10.1. Various notions of continuity

Suppose $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are normed \mathbb{K}-vector spaces (with $\left.\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}\right)$.
(a) A linear map $A: X \rightarrow Y$ is bounded if and only if it is $\sigma\left(X, X^{*}\right)-\sigma\left(Y, Y^{*}\right)-$ continuous (i.e., continuous with respect to the weak topologies on X and Y).
(b) A linear map $B: Y^{*} \rightarrow X^{*}$ is $\sigma\left(Y^{*}, Y\right)-\sigma\left(X^{*}, X\right)$-continuous (i.e., continuous with respect to the weak* topologies on Y^{*} and X^{*}) if and only if there is a bounded linear operator $A: X \rightarrow Y$ such that $B=A^{*}$.
(c) A linear operator $A: X \rightarrow Y$ is $\sigma\left(X, X^{*}\right)-\|\cdot\|_{Y}$-continuous (i.e., weak-norm continuous) if and only if it is bounded and has finite rank (i.e., has finite-dimensional range).

10.2. Elementary properties of dual operators

Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ be normed \mathbb{K}-vector spaces (with $\left.\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}\right)$. Recall that if $T \in L(X, Y)$, then its dual operator T^{*} is in $L\left(Y^{*}, X^{*}\right)$ and it is characterised by the property

$$
\left\langle T^{*} y^{*}, x\right\rangle_{X^{*} \times X}=\left\langle y^{*}, T x\right\rangle_{Y^{*} \times Y} \quad \text { for every } x \in X \text { and } y^{*} \in Y^{*} .
$$

Prove the following facts about dual operators.
(a) $\left(\mathrm{Id}_{X}\right)^{*}=\mathrm{Id}_{X^{*}}$.
(b) If $T \in L(X, Y)$ and $S \in L(Y, Z)$, then $(S \circ T)^{*}=T^{*} \circ S^{*}$.
(c) If $T \in L(X, Y)$ is bijective with inverse $T^{-1} \in L(Y, X)$, then $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.
(d) Let $\mathcal{I}_{X}: X \hookrightarrow X^{* *}$ and $\mathcal{I}_{Y}: Y \hookrightarrow Y^{* *}$ be the canonical inclusions. Then,

$$
\forall T \in L(X, Y): \quad \mathcal{I}_{Y} \circ T=\left(T^{*}\right)^{*} \circ \mathcal{I}_{X} .
$$

10.3. Dual operators and invertibility

Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed \mathbb{K}-vector spaces (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$) and $T \in L(X, Y)$. Prove the following.
(a) If T is an isomorphism with $T^{-1} \in L(Y, X)$, then T^{*} is an isomorphism.
(b) If T is an isometric isomorphism, then T^{*} is an isometric isomorphism.
(c) If X and Y are both reflexive, then the reverse implications of (a) and (b) hold.
(d) If $\left(X,\|\cdot\|_{X}\right)$ is a reflexive Banach space isomorphic to the normed space $\left(Y,\|\cdot\|_{Y}\right)$, then Y is reflexive.

10.4. Invariant measures again

Let (K, d) be a non-empty compact metric space and let $T \in L(C(K, \mathbb{R}), C(K, \mathbb{R}))$ satisfy

- $T \mathbf{1}=\mathbf{1}$, where $1:=(K \ni x \mapsto 1 \in \mathbb{R}) \in C(K, \mathbb{R})$ and
- $T f \geq 0$ for all $f \in C(K, \mathbb{R})$ with $f \geq 0$.
(a) Prove for all $n \in \mathbb{N}$ that the mapping $S_{n}: \mathcal{P}(K) \rightarrow \mathcal{P}(K)$, defined via

$$
\int_{K} f d\left(S_{n} \nu\right)=\frac{1}{n} \sum_{k=0}^{n-1} \int_{K} T^{k} f d \nu \quad \text { for all } f \in C(K, \mathbb{R}), \nu \in \mathcal{P}(K),
$$

is indeed well-defined.
(b) Show for all $\nu \in \mathcal{P}(K)$ that there exist $\left(n_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ with $n_{k} \nearrow \infty$ as $k \rightarrow \infty$ and $\mu \in \mathcal{P}(K)$ such that

$$
\int_{K} f d \mu=\lim _{k \rightarrow \infty} \int_{K} f d\left(S_{n_{k}} \nu\right) \quad \text { for all } f \in C(K, \mathbb{R})
$$

