4.1. Null and non-null limits

Denote by c the subspace of ℓ^{∞} containing all the convergent sequences and let c_0 denote the subspace of sequences converging to 0.

- (a) Prove that c is a closed subspace of ℓ^{∞} .
- (b) Show that c is separable.
- (c) Construct an isomorphism between c and c_0 .

4.2. Baby Riesz representation

Let $p \in [1, \infty)$. Show that φ belongs to the dual space of ℓ^p , (i.e., $\varphi \in (\ell^p)' = L(\ell^p, \mathbb{R})$) if and only if there exists $(p_n)_{n \in \mathbb{N}} \in \ell^q$ such that

$$\varphi((x_n)_{n\in\mathbb{N}}) = \sum_{n=1}^{\infty} p_n x_n \text{ for all } (x_n)_{n\in\mathbb{N}} \in \ell^p,$$

where $q \in [1, \infty]$ is such that $\frac{1}{p} + \frac{1}{q} = 1$ (with the convention $\frac{1}{\infty} = 0$).

4.3. Infinite matrices

Consider the double sequence $(a_{jk})_{j,k\in\mathbb{N}}$ with $a_{jk}\in\mathbb{R}$ for every $j,k\in\mathbb{N}$.

(a) Let $\sup_{j,k\in\mathbb{N}}|a_{jk}| < \infty$ and let for every $x = (x_k)_{k\in\mathbb{N}} \in \ell^1$ the sequence Ax be given by

$$[Ax]_j = \sum_{k \in \mathbb{N}} a_{jk} x_k \quad \text{for all } j \in \mathbb{N}.$$

Show that this defines a bounded linear map from ℓ^1 to ℓ^{∞} (i.e., $A \in L(\ell^1, \ell^{\infty})$). Moreover, prove that $||A|| = \sup_{j,k \in \mathbb{N}} |a_{jk}|$.

(b) Let $\sup_{j\in\mathbb{N}}\sum_{k\in\mathbb{N}}|a_{jk}| < \infty$ and define for $x = (x_k)_{k\in\mathbb{N}} \in \ell^{\infty}$ the sequence Ax as above. Show that this defines a bounded linear map from ℓ^{∞} to ℓ^{∞} (i.e., $A \in L(\ell^{\infty})$)). Moreover, prove that $||A|| = \sup_{j\in\mathbb{N}}\sum_{k\in\mathbb{N}}|a_{jk}|$.

4.4. The Fourier coefficients of functions in $L^1([0, 2\pi])$

For $f \in L^1([0, 2\pi])$, we define the k^{th} Fourier coefficient to be

$$\hat{f}(k) = \int_0^{2\pi} f(t) e^{-ikt} dt$$

and let $\mathcal{F}(f) = (\hat{f}(k))_{k \in \mathbb{Z}}$.

assignment: 15 October 2021

due: 22 October 2021

(a) Show that $\mathcal{F}: L^1([0, 2\pi]) \to \ell^\infty(\mathbb{Z})$ defines a bounded linear operator.

(b) Prove the Riemann–Lebesgue lemma, that is, $\limsup_{|k|\to\infty} |\hat{f}(k)| = 0$ for all $f \in L^1([0, 2\pi])$.

(c) Let $c_0(\mathbb{Z}) \subseteq \ell^{\infty}(\mathbb{Z})$ be the closed subspace of sequences converging to zero. Prove that $\mathcal{F}: L^1([0, 2\pi]) \to c_0(\mathbb{Z})$ has dense range but is not onto.

4.5. Distance to closed subspaces

Let $(X, \|\cdot\|)$ be a normed \mathbb{R} -vector space and let $\varphi \in L(X, \mathbb{R})$ be an element of the dual space of X.

(a) Prove for every $x \in X$ that

$$\operatorname{dist}(x, \operatorname{ker}(\varphi)) = \frac{|\varphi(x)|}{\|\varphi\|_{L(X,\mathbb{R})}},$$

where $\operatorname{dist}(x, A) = \inf_{v \in A} ||x - v||$ for $x \in X$ and $\emptyset \neq A \subseteq X$ denotes the distance of the point x to the set A.

Consider now the \mathbb{R} -vector space of continuous functions on the real half-line vanishing at ∞ , i.e.,

$$C_0([0,\infty),\mathbb{R}) = \left\{ f \in C([0,\infty),\mathbb{R}) \mid \limsup_{t \to \infty} |f(t)| = 0 \right\},\$$

equipped with the sup norm $\|\cdot\|_{\sup}$.

(b) Show that $H = \{f \in C_0([0,\infty),\mathbb{R}) \mid \int_0^\infty e^{-s} f(s) \, ds = 0\}$ is a closed subspace of the Banach space $(C([0,\infty),\mathbb{R}), \|\cdot\|_{\sup})$.

(c) Demonstrate that for every $f \in C_0([0,\infty),\mathbb{R}) \setminus H$, there is no $h \in H$ which realizes the distance, i.e., which satisfies $\operatorname{dist}(f,H) = ||f - h||_{\sup}$.

due: 22 October 2021