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6.1. Topological complement

Definition. Let (X, ‖·‖X) be a Banach space. A subspace U ⊆ X is called topologically
complemented if there is a subspace V ⊆ X such that the linear map I given by

I : (U × V, ‖·‖U×V )→ (X, ‖·‖X), ‖(u, v)‖U×V := ‖u‖X + ‖v‖X ,
(u, v) 7→ u+ v

is a continuous isomorphism of normed spaces with continuous inverse. In this case
V is said to be a topological complement of U .

(a) Prove that U ⊆ X is topologically complemented if and only if there exists a
continuous linear map P : X → X with P ◦ P = P and image P (X) = U .

(b) Show that a topologically complemented subspace must be closed.

6.2. Heavily diverging Fourier series

Let X = {f ∈ C([0, 2π],R) : f(0) = f(2π)}. For m ∈ N0 and f ∈ X we denote the
mth partial sum of the Fourier series by Smf , that is,

(Smf)(t) =
m∑

k=−m

[ 1
2π

∫ 2π

0
f(s)e−iks ds

]
eikt.

This exercise’s goal is to prove the existence of a continuous 2π-periodic function
whose Fourier series does not converge at uncountably many points. To this end, let
{tk : k ∈ N} ⊆ [0, 2π] be dense.

(a) Prove that there exists f0 ∈ X such that supm∈N|(Smf0)(tn)| =∞ for all n ∈ N.

(b) Show for every k ∈ N that {t ∈ [0, 2π] : |(Smf0)(t)| ≤ k for all m ∈ N0} is closed
and meagre.

(c) Conclude that there is an uncountable subset of [0, 2π] on which the Fourier
series of f0 does not converge.

6.3. The Fundamental Principles Fail for Non-Complete Spaces

Consider the vector space cc of real sequences x = (xn)n∈N with only finitely many
non-zero terms (cf. problems 3.4 and 3.6 as well as problem 5.1). Let ‖x‖`1 = ∑∞

n=1|xn|
and ‖x‖`∞ = supn∈N|xn| be the `1 and `∞ norms, respectively.

(a) The family of linear functionals ϕm : cc → R given by ϕm(x) = mxm, m ∈ N, is
pointwise bounded, but not uniformly bounded (in either norm on cc).
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(b) The identity operator (cc, ‖·‖`1)→ (cc, ‖·‖`∞) is continuous, but not open.

(c) The identity operator (cc, ‖·‖`∞)→ (cc, ‖·‖`1) has closed graph, but is not contin-
uous.

6.4. Zabreiko’s Lemma

Let (X, ‖·‖) be a K-Banach space (with K ∈ {R,C}), let p : X → [0,∞) be a semi-
norm (that is, for all x, y ∈ X, λ ∈ K it holds that p(x + y) ≤ p(x) + p(y) and
p(λx) = |λ|p(x)), and assume that

p

( ∞∑
k=1

xk

)
≤
∞∑
k=1

p(xk) for all (xk)k∈N ⊆ X for which
∞∑
k=1

xk converges.

Demonstrate that there exists M ∈ [0,∞) such that

p(x) ≤M‖x‖ for all x ∈ X.

This is Zabreiko’s lemma. Hint: Mimick the proof of the open mapping theorem.

6.5. Proving everything by Zabreiko’s lemma

Recall Zabreiko’s lemma from problem 6.4. In this problem we will infer more or less
all the fundamental principles from Zabreiko’s lemma. Let K ∈ {R,C}.

(a) (Uniform boundedness principle.) For a K-Banach space (X, ‖·‖X), a normed
K-vector space (Y, ‖·‖Y ) and a collection of continuous linear mappings F ⊆ L(X, Y ),
prove (by applying Zabreiko’s lemma) that(

sup
T∈F
‖Tx‖Y <∞ for every x ∈ X

)
⇒ sup

T∈F
‖T‖L(X,Y ) <∞.

(b) (Closed graph theorem.) For K-Banach spaces (X, ‖·‖X) and (Y, ‖·‖Y ) and a
linear map T : X → Y , prove (by applying Zabreiko’s lemma) that(

graph(T ) = {(x, Tx) | x ∈ X} ⊆ X × Y is closed
)
⇒ T ∈ L(X, Y ).

(c) (Open mapping theorem.) For K-Banach spaces (X, ‖·‖X) and (Y, ‖·‖Y ) and a
surjective continuous linear map T ∈ L(X, Y ), prove (by applying Zabreiko’s lemma)
that T is open.
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6.6. Riesz representation theorem for Hilbert spaces

Let K ∈ {R,C} and let (H, 〈·, ·〉) be K-Hilbert space.

(a) Prove for every ϕ ∈ L(H,K) (i.e., every ϕ in the dual space of H) that there
exists a unique v ∈ H such that

ϕ(u) = 〈u, v〉 for every u ∈ H.

(b) Prove that the map T : H → L(H,K), defined by

(Tv)(u) = 〈u, v〉 for all u, v ∈ H,

is antilinear, bijective and isometric.

6.7. Reproducing kernels

Let S be a set and let H be a K-Hilbert space (with K ∈ {R,C}) of functions on
S. A reproducing kernel for H is a function k : S × S → K satisfying for all t ∈ S,
f ∈ H that kt = (S 3 s 7→ k(s, t) ∈ K) ∈ H and f(t) = 〈f, kt〉.

(a) Prove that a reproducing kernel, if existent, is unique.

(b) Show that a reproducing kernel exists if and only if, for every t ∈ S, the mapping
H 3 f 7→ f(t) ∈ K is continuous.

(c) Prove that H = span{kt | t ∈ S} if a reproducing kernel exists.

(d) Prove that the Hardy space H2(D) (cf. problem 5.7) possesses a reproducing
kernel and determine the reproducing kernel for H2(D).
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