8.1. Strict convexity and extremal points

A normed space $(X, \|\cdot\|)$ with $X \neq \{0\}$ is strictly convex (cf. Problem 7.5) if and only if the unit sphere $S := \{x \in X : \|x\| = 1\}$ is equal to the set of extremal points of the closed unit ball $B := \{x \in X : \|x\| \le 1\}$.

8.2. Closedness/Non-closedness of sets of extremal points

(a) Let $K \subseteq \mathbb{R}^2$ be a closed convex subset. Prove that the set E of all extremal points of K is closed.

(b) Consider the convex hull C of the circle $\{(1 + \cos(\varphi), \sin(\varphi), 0) : 0 \le \varphi \le 2\pi\}$ and the points $(0, 0, \pm 1)$ in \mathbb{R}^3 . Determine the extremal points of C.

8.3. Birkhoff-von Neumann theorem

A matrix $M = (M_{ij})_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$ (where $n \in \mathbb{N}$) with $M_{ij} \ge 0$ is called *doubly* stochastic iff its rows and columns all add up to one: $\sum_{i=1}^{n} M_{ij} = 1 = \sum_{i=1}^{n} M_{ji}$. Prove that every doubly stochastic matrix is a convex combination of permutation matrices.

Hint: Suppose M is a doubly stochastic matrix. Find a permutation matrix P and $\lambda \in (0, \infty)$ such that $N = M - \lambda P$ has non-negative entries. If $N \ge 0$ then $\frac{1}{1-\lambda}N$ is doubly stochastic. One way to find P is as follows:

Recall Hall's Marriage Theorem: Assume X and Y are finite sets and let $\Gamma \subseteq X \times Y$. The following statements are equivalent:

- (i) There exists an injective function $f: X \to Y$ whose graph is contained in Γ .
- (ii) For every $A \subseteq X$ the set $\Gamma(A) = \{y \in Y \mid (x, y) \in \Gamma \text{ for some } x \in A\}$ satisfies $\#\Gamma(A) \ge \#A$.

Let $X = Y = \{1, 2, ..., n\}$ and let $\Gamma = \{(i, j) \in X \times Y \mid M_{ij} > 0\}$. Use the fact that M is doubly stochastic to verify condition (ii). The injective map $f: X \to Y$ from (i) determines a permutation of $\{1, 2, ..., n\}$.

8.4. Topologies induced by linear functionals

Let X be a real vector space.

(a) Let $n \in \mathbb{N}$ and let $\varphi_1, \varphi_2, \ldots, \varphi_n, \psi \colon X \to \mathbb{R}$ be linear functionals. Prove that the following are equivalent:

(i) There exist $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ satisfying $\psi = \sum_{k=1}^n \lambda_k \varphi_k$.

assignment: 12 November 2021 due: 19 November 2021 1/3

- (ii) There is a constant $C \in (0, \infty)$ such that $|\psi(x)| \leq C \max_{1 \leq k \leq n} |\varphi_k(x)|$ for all $x \in X$.
- (iii) $\ker(\psi) \supseteq \bigcap_{k=1}^n \ker(\varphi_k).$

(b) Let $F \subseteq \{f : X \to \mathbb{R} \mid f \text{ is linear}\}$ be a family of linear functionals and let \mathcal{U}_F be the topology on X induced by F. Prove that

 $\operatorname{span}(F) = \{ \varphi \colon X \to \mathbb{R} \mid \varphi \text{ is } \mathcal{U}_F \text{-continuous and linear} \}.$

(c) Suppose X is a normed space. Consider a weak*-continuous linear functional $\varphi: X^* \to \mathbb{R}$. Prove that there is $x \in X$ such that $\varphi(f) = f(x)$ for all $f \in X^*$.

8.5. Weak topologies

Let $(X, \|\cdot\|_X)$ be a normed space and let τ_w denote the weak topology on X. This exercise's goal is to show that τ_w is not metrizable if X is infinite-dimensional. Let us start by recalling what a *neighbourhood basis* is and what it means for a topology to be *metrizable*:

• (*Neighbourhood basis*) Let (Y, τ) be a topological space. Denoting the set of all neighbourhoods of a point $y \in Y$ by

$$\mathcal{U}_y = \{ U \subseteq Y \mid \exists O \in \tau : y \in O \subseteq U \},\$$

we call $\mathcal{B}_y \subseteq \mathcal{U}_y$ a *neighbourhood basis* of y in (Y, τ) , if $\forall U \in \mathcal{U}_y \exists V \in \mathcal{B}_y : V \subseteq U$.

• (Metrizability) A topological space (Y, τ) is called *metrizable* if there exists a metric $d: Y \times Y \to \mathbb{R}$ on Y such that, denoting $B_{\varepsilon}(a) = \{y \in Y \mid d(y, a) < \varepsilon\}$ (for $a \in Y, \varepsilon \in (0, \infty)$), there holds

$$\tau = \{ O \subseteq Y \mid \forall a \in O \exists \varepsilon > 0 : B_{\varepsilon}(a) \subseteq O \} \}.$$

(a) Show that any metrizable topology τ satisfies the first axiom of countability which means that each point has a countable neighbourhood basis.

(b) Prove that

$$\mathcal{B} := \left\{ \bigcap_{k=1}^{n} f_{k}^{-1} \big((-\varepsilon, \varepsilon) \big) \ \middle| \ n \in \mathbb{N}, \ f_{1}, \dots, f_{n} \in X^{*}, \ \varepsilon > 0 \right\}$$

is a neighbourhood basis of $0 \in X$ in (X, τ_w) .

due: 19 November 2021 assignment: 12 November 2021

2/3

(c) Show that if (X, τ_w) is first countable, then $(X^*, \|\cdot\|_{X^*})$ admits a countable algebraic basis.

Hint: Problems 8.4(a) and (b).

(d) Assume that X is infinite-dimensional and conclude from (a), (c) and Problem 2.2 (Algebraic bases for Banach spaces) that (X, τ_w) is not metrizable.

8.6. Weak and weak^{*} topology on ℓ^1

Let $e_n = (\delta_{kn})_{k \in \mathbb{N}} \subseteq \mathbb{R}$ for every $n \in \mathbb{N}$. For $p \in (1, \infty)$, $(e_n)_{n \in \mathbb{N}} \subseteq \ell^p$ converges to 0 with respect to both weak as well as weak^{*} convergence in ℓ^p as $n \to \infty$. ℓ^1 behaves similarly with respect to weak^{*} convergence, but differently with respect to weak convergence:

(a) Show that $(e_n)_{n \in \mathbb{N}} \subseteq \ell^1$ does not converge weakly to 0 in ℓ^1 .

(b) Viewing ℓ^1 as the dual space of c_0 (cf. Problem 7.2 (*Dual spaces of* c_0 and c)), argue that $(e_n)_{n \in \mathbb{N}}$ converges to zero in the weak^{*} topology.

(c) (Schur's Theorem.) Let $(x_n)_{n \in \mathbb{N}} \subseteq \ell^1$ be converging weakly to 0. Prove that $||x_n||_{\ell^1} \to 0$ as $k \to \infty$.