9.1. Metrizability and weak^{*} topology

Let $(X, \|\cdot\|_X)$ be a separable normed K-vector space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$). Prove that the weak^{*} topology on the unit ball $B^* := \{\varphi \in X^* : \|\varphi\|_{X^*} \leq 1\}$ of X^* is metrizable.

9.2. Weak convergence in Hilbert spaces

Let $(H, (\cdot, \cdot)_H)$ be an infinite-dimensional K-Hilbert space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$).

(a) Let $(x_n)_{n\in\mathbb{N}} \subseteq H$ and $x_\infty \in H$ satisfy that $x_n \xrightarrow{w} x_\infty$ in H and $||x_n||_H \to ||x_\infty||_H$ in \mathbb{R} as $n \to \infty$. Prove that $x_n \to x_\infty$ in H as $n \to \infty$, i. e. $\limsup_{n\to\infty} ||x_n - x_\infty||_H = 0$.

(b) Suppose $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}} \subseteq H$ and $x_{\infty}, y_{\infty} \in H$ satisfy that $x_n \xrightarrow{w} x_{\infty}$ and $\|y_n - y_{\infty}\|_H \to 0$ as $n \to \infty$. Prove that $(x_n, y_n)_H \to (x_{\infty}, y_{\infty})_H$ as $n \to \infty$.

(c) Let $(e_n)_{n \in \mathbb{N}}$ be an orthonormal system of $(H, (\cdot, \cdot)_H)$. Prove $e_n \xrightarrow{w} 0$ as $n \to \infty$.

(d) Given any $x_{\infty} \in H$ with $||x_{\infty}||_{H} \leq 1$, prove that there exists a sequence $(x_{n})_{n \in \mathbb{N}}$ in H satisfying $||x_{n}||_{H} = 1$ for all $n \in \mathbb{N}$ and $x_{n} \xrightarrow{w} x_{\infty}$ as $n \to \infty$.

(e) Let the functions $f_n: [0, 2\pi] \to \mathbb{R}$ be given by $f_n(t) = \sin(nt)$ for $n \in \mathbb{N}$. Prove the Riemann–Lebesgue Lemma: $f_n \xrightarrow{w} 0$ in $L^2([0, 2\pi], \mathbb{R})$ as $n \to \infty$.

9.3. Annihilating annihilators

Let X be a normed \mathbb{K} -vector space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$).

- For every set $U \subseteq X$ let $U^{\perp} \subseteq X^*$ be defined by $U^{\perp} = \{\varphi \in X^* : \varphi(u) = 0 \text{ for all } u \in U\}.$
- For every set $\Phi \subseteq X^*$ let ${}^{\perp}\Phi \subseteq X$ be defined by ${}^{\perp}\Phi = \{x \in X : \varphi(x) = 0 \text{ for all } \varphi \in \Phi\}.$

Prove for all $\emptyset \neq U \subseteq X$ and $\emptyset \neq \Phi \subseteq X^*$ that $^{\perp}(U^{\perp}) = \overline{\operatorname{span}(U)}$ and $\overline{\operatorname{span}(\Phi)} \subseteq (^{\perp}\Phi)^{\perp}$.

9.4. Duals and quotient spaces

Let $(X, \|\cdot\|_X)$ be a normed K-vector space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$) and $U \subseteq X$ a closed subspace.

(a) Prove that $(X/U)^*$ is isometrically isomorphic to U^{\perp} .

(b) Prove that U^* is isometrically isomorphic to X^*/U^{\perp} .

(c) Prove that reflexivity of X implies reflexivity of U (in other words, closed subspaces of reflexive spaces are reflexive).

assignment: 19 November 2021 due: 26 November 2021 1/3

ETH Zürich	Functional Analysis I	D-MATH
Autumn 2021	Problem Set 9	Prof. J. Teichmann

9.5. Invariant measures à la Krylov–Bogolioubov

Let (K, d) be a non-empty compact metric space and let $T: K \to K$ be continuous. Prove that there exists a Borel probability measure $\mu \in \mathcal{P}(K)$ on K satisfying for all Borel sets $A \subseteq K$ that $\mu(T^{-1}(A)) = \mu(A)$.

