13.1. Friedrich extension

Let $(H, \langle \cdot, \cdot \rangle_H)$ be a K-Hilbert space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$) and let $A: D_A \subseteq H \to H$ be a densely defined linear operator satisfying that

- A is symmetric, i.e., $\forall x, y \in D_A : \langle Ax, y \rangle_H = \langle x, Ay \rangle_H$ and
- A is bounded below, i.e., there exists $C \in \mathbb{R}$ such that $\langle Ax, x \rangle_H \geq C ||x||_H^2$ for all $x \in D_A$.

Our goal is to show that A possesses a self-adjoint extension B (i.e., $A \subseteq B = B^*$) with $\langle Bx, x \rangle_H \geq C ||x||_H^2$ for all $x \in D_B$.

(a) Find $\lambda \in \mathbb{R}$, $\varepsilon \in (0, \infty)$ so that $a: D_A \times D_A \ni (x, y) \mapsto \langle Ax + \lambda x, y \rangle_H \in \mathbb{K}$ defines an inner product on D_A which satisfies for all $x \in D_A$ that $a(x, x) \ge \varepsilon ||x||_H^2$.

(b) Consider the metric space (D_A, d_A) where $d_A(x, y) := \sqrt{a(x - y, x - y)}$ for all $x, y \in D_A$ with a as in (a). Let (K, d_K, ι) be a completion of (D_A, d_A) (cp. Problem 3.3 (*Completion of metric spaces*)). Prove that there exists a unique vector space structure on K so that ι is linear and the vector space operations $K \times K \ni (x, y) \mapsto x + y \in K$ and $\mathbb{K} \times K \ni (\mu, x) \mapsto \mu x \in K$ are continuous (w.r.t. the obvious choices of topologies). In addition, show that there even exists a unique scalar product $\langle \cdot, \cdot \rangle_K \colon K \times K \to \mathbb{K}$ such that for all $x, y \in K$ it holds that $d_K(x, y) = \sqrt{\langle x - y, x - y \rangle_K}$.

(c) With (K, d_K, ι) being a completion of (D_A, d_A) , equipped with the Hilbert space structure (in particular, with the scalar product $\langle \cdot, \cdot \rangle_K \colon K \times K \to \mathbb{K}$) shown to exist in (b), argue that there exists an injective bounded linear map $J \colon K \to H$ satisfying for all $x \in D_A, y \in K$ that

$$\langle \iota(x), y \rangle_K = \langle Ax + \lambda x, Jy \rangle_H.$$

Moreover, prove that $J(K) \subseteq H$ can be written as

$$J(K) = \left\{ x_{\infty} \in H \mid \exists (x_n)_{n \in \mathbb{N}} \subseteq D_A \text{ with } \limsup_{n \to \infty} \|x_n - x_{\infty}\|_H = 0 \text{ and} \\ \limsup_{N \to \infty} \sup_{m,n \ge N} a(x_n - x_m, x_n - x_m) = 0 \right\}.$$

(d) Show that operator $B: D_B \subseteq H \to H$, defined by $D_B := \operatorname{im}(JJ^*), B(JJ^*u) := u - \lambda J J^* u$ for all $u \in H$, is well-defined and a self-adjoint extension of A (i.e., $D_A \subseteq D_B$) with $\langle Bx, x \rangle_H \geq C ||x||_H^2$ for all $x \in D_B$.

assignment: 17 December 2021 due: 24 December 2021

13.2. The Dirichlet–Laplace operator as a Friedrich extension

Let $A: C_c^{\infty}((0,1),\mathbb{R}) \subseteq L^2((0,1),\mathbb{R}) \to L^2((0,1),\mathbb{R})$ be defined by Af = -f'' for all $f \in C_c^{\infty}((0,1),\mathbb{R})$. Our goal is to construct the Friedrich extension of A.

(a) Prove that $(C_c^{\infty}((0,1),\mathbb{R}), a)$ with a defined via $a(u,v) = \int_{(0,1)} u'v' dx$ for all $u, v \in C_c^{\infty}((0,1),\mathbb{R})$ is an inner product space and prove that there exists $c \in (0,\infty)$ such that for all $u \in C_c^{\infty}((0,1),\mathbb{R})$ it holds that $\int_0^1 |u|^2 dx \le c \int_0^1 |u'|^2 dx$.

(b) Let $K \subseteq L^2((0,1),\mathbb{R})$ be such that $u \in K$ if and only if there exists a sequence $(f_n)_{n \in \mathbb{N}} \subseteq C_c^{\infty}((0,1),\mathbb{R})$ such that

- $f_n \to u$ in $L^2((0,1),\mathbb{R})$ as $n \to \infty$ and
- $(f'_n)_{n \in \mathbb{N}} \subseteq L^2((0,1), \mathbb{R})$ is a Cauchy sequence.

