X}=1}\|T x\|_{Y} \quad \text { for all } T \in L(X, Y)
$$

(b) Prove that $\|\cdot\|_{L(X, Y)}$ is indeed a norm on $L(X, Y)$.
(c) Prove that $\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is a \mathbb{K}-Banach space if and only if $\left(Y,\|\cdot\|_{Y}\right)$ is a \mathbb{K}-Banach space or $X=\{0\}$.
(d) Prove that the dual space $L(X, \mathbb{K})$ of X is complete.

3.2. Lipschitz functions

Let $X=\operatorname{Lip}([0,1], \mathbb{R})$ be the \mathbb{R}-vector space of Lischitz continuous functions from $[0,1]$ to \mathbb{R} and let $Y=C^{1}([0,1], \mathbb{R})$ be the \mathbb{R}-vector space of continuously differentiable functions from $[0,1]$ to \mathbb{R}. Define the functions $\|\cdot\|_{\text {Lip }}: X \rightarrow[0, \infty)$ and $\|\cdot\|_{\mathrm{C}^{1}}: Y \rightarrow$ $[0, \infty)$ by

$$
\begin{aligned}
& \|x\|_{\text {Lip }}=\sup _{s \in[0,1]}|x(s)|+\sup _{s, t \in[0,1]}\left|\frac{x(s)-x(t)}{s \neq t}\right| \quad \text { for all } x \in X, \\
& \|y\|_{\mathrm{C}^{1}}=\sup _{s \in[0,1]}|x(s)|+\sup _{s \in[0,1]}\left|x^{\prime}(s)\right| \quad \text { for all } y \in Y .
\end{aligned}
$$

(a) Prove that $\|\cdot\|_{\text {Lip }}$ is a norm on X.
(b) Show that $\left(X,\|\cdot\|_{\text {Lip }}\right)$ is an \mathbb{R}-Banach space.
(c) Demonstrate that $\left(Y,\|\cdot\|_{C^{1}}\right)$ is isometrically embedded in $\left(X,\|\cdot\|_{\text {Lip }}\right)$ and that Y is closed in $\left(X,\|\cdot\|_{\text {Lip }}\right)$.

3.3. Completion of metric spaces

Let (X, d) be a metric space. A completion of (X, d) is a triple $(\mathbb{X}, \delta, \iota)$, where (\mathbb{X}, δ) is a complete metric space and $\iota: X \rightarrow \mathbb{X}$ is an isometric embedding with dense image.
(a) Let $(\mathbb{X}, \delta, \iota)$ be a completion of X . Then it satisfies the following universal property: whenever $\phi: X \rightarrow Y$ is 1-Lipschitz to a complete metric space $\left(Y, d_{Y}\right)$ then there is a unique 1-Lipschitz map $\Phi: \mathbb{X} \rightarrow Y$ such that $\phi=\Phi \circ \iota$.
(b) If $\left(\mathbb{X}_{1}, \delta_{1}, \iota_{1}\right)$ and $\left(\mathbb{X}_{2}, \delta_{2}, \iota_{2}\right)$ are two completions of X, then there exists a unique isometric isomorphism $\psi: \mathbb{X}_{1} \rightarrow \mathbb{X}_{2}$ such that $\iota_{2}=\psi \circ \iota_{1}$.
(c) Prove the existence of a completion of (X, d). Hint: Recall that the space of continuous bounded real-valued functions $C_{b}(X, \mathbb{R})$ is a Banach space with respect to the norm $\|f\|_{\infty}=\sup _{x \in X}|f(x)|$. Fix $x_{0} \in X$. For $y \in X$ let $f_{y}(x)=d(y, x)-d\left(x_{0}, x\right)$. Prove that $\iota(y)=f_{y}$ defines an isometric embedding $\iota: X \rightarrow C_{b}(X, \mathbb{R})$ and put $\mathbb{X}=\overline{\iota(X)}$.

