12.1. Spectra of shifts

Let $S: \ell^2(\mathbb{N}, \mathbb{C}) \to \ell^2(\mathbb{N}, \mathbb{C})$ be the right shift on $\ell^2(\mathbb{N}, \mathbb{C})$, i.e.,

 $S((x_1, x_2, x_3, \ldots)) = (0, x_1, x_2, \ldots)$ for all $(x_n)_{n \in \mathbb{N}} \in \ell^2(\mathbb{N}, \mathbb{C}).$

(a) Calculate the operator norm $||S||_{L(\ell^2(\mathbb{N},\mathbb{C}),\ell^2(\mathbb{N},\mathbb{C}))}$ and the spectral radius r_S of S.

(b) Determine the point spectrum $\sigma_p(S)$, the continuous spectrum $\sigma_c(S)$ and the residual spectrum $\sigma_r(S)$ of S.

(c) Do the same for S^* , the left shift.

12.2. Fredholm's alternative (on Hilbert spaces)

Let H be a Hilbert space and let $K \in L(H)$ be a compact operator. Prove the following statements. (The goal of this exercise lies in (d) and (e) below.)

- (a) $\dim(\ker(I-K)) < \infty$.
- (b) im(I K) is closed.
- (c) $\operatorname{im}(I K) = (\operatorname{ker}(I K^*))^{\perp}$.
- (d) $\ker(I K) = \{0\}$ if and only if $\operatorname{im}(I K) = H$.

Hint: For "(\Rightarrow)", assume that ker $(I - K) = \{0\}$ and im $(I - K) \neq H$. Show that this assumption leads to the following chain of proper inclusions: $H \supseteq (I - K)(H) \supseteq (I - K)^2(H) \supseteq (I - K)^3(H) \supseteq \ldots$; choose now $(x_k)_{k \in \mathbb{N}} \subseteq H$ such that $||x_k|| = 1$, $x_k \in (I - K)^k(H), x_k \in ((I - K)^{k+1}(H))^{\perp}$ and show that $Kx_k - Kx_l$ has norm greater or equal than 1 whenever k < l because $Kx_k - Kx_l$ can be written as the difference of x_k and an element of $(I - K)^{k+1}(H)$. For "(\Leftarrow)", dualize.

(e) $\dim(\ker(I-K)) = \dim(\ker(I-K^*)).$

Hint: Assume for a contradiction that $\dim(\ker(I-K)) < \dim(\operatorname{im}(I-K)^{\perp})$. Construct an injective compact map $A_0: \ker(I-K) \to \operatorname{im}(I-K)^{\perp}$. Show that this map is not surjective. Extend A_0 to a compact map $A: H \to \operatorname{im}(I-K)^{\perp}$ with $\operatorname{im}(A) = \operatorname{im}(A_0)$ by setting $A|_{(\ker(I-K))^{\perp}} \equiv 0$. Show that $\ker(I-K-A) = \{0\}$, but $\operatorname{im}(I-K-A) \neq H$. This contradiction now shows $\dim(\ker(I-K)) \geq \dim(\operatorname{im}(I-K)^{\perp})$. Finish by dualizing.

Remark. The statement remains true in the Banach space setting. (The proof gets slightly more technical.) In particular, we just saw – as mentioned earlier – that the extra symmetry assumption on the kernel k in Problem 11.5 (*Integral operators*) was not really necessary.

assignment: 10 December 2021 due: 17 December 2021 1/3

12.3. Symmetry vs. self-adjointness

Let H be a \mathbb{C} -Hilbert space and let $A: D_A \subseteq H \to H$ be a densely defined symmetric linear operator. Prove that the following statements are equivalent:

- (i) A is self-adjoint.
- (ii) A is closed and $\ker(A^* + i) = \{0\} = \ker(A^* i).$
- (iii) im(A+i) = H = im(A-i).

12.4. Special construction of self-adjoint operators

Let H and K be \mathbb{K} -Hilbert spaces (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$) and let $J \in L(K, H)$ be an injective operator with dense range.