Hint: Use Problem 7.3 (*Banach limits*) to show that there exists $\varphi \in (C(K, \mathbb{R}))^*$ satisfying $\varphi \geq 0$, $\|\varphi\|_{(C(K,\mathbb{R}))^*} = 1$ and $\varphi(f) = \varphi(f \circ T)$ for all $f \in C(K,\mathbb{R})$. Conclude recalling **Riesz's representation theorem**:

With (K, d) being a compact metric space and with $\mathcal{M}(K)$ denoting the set of Borel regular finite signed measures on K, $\mathcal{M}(K)$ is isometrically isomorphic to $(C(K, \mathbb{R}))^*$ via the mapping $\Phi \colon \mathcal{M}(K) \to (C(K, \mathbb{R}))^*$, defined by

$$[\Phi(\mu)](f) = \int_{K} f \, d\mu \quad \text{for all } \mu \in \mathcal{M}(K), f \in C(K, \mathbb{R}).$$

In particular, the positive regular Borel measures correspond to the positive continuous linear functionals.

9.6. Optimal transport à la Kantorovich

Let (X, d_X) and (Y, d_Y) be compact metric spaces, let $c: X \times Y \to \mathbb{R} \cup \{\infty\}$ be lower semi-continuous, and let $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$ be probability measures on X and Y, respectively. We denote by $\Gamma(\mu, \nu)$ the set of probability measures on $X \times Y$ with first marginal μ and second marginal ν , i.e.,

$$\Gamma(\mu,\nu) = \left\{ \gamma \in \mathcal{P}(X \times Y) : \begin{array}{c} \gamma(A \times Y) = \mu(A), \gamma(X \times B) = \nu(B) \\ \text{for all Borel sets } A \subseteq X, B \subseteq Y \end{array} \right\}.$$

Prove that there exists $\gamma \in \Gamma(\mu, \nu)$ satisfying that

$$\int_{X \times Y} c(x, y) \, d\gamma(x, y) = \inf_{\eta \in \Gamma(\mu, \nu)} \int_{X \times Y} c(x, y) \, d\eta(x, y).$$

Hint: Assume first that c is continuous. For general lower semi-continuous c, use that c can be written as pointwise limit of an increasing sequence $(f_k)_{k \in \mathbb{N}} \subseteq C(X \times Y, \mathbb{R})$.

9.7. Minimal Energy

Let $m \in \mathbb{N}$ and let $\Omega \subseteq \mathbb{R}^m$ be a bounded measurable set with $|\Omega| > 0$. For $g \in L^2(\mathbb{R}^m)$, we define the map

$$V \colon L^{2}(\Omega) \to \mathbb{R}$$
$$f \mapsto \int_{\Omega} \int_{\Omega} g(x - y) f(x) f(y) \, dy \, dx$$

and given $h \in L^2(\Omega)$, we define the map

$$E: L^{2}(\Omega) \to \mathbb{R}$$
$$f \mapsto \|f - h\|_{L^{2}(\Omega)}^{2} + V(f)$$

(a) Prove that V is weakly sequentially continuous.

(b) Under the assumption $g \ge 0$ almost everywhere, prove that E restricted to

$$L^2_+(\Omega) := \{ f \in L^2(\Omega) \mid f(x) \ge 0 \text{ for almost every } x \in \Omega \}$$

attains a global minimum.

9.8. Lions–Stampacchia

Let $(H, (\cdot, \cdot)_H)$ be a real Hilbert space and let $a: H \times H \to \mathbb{R}$ be a bilinear map so that:

- (i) a(x, y) = a(y, x) for every $x, y \in H$,
- (ii) there exists $\Lambda \in (0,\infty)$ so that $|a(x,y)| \leq \Lambda ||x||_H ||y||_H$ for every $x, y \in H$,
- (iii) there exists $\lambda \in (0, \infty)$ so that $a(x, x) \ge \lambda ||x||_{H}^{2}$ for every $x \in H$.

Let moreover $f: H \to \mathbb{R}$ be a continuous linear functional. Consider the map $J: H \to \mathbb{R}$ given by

$$J(x) = a(x, x) - 2f(x).$$

Finally, let $K \subseteq H$ be a non-empty closed convex subset.

(a) Prove that there exists a unique $y_0 \in K$ such that $J(y_0) \leq J(z)$ for every $z \in K$.

(b) Prove that the unique minimizer y_0 from (a) is also the unique element of K satisfying $a(y_0, z - y_0) \ge f(z - y_0)$ for every $z \in K$.