3.4. Compactly supported sequences and their ℓ^{∞}-completion

Definition. We denote the space of compactly supported sequences by

$$
c_{c}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \exists N \in \mathbb{N} \forall n \geq N: x_{n}=0\right\}
$$

and the space of sequences converging to zero by

$$
c_{0}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \lim _{n \rightarrow \infty} x_{n}=0\right\} .
$$

(a) Show that $\left(c_{c},\|\cdot\|_{\ell \infty}\right)$ is not complete. What is a completion of this space?
(b) Prove the strict inclusion

$$
\bigcup_{p=1}^{\infty} \ell^{p} \subsetneq c_{0} .
$$

3.5. Operator norms need not be achieved

We consider the space $X=C^{0}([-1,1], \mathbb{R})$ with its usual norm $\|\cdot\|_{C^{0}([-1,1])}$ and define

$$
\begin{aligned}
\varphi: X & \rightarrow \mathbb{R} \\
f & \mapsto \int_{0}^{1} f(t) d t-\int_{-1}^{0} f(t) d t .
\end{aligned}
$$

(a) Show that $\varphi \in L(X, \mathbb{R})$ with $\|\varphi\|_{L(X, \mathbb{R})} \leq 2$.
(b) Find a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in X such that $\left\|f_{n}\right\|_{C^{0}([-1,1])}=1$ for every $n \in \mathbb{N}$ and such that $\varphi\left(f_{n}\right) \rightarrow 2$ as $n \rightarrow \infty$. This in fact implies $\|\varphi\|_{L(X, \mathbb{R})}=2$.
(c) Prove that there does not exist $f \in X$ with $\|f\|_{C^{0}([-1,1])}=1$ and $|\varphi(f)|=2$.

3.6. Unbounded map and approximations

As in problem 3.4, we denote the space of compactly supported sequences by

$$
c_{c}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \exists N \in \mathbb{N} \forall n \geq N: x_{n}=0\right\}
$$

endowed with the norm $\|\cdot\|_{\ell \infty}$. Consider the map

$$
\begin{aligned}
T: c_{c} & \rightarrow c_{c} \\
\left(x_{n}\right)_{n \in \mathbb{N}} & \mapsto\left(n x_{n}\right)_{n \in \mathbb{N}}
\end{aligned}
$$

(a) Show that T is not continuous.
(b) Construct continuous linear maps $T_{m}: c_{c} \rightarrow c_{c}$ such that

$$
\forall x \in c_{c}: \quad T_{m} x \xrightarrow{m \rightarrow \infty} T x .
$$

3.7. Volterra equation

Let $k \in C\left([0,1]^{2}, \mathbb{R}\right)$. The Volterra integral operator $T_{k}: C([0,1], \mathbb{R}) \rightarrow C([0,1], \mathbb{R})$ is given by

$$
\left(T_{k} f\right)(t)=\int_{0}^{t} k(t, s) f(s) d s \quad \text { for all } t \in[0,1], f \in C([0,1], \mathbb{R})
$$

(a) Prove that T_{k} is well-defined and continuous.
(b) For $\lambda \in \mathbb{R}$, let $\|\cdot\|_{\lambda}: C([0,1], \mathbb{R}) \rightarrow[0, \infty)$ be defined by $\|f\|_{\lambda}=\sup _{t \in[0,1]} e^{-\lambda t}|f(t)|$ for every $f \in C([0,1], \mathbb{R})$. Show that $\|\cdot\|_{\lambda}$ defines a norm equivalent to the supremum norm on $C([0,1], \mathbb{R})$.
(c) Estimate the operator norm of T_{k} on $\left(C([0,1], \mathbb{R}),\|\cdot\|_{\lambda}\right)$.
(d) Show that for every $g \in C([0,1], \mathbb{R})$ there exists a unique $f \in C([0,1], \mathbb{R})$ satisfying

$$
\forall t \in[0,1]: \quad f(t)+\int_{0}^{t} k(t, s) f(s) d s=g(t)
$$