Prove that, for every $u \in K$, there exists a unique $w \in L^2((0,1),\mathbb{R})$ such that

$$\int_{(0,1)} w\varphi \, dx = -\int_{(0,1)} u\varphi' \, dx \quad \text{for all } \varphi \in C_c^{\infty}((0,1),\mathbb{R}).$$

Afterwards, we shall always write w = u' in such a situation (as w equals the classical derivative in the case of smooth functions).

(c) Prove that $\langle \cdot, \cdot \rangle_K \colon K \times K \ni (u, v) \mapsto \int_{(0,1)} u'v' dx \in \mathbb{R}$ defines a scalar product on K and that $(K, \langle \cdot, \cdot \rangle_K)$ is a completion of $(C_c^{\infty}((0, 1), \mathbb{R}), a)$.

(d) Prove that the Friedrich extension B as in Problem 13.1 (*Friedrich extension*) is given as follows: $u \in D_B$ if and only if $u \in K$ and there exists $g \in L^2((0,1), \mathbb{R})$ such that for all $\varphi \in C_c^{\infty}((0,1), \mathbb{R})$ it holds that $\int_0^1 u\varphi'' dx = \int_0^1 g\varphi dx$; in this case, g = Bu.

(e) Prove that the embedding $J: (K, \|\cdot\|_K) \ni f \mapsto f \in (L^2(0, 1), \mathbb{R}), \|\cdot\|_{L^2})$ is compact. In addition, prove that every element of K has a unique continuous representative and that this continuous representative extends uniquely to a continuous function on [0, 1] vanishing on $\{0, 1\}$.

(f) Infer that $B^{-1}: L^2((0,1),\mathbb{R}) \to L^2((0,1),\mathbb{R})$ is a compact operator.

(g) Determine the spectrum of B as well as an orthonormal basis of $L^2((0,1),\mathbb{R})$ consisting of eigenvectors of B (respectively of B^{-1}).

(h) Express B (and, especially, D_B) and B^{-1} with the help of these eigenvalues and eigenvectors. Can you find a way to define B^s for $s \in (0, \infty)$?

13.3. Spectral properties of generators of C^0 -semigroups

Let $(X, \|\cdot\|_X)$ be a Banach space and let $T = (T_t)_{t \in [0,\infty)} \subseteq L(X)$ be a C^0 -semigroup, that is,

- $T_0 = I$,
- $T_{t+s} = T_t T_s$ for all $t, s \in [0, \infty)$, and
- $\limsup_{t \searrow 0} \|T_t x x\|_X = 0 \text{ for all } x \in X.$

We know that there exist $M \in [1, \infty)$, $\omega \in \mathbb{R}$ such that $||T_t||_{L(X)} \leq Me^{\omega t}$ for all $t \in [0, \infty)$. The generator of T is the operator $A: D_A \subseteq X \to X$ defined by

$$D_A := \left\{ x \in X \mid \lim_{t \searrow 0} \frac{T_t x - x}{t} \text{ exists} \right\} \text{ and } Ax := \lim_{t \searrow 0} \frac{T_t x - x}{t} \text{ for all } x \in D_A.$$

(a) Prove for all $t \in [0, \infty)$, $x \in D_A$ that $T_t x \in D_A$ and $AT_t x = T_t A x$.

(b) Show for all $t \in [0, \infty)$, $x \in X$ that $\int_0^t T_s x \, ds \in D_A$ and $A(\int_0^t T_s x \, ds) = T_t x - x$.

(c) Show for all $t \in [0, \infty)$, $x \in D_A$ that $\int_0^t T_s Ax \, ds = A \int_0^t T_s x \, ds$.

(d) Prove for all $x \in D_A$ that the function $u := ([0, \infty) \ni t \mapsto T_t x \in X)$ satisfies that $u \in C^1([0, \infty), (X, \|\cdot\|_X)) \cap C([0, \infty), (D_A, \|\cdot\|_{D_A}))$ and that u'(t) = Au(t) for all $t \in [0, \infty)$.

(e) Demonstrate that A is densely defined and closed.

(f) Prove for all $\lambda \in (\omega, \infty)$ that $R_{\lambda} \in L(X)$, given by $R_{\lambda}x = \int_0^{\infty} e^{-\lambda t} T_t x \, dt$ for all $x \in X$, is well-defined and satisfies

- $R_{\lambda}(\lambda A)x = x$ for all $x \in D_A$,
- $R_{\lambda}x \in D_A$ and $(\lambda A)R_{\lambda}x = x$ for all $x \in X$.

(g) Conclude for all $\lambda \in (\omega, \infty)$ that $\lambda \in \varrho(A)$, i.e., $\lambda - A$ is continuously invertible, with

$$\|(\lambda - A)^{-n}\|_{L(X)} \le \frac{M}{(\lambda - \omega)^n}$$
 for all $n \in \mathbb{N}$.

Remark. The Hille–Yosida theorem, in fact, ensures that any densely defined closed operator A on a Banach space X which satisfies for some $M, \omega \in \mathbb{R}$ that $(\omega, \infty) \subseteq \varrho(A)$ and $\|(\lambda - A)^{-n}\|_{L(X)} \leq \frac{M}{(\lambda - \