12.1. Spectra of shifts

Let $S: \ell^{2}(\mathbb{N}, \mathbb{C}) \rightarrow \ell^{2}(\mathbb{N}, \mathbb{C})$ be the right shift on $\ell^{2}(\mathbb{N}, \mathbb{C})$, i.e.,

$$
S\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { for all }\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}(\mathbb{N}, \mathbb{C}) .
$$

(a) Calculate the operator norm $\|S\|_{L\left(\ell^{2}(\mathbb{N}, \mathbb{C}), \ell^{2}(\mathbb{N}, \mathbb{C})\right)}$ and the spectral radius r_{S} of S.
(b) Determine the point spectrum $\sigma_{p}(S)$, the continuous spectrum $\sigma_{c}(S)$ and the residual spectrum $\sigma_{r}(S)$ of S.
(c) Do the same for S^{*}, the left shift.

12.2. Fredholm's alternative (on Hilbert spaces)

Let H be a Hilbert space and let $K \in L(H)$ be a compact operator. Prove the following statements. (The goal of this exercise lies in (d) and (e) below.)
(a) $\operatorname{dim}(\operatorname{ker}(I-K))<\infty$.
(b) $\operatorname{im}(I-K)$ is closed.
(c) $\operatorname{im}(I-K)=\left(\operatorname{ker}\left(I-K^{*}\right)\right)^{\perp}$.
(d) $\operatorname{ker}(I-K)=\{0\}$ if and only if $\operatorname{im}(I-K)=H$.

Hint: For " (\Rightarrow) ", assume that $\operatorname{ker}(I-K)=\{0\}$ and $\operatorname{im}(I-K) \neq H$. Show that this assumption leads to the following chain of proper inclusions: $H \supsetneq(I-K)(H) \supsetneq$ $(I-K)^{2}(H) \supsetneq(I-K)^{3}(H) \supsetneq \ldots ;$ choose now $\left(x_{k}\right)_{k \in \mathbb{N}} \subseteq H$ such that $\left\|x_{k}\right\|=1$, $x_{k} \in(I-K)^{k}(H), x_{k} \in\left((I-K)^{k+1}(H)\right)^{\perp}$ and show that $K x_{k}-K x_{l}$ has norm greater or equal than 1 whenever $k<l$ because $K x_{k}-K x_{l}$ can be written as the difference of x_{k} and an element of $(I-K)^{k+1}(H)$. For " $(\Leftarrow)^{\text {" }}$, dualize.
(e) $\operatorname{dim}(\operatorname{ker}(I-K))=\operatorname{dim}\left(\operatorname{ker}\left(I-K^{*}\right)\right)$.

Hint: Assume for a contradiction that $\operatorname{dim}(\operatorname{ker}(I-K))<\operatorname{dim}\left(\operatorname{im}(I-K)^{\perp}\right)$. Construct an injective compact map $A_{0}: \operatorname{ker}(I-K) \rightarrow \operatorname{im}(I-K)^{\perp}$. Show that this map is not surjective. Extend A_{0} to a compact map $A: H \rightarrow \operatorname{im}(I-K)^{\perp}$ with $\operatorname{im}(A)=\operatorname{im}\left(A_{0}\right)$ by setting $\left.A\right|_{(\operatorname{ker}(I-K))^{\perp}} \equiv 0$. Show that $\operatorname{ker}(I-K-A)=\{0\}$, but $\operatorname{im}(I-K-A) \neq H$. This contradiction now shows $\operatorname{dim}(\operatorname{ker}(I-K)) \geq \operatorname{dim}\left(\operatorname{im}(I-K)^{\perp}\right)$. Finish by dualizing.

Remark. The statement remains true in the Banach space setting. (The proof gets slightly more technical.) In particular, we just saw - as mentioned earlier - that the extra symmetry assumption on the kernel k in Problem 11.5 (Integral operators) was not really necessary.

12.3. Symmetry vs. self-adjointness

Let H be a \mathbb{C}-Hilbert space and let $A: D_{A} \subseteq H \rightarrow H$ be a densely defined symmetric linear operator. Prove that the following statements are equivalent:
(i) A is self-adjoint.
(ii) A is closed and $\operatorname{ker}\left(A^{*}+i\right)=\{0\}=\operatorname{ker}\left(A^{*}-i\right)$.
(iii) $\operatorname{im}(A+i)=H=\operatorname{im}(A-i)$.