(a) Prove that $JJ^* \in L(H)$ is an injective operator with dense range.

(b) Prove that $S := (JJ^*)^{-1}$ (i.e., the operator $S: D_S \subseteq H \to H$, defined by $D_S = \operatorname{im}(JJ^*)$ and $S(JJ^*x) = x$ for all $x \in H$) is self-adjoint.

Hint: For (b), prove that S is symmetric and use Problem 12.3.

12.5. Heisenberg's Uncertainty Principle

Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space over \mathbb{C} . Let $D_A, D_B \subseteq H$ be dense subspaces and let $A: D_A \subseteq H \to H$ and $B: D_B \subseteq H \to H$ be symmetric linear operators. Assume that

$$A(D_A \cap D_B) \subseteq D_B$$
 and $B(D_A \cap D_B) \subseteq D_A$,

and define the *commutator* of A and B as

 $[A,B]: D_{[A,B]} \subseteq H \to H, \qquad [A,B](x) := A(Bx) - B(Ax),$

where $D_{[A,B]} := D_A \cap D_B$.

(a) Prove that

$$\left| \langle x, [A, B] x \rangle_H \right| \le 2 \|Ax\|_H \|Bx\|_H \quad \text{for every } x \in D_{[A, B]}.$$

(b) Define now the standard deviation of A

$$\varsigma(A, x) := \sqrt{\langle Ax, Ax \rangle_H - \langle x, Ax \rangle_H^2}$$

at each $x \in D_A$ with $||x||_H = 1$. Verify that $\varsigma(A, x)$ is well-defined for every x (i.e. that the radicand is real and non-negative) and prove that for every $x \in D_{[A,B]}$ with $||x||_H = 1$ there holds

$$\left|\langle x, [A, B]x \rangle_H\right| \le 2\varsigma(A, x)\,\varsigma(B, x).$$

Remark. The possible states of a quantum mechanical system are given by elements $x \in H$ with $||x||_H = 1$. Each observable is given by a symmetric linear operator $A: D_A \subseteq H \to H$. If the system is in state $x \in D_A$, we measure the observable A with uncertainty $\varsigma(A, x)$.

(c) Let $A: D_A \subseteq H \to H$ and $B: D_B \subseteq H \to H$ be as above. A, B is called *Heisenberg pair* if

$$[A,B] = i \operatorname{Id}|_{D_{[A,B]}}.$$

Show that, if A, B is a Heisenberg pair with B continuous (and $D_B = H$), then A cannot be continuous.

(d) Consider the Hilbert space $(H, \langle \cdot, \cdot \rangle_H) = (L^2([0, 1], \mathbb{C}), \langle \cdot, \cdot \rangle_{L^2})$ and the subspace

$$C_0^1([0,1],\mathbb{C}) := \{ f \in C^1([0,1],\mathbb{C}) \mid f(0) = 0 = f(1) \}.$$

Recall that $C_0^1([0,1],\mathbb{C}) \subseteq L^2([0,1],\mathbb{C})$ is a dense subspace. The operators

$$P: C_0^1([0,1], \mathbb{C}) \to L^2([0,1], \mathbb{C}), \qquad Q: L^2([0,1], \mathbb{C}) \to L^2([0,1], \mathbb{C}) \\ f(s) \mapsto if'(s) \qquad f(s) \mapsto sf(s)$$

correspond to the observables momentum and position. Check that P and Q are well-defined, symmetric operators. Check that $[P,Q]: C_0^1([0,1],\mathbb{C}) \to L^2([0,1],\mathbb{C})$ is well-defined.

Show that P and Q form a Heisenberg pair and conclude that the uncertainty principle holds: for every $f \in C_0^1([0,1],\mathbb{C})$ with $||f||_{L^2([0,1],\mathbb{C})} = 1$ there holds

$$\varsigma(P, f) \varsigma(Q, f) \ge \frac{1}{2}.$$

Thus we conclude: The more precisely the momentum of some particle is known, the less precisely its position can be known, and vice versa.

assignment: 10 December 2021 due: 17 December 2021

 $3/_{3}$