7.1. Finite-dimensional subspaces are topologically complemented

Let $(X, \|\cdot\|_X)$ be a K-Banach space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$) and $U \subseteq X$ a closed subspace. Show that:

(a) If $\dim(U) < \infty$, then U is topologically complemented.

(b) If $\dim(X/U) < \infty$, then U is topologically complemented.

7.2. Dual spaces of c_0 and c

Recall the (\mathbb{R} -vector) spaces

$$c_0 := \left\{ (x_k)_{k \in \mathbb{N}} \in \ell^\infty \mid \lim_{k \to \infty} x_k = 0 \right\}, \quad c := \left\{ (x_k)_{k \in \mathbb{N}} \in \ell^\infty \mid \lim_{k \to \infty} x_k \text{ exists} \right\}.$$

with norm $\|\cdot\|_{\ell^{\infty}}$ (cf. problems 3.4 and 4.1).

(a) Show that the dual space of $(c_0, \|\cdot\|_{\ell^{\infty}})$ is *isometrically* isomorphic to $(\ell^1, \|\cdot\|_{\ell^1})$.

(b) To which space is the dual space of $(c, \|\cdot\|_{\ell^{\infty}})$ isomorphic?

7.3. Banach Limits

Define the shift operator T on (the \mathbb{R} -Banach space) $\ell^{\infty} = \ell^{\infty}(\mathbb{N}, \mathbb{R})$ by

 $Ty = (y_{n+1})_{n \in \mathbb{N}}$ for all $y = (y_n)_{n \in \mathbb{N}} \in \ell^{\infty}$.

Consider the subspace $X = \{x \in \ell^{\infty} \mid \exists y \in \ell^{\infty} \text{ s.t. } x = y - Ty\}.$

(a) The closure of X contains the space of sequences that converge to zero.

(b) Let c be the constant sequence $c = (1)_{n \in \mathbb{N}}$. Show that $\operatorname{dist}(c, X) = 1$ where $\operatorname{dist}(c, X) = \inf_{x \in X} ||c - x||_{\ell^{\infty}}$.

(c) By the Hahn–Banach theorem there is a linear functional $L: \ell^{\infty} \to \mathbb{R}$ such that $L(c) = 1, ||L||_{L(X,\mathbb{R})} = 1$ and L(x) = 0 for all $x \in X$.

- (i) Show that L(Ty) = L(y) for all $y \in \ell^{\infty}$.
- (ii) Verify that $L(y) \ge 0$ whenever $y \ge 0$ (in the sense that, for $y = (y_n)_{n \in \mathbb{N}} \in \ell^{\infty}$, it holds that $y_n \ge 0$ for all $n \in \mathbb{N}$) and deduce that $\liminf_{n\to\infty} y_n \le L(y) \le \limsup_{n\to\infty} y_n$ for all $y \in \ell^{\infty}$. It follows that $L(y) = \lim_{n\to\infty} y_n$ whenever y is convergent.

(iii) Find y and z such that $L(yz) \neq L(y)L(z)$.

(iv) Show that there is no $z \in \ell^1$ such that $L(y) = \sum_{n=1}^{\infty} y_n z_n$ for all $y = (y_n)_{n \in \mathbb{N}} \in \ell^{\infty}$, so L is a functional in $(\ell^{\infty})^* \setminus \ell^1$.

assignment: 5 November 2021 due: 12 November 2021

7.4. Inseparable Disjoint Closed Convex Sets

In the Hilbert space $\ell^2 = \ell^2(\mathbb{N}, \mathbb{R})$ of square summable sequences, set $A = \mathbb{R}e_1$ and let

$$B = \left\{ x \in \ell^2 \colon x_1 \ge n \cdot \left| x_n - \frac{1}{n^{2/3}} \right| \text{ for all } n \ge 2 \right\}.$$

(a) Verify that A and B are disjoint, non-empty, closed and convex.

(b) Prove that A - B is dense in ℓ^2 and conclude that there is no non-zero continuous linear functional on ℓ^2 which separates A from B.

7.5. Strict convexity and uniqueness of the Hahn–Banach extension

(a) (*Ruston's Theorem*) Show that the following properties of a normed \mathbb{R} -vector space $(X, \|\cdot\|_X)$ are equivalent:

- (i) If $x \neq y$ and $||x||_X = 1 = ||y||_X$ then $||\frac{x+y}{2}||_X < 1$.
- (ii) If $x \neq 0 \neq y$ and $||x + y||_X = ||x||_X + ||y||_X$, then $x = \lambda y$ for some $\lambda > 0$.
- (iii) If $\varphi \in X^*$ is a nonzero bounded linear functional, then there is at most one $x \in X$ with $||x||_X = 1$ such that $\varphi(x) = ||\varphi||_{X^*}$.

Remark: A normed space is said to be *strictly convex* if any of these properties is satisfied. Point (i) says that the unit sphere contains no non-trivial line segment. Point (ii) says that equality in the triangle inequality only occurs in the trivial situation. Point (iii) says that for $\varphi \neq 0$ the support hyperplane $H_{\varphi} = \{x \in X : \varphi(x) = \|\varphi\|_{X^*}\}$ of the unit sphere meets the sphere in at most one point (note that $\inf_{x \in H_{\varphi}} \|x\|_X = 1$).

(b) For which $p \in [1, \infty]$ is $L^p([0, 1], \mathbb{R})$ strictly convex?

(c) Is $C([0,1],\mathbb{R})$ strictly convex?

(d) If X^* is strictly convex, then every bounded linear functional ψ defined on a subspace U of X has a unique extension Ψ to all of X such that $\|\Psi\|_{X^*} = \|\psi\|_{L(U,\mathbb{R})}$.

7.6. Another application of the Hahn–Banach theorem

Let $(X, \|\cdot\|_X)$ be a normed K-vector space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), let $(x_j)_{j \in \mathbb{N}} \subseteq X$ be a sequence of points in X, let $\gamma \in [0, \infty)$ and let $(\alpha_j)_{j \in \mathbb{N}} \subseteq \mathbb{K}$ be a sequence. Prove that the following are equivalent:

(i) There exists a functional $l \in X^*$ satisfying

$$||l||_{X^*} \leq \gamma$$
 and $l(x_j) = \alpha_j$ for all $j \in \mathbb{N}$.

(ii) It holds that

$$\left|\sum_{j=1}^n \beta_j \alpha_j\right| \leq \gamma \left\|\sum_{j=1}^n \beta_j x_j\right\|_X \quad \text{for all } n \in \mathbb{N}, (\beta_j)_{j=1}^n \subseteq \mathbb{K}.$$