12.4. Special construction of self-adjoint operators

Let H and K be \mathbb{K}-Hilbert spaces (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$) and let $J \in L(K, H)$ be an injective operator with dense range.
(a) Prove that $J J^{*} \in L(H)$ is an injective operator with dense range.
(b) Prove that $S:=\left(J J^{*}\right)^{-1}$ (i.e., the operator $S: D_{S} \subseteq H \rightarrow H$, defined by $D_{S}=\operatorname{im}\left(J J^{*}\right)$ and $S\left(J J^{*} x\right)=x$ for all $\left.x \in H\right)$ is self-adjoint.

Hint: For (b), prove that S is symmetric and use Problem 12.3.

12.5. Heisenberg's Uncertainty Principle

Let $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ be a Hilbert space over \mathbb{C}. Let $D_{A}, D_{B} \subseteq H$ be dense subspaces and let $A: D_{A} \subseteq H \rightarrow H$ and $B: D_{B} \subseteq H \rightarrow H$ be symmetric linear operators. Assume that

$$
A\left(D_{A} \cap D_{B}\right) \subseteq D_{B} \quad \text { and } \quad B\left(D_{A} \cap D_{B}\right) \subseteq D_{A},
$$

and define the commutator of A and B as

$$
[A, B]: D_{[A, B]} \subseteq H \rightarrow H, \quad[A, B](x):=A(B x)-B(A x)
$$

where $D_{[A, B]}:=D_{A} \cap D_{B}$.
(a) Prove that

$$
\left|\langle x,[A, B] x\rangle_{H}\right| \leq 2\|A x\|_{H}\|B x\|_{H} \quad \text { for every } x \in D_{[A, B]} .
$$

(b) Define now the standard deviation of A

$$
\varsigma(A, x):=\sqrt{\langle A x, A x\rangle_{H}-\langle x, A x\rangle_{H}^{2}}
$$

at each $x \in D_{A}$ with $\|x\|_{H}=1$. Verify that $\varsigma(A, x)$ is well-defined for every x (i.e. that the radicand is real and non-negative) and prove that for every $x \in D_{[A, B]}$ with $\|x\|_{H}=1$ there holds

$$
\left|\langle x,[A, B] x\rangle_{H}\right| \leq 2 \varsigma(A, x) \varsigma(B, x) .
$$

Remark. The possible states of a quantum mechanical system are given by elements $x \in H$ with $\|x\|_{H}=1$. Each observable is given by a symmetric linear operator $A: D_{A} \subseteq H \rightarrow H$. If the system is in state $x \in D_{A}$, we measure the observable A with uncertainty $\varsigma(A, x)$.
(c) Let $A: D_{A} \subseteq H \rightarrow H$ and $B: D_{B} \subseteq H \rightarrow H$ be as above. A, B is called Heisenberg pair if

$$
[A, B]=\left.i \operatorname{Id}\right|_{D_{[A, B]}} .
$$

Show that, if A, B is a Heisenberg pair with B continuous (and $D_{B}=H$), then A cannot be continuous.
(d) Consider the Hilbert space $\left(H,\langle\cdot, \cdot\rangle_{H}\right)=\left(L^{2}([0,1], \mathbb{C}),\langle\cdot, \cdot\rangle_{L^{2}}\right)$ and the subspace

$$
C_{0}^{1}([0,1], \mathbb{C}):=\left\{f \in C^{1}([0,1], \mathbb{C}) \mid f(0)=0=f(1)\right\} .
$$

Recall that $C_{0}^{1}([0,1], \mathbb{C}) \subseteq L^{2}([0,1], \mathbb{C})$ is a dense subspace. The operators

$$
\begin{aligned}
P: C_{0}^{1}([0,1], \mathbb{C}) & \rightarrow L^{2}([0,1], \mathbb{C}), & Q: L^{2}([0,1], \mathbb{C}) & \rightarrow L^{2}([0,1], \mathbb{C}) \\
f(s) & \mapsto i f^{\prime}(s) & f(s) & \mapsto s f(s)
\end{aligned}
$$

correspond to the observables momentum and position. Check that P and Q are well-defined, symmetric operators. Check that $[P, Q]: C_{0}^{1}([0,1], \mathbb{C}) \rightarrow L^{2}([0,1], \mathbb{C})$ is well-defined.

Show that P and Q form a Heisenberg pair and conclude that the uncertainty principle holds: for every $f \in C_{0}^{1}([0,1], \mathbb{C})$ with $\|f\|_{L^{2}([0,1], \mathbb{C})}=1$ there holds

$$
\varsigma(P, f) \varsigma(Q, f) \geq \frac{1}{2} .
$$

Thus we conclude: The more precisely the momentum of some particle is known, the less precisely its position can be known, and vice versa.