(c) Let $\nu, \mu \in \mathcal{P}(K)$ and $\left(n_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ satisfy $n_{k} \nearrow \infty$ and $\int_{K} f d\left(S_{n_{k}} \nu\right) \rightarrow \int_{K} f d \mu_{\infty}$ as $k \rightarrow \infty$. Infer that

$$
\int_{K} T f d \mu=\int_{K} f d \mu \quad \text { for every } f \in C(K, \mathbb{R})
$$

(d) Prove for every $f \in C(K, \mathbb{R})$ with $T f=f$ and $f \neq 0$ that there exists $\mu \in \mathcal{P}(K)$ satisfying

- $\int_{K} f d \mu \neq 0$ and
- $\int_{K} T g d \mu=\int_{K} g d \mu$ for all $g \in C(K, \mathbb{R})$
(e) Solve Problem 9.5 (Invariant measures à la Krylov-Bogolioubov) again using (c) or (d).

10.5. Von Neumann's ergodic theorem

Let $(H,\langle\cdot, \cdot\rangle)$ be a \mathbb{K}-Hilbert space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), let T be a continuous linear operator on H with $\|T\|_{L(H, H)} \leq 1$, let $U:=\operatorname{ker}(I-T)$ (with $I=(H \ni x \mapsto x \in$ $H) \in L(H, H)$ being the identity operator), let P_{U} denote the orthogonal projection onto U and let $S_{n}:=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}$ for every $n \in \mathbb{N}$. Our goal is to show that

$$
\limsup _{n \rightarrow \infty}\left\|S_{n} x-P_{U} x\right\|_{H}=0 \quad \text { for all } x \in H
$$

For this, we recommend to proceed along the following steps:
(a) For all $x \in H$, we have $T x=x$ if and only if $T^{*} x=x$.
(b) $U^{\perp}=\overline{\operatorname{im}(I-T)}$.
(c) $\lim _{n \rightarrow \infty} S_{n} x=x$ for all $x \in U$ and $\lim _{n \rightarrow \infty} S_{n} x=0$ for all $x \in U^{\perp}$.

10.6. Von Neumann again

Let $\left(X,\|\cdot\|_{X}\right)$ be a reflexive space, let $T: X \rightarrow X$ be a continuous linear operator satisfying $\sup _{n \in \mathbb{N}_{0}}\left\|T^{n}\right\|_{L(X, X)}<\infty$, let $U:=\operatorname{ker}(I-T)$ (with $I=(X \ni x \mapsto x \in$ $X) \in L(X, X)$ being the identity operator) and let $S_{n}:=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}$ for every $n \in \mathbb{N}$.
(a) Prove that $Y:=\left\{x \in X \mid \lim _{n \rightarrow \infty} S_{n} x\right.$ exists $\}$ is a closed subspace of X.
(b) Show that $P: Y \rightarrow X$, defined by $P x=\lim _{n \rightarrow \infty} S_{n} x$ is a continuous linear map satisfying $\operatorname{im}(P)=U \subseteq Y$, $\operatorname{ker}(P)=\overline{\operatorname{im}(I-T)}$, and $\left.P\right|_{U}=\left.I\right|_{U}$. In particular, deduce that $Y=\operatorname{ker}(I-T) \oplus \overline{\operatorname{im}(I-T)}$.
(c) Demonstrate for every $x^{*} \in Y^{\perp}$ that $T^{*} x^{*}=x^{*}$ and $x^{*} \in U^{\perp}$.
(d) Show for every $x \in X$ that $U \cap \overline{\operatorname{conv}}\left(\left\{T^{k} x: k \in \mathbb{N}_{0}\right\}\right) \neq \emptyset$.
(e) Deduce that $Y=X$.

Hint: The reflexivity assumption is only really used in (d). For (e), use (c) and (d) to show for every $x^{*} \in Y^{\perp}$ that $x^{*}(x)=0$ for every $x \in X$.

