11.1. Compact operators

Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed spaces. We denote by

$$K(X,Y) = \{T \in L(X,Y) \mid \overline{T(B_1(0))} \subseteq Y \text{ compact}\}\$$

the set of compact operators between X and Y. Prove the following statements.

(a) $T \in L(X, Y)$ is a compact operator if and only if every bounded sequence $(x_n)_{n \in \mathbb{N}}$ in X has a subsequence $(x_{n_k})_{k \in \mathbb{N}}$ such that $(Tx_{n_k})_{k \in \mathbb{N}}$ is convergent in Y.

(b) If $(Y, \|\cdot\|_Y)$ is complete, then K(X, Y) is a closed subspace of L(X, Y).

(c) Let $T \in L(X, Y)$. If its range $T(X) \subseteq Y$ is finite-dimensional, then $T \in K(X, Y)$.

(d) Let $T \in L(X, Y)$ and $S \in L(Y, Z)$. If T or S is a compact operator, then $S \circ T$ is a compact operator.

(e) If X is reflexive, then any operator $T \in L(X, Y)$ which maps weakly convergent sequences to strongly convergent sequences, that is

 $x_n \xrightarrow{\mathrm{w}} x \text{ in } X \implies Tx_n \to Tx \text{ in } Y,$

is a compact operator.

11.2. Schauder's theorem

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces and let $T \in L(X, Y)$ be a bounded linear operator. Prove that T is compact if and only if T^* is compact.

Hint: To infer compactness of T^{\ast} from compactness of T, employ the Arzéla–Ascoli theorem.

11.3. Various notions of continuity – continued

Suppose $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are K-Banach spaces (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$).

(a) Let B^* be the closed unit ball in Y^* , equipped with the weak^{*} topology. Prove that a bounded linear operator $A: X \to Y$ is compact if and only if $A^*|_{B^*}: B^* \to X^*$ is $\sigma(B^*, Y) - \|\cdot\|_{X^*}$ -continuous (i.e., weak^{*}-norm continuous).

(b) Suppose $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are reflexive. A linear operator $A: X \to Y$ is compact if and only if $A|_B: B \to Y$ is $\sigma(B, X^*) - \|\cdot\|_Y$ -continuous (i.e., weak-norm continuous).

11.4. Ehrling's lemma

Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be Banach spaces, let $T \in L(X, Y)$ be compact and let $J \in L(Y, Z)$ be injective. Prove that for every $\varepsilon \in (0, \infty)$, there exists $C \in [0, \infty)$ such that

 $||Tx||_Y \le \varepsilon ||x||_X + C ||JTx||_Z \quad \text{for all } x \in X.$

11.5. Integral operators

Let $m \in \mathbb{N}$ and let $\emptyset \neq \Omega \subseteq \mathbb{R}^m$ be a bounded open set. Given $k \in L^2(\Omega \times \Omega, \mathbb{C})$, consider the linear operator $K \colon L^2(\Omega, \mathbb{C}) \to L^2(\Omega, \mathbb{C})$ defined by

$$(Kf)(x) = \int_{\Omega} k(x, y) f(y) \, dy.$$

(a) Prove that K is well-defined, i.e., $Kf \in L^2(\Omega, \mathbb{C})$ for any $f \in L^2(\Omega, \mathbb{C})$.

(b) Prove that K is a compact operator.

(c) If, in addition, the kernel k satisfies $k(x,y) = \overline{k(y,x)}$ for almost every $(x,y) \in \Omega \times \Omega$, prove that the operator $A: L^2(\Omega, \mathbb{C}) \to L^2(\Omega, \mathbb{C})$, defined by

Af = f - Kf,

is surjective if and only if it is injective.

11.6. Integral operators again

Let $m \in \mathbb{N}$ and let $\emptyset \neq K \subseteq \mathbb{R}^m$ be a non-empty compact set. Given $k \in C(K \times K, \mathbb{R})$, consider the linear operator $T: C(K, \mathbb{R}) \to C(K, \mathbb{R})$ defined by

$$(Tf)(x) = \int_{K} k(x, y) f(y) \, dy$$
 for all $f \in C(K, \mathbb{R})$.

(a) Prove that T is well-defined, i.e., $Tf \in C(K, \mathbb{R})$ for every $f \in C(K, \mathbb{R})$.

(b) Prove that T is a compact operator.

Hint: You could approximate k by appropriate step functions and construct an approximation through finite-rank operators or you could recall the Arzéla–Ascoli theorem.

(c) If k(x, y) = k(y, x) for all $x, y \in K$, prove that the operator $A: C(K, \mathbb{R}) \to C(K, \mathbb{R})$, defined by Af = f - Tf for every $f \in C(K, \mathbb{R})$ is surjective if and only if it is injective.

D-MATH	Functional Analysis I	ETH Zürich
Prof. J. Teichmann	Problem Set 11	Autumn 2021

Remark. In both 11.5.(c) and 11.6.(c), the symmetry assumption on k is not really necessary. Riesz–Schauder theory ensures that $\dim(\ker(I-T)) = \dim(\ker(I-T^*)) = \operatorname{codim}(\operatorname{im}(I-T)) = \operatorname{codim}(\operatorname{im}(I-T^*))$.

11.7. A dual statement

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces and let $T: D(T) \subseteq X \to Y$ be a densely defined closed linear operator. Prove that the following properties are equivalent:

- (i) T^* is surjective.
- (ii) There exists $C \in [0, \infty)$ such that $||u||_X \leq C ||Tu||_Y$ for all $u \in D(T)$.
- (iii) T is injective and has closed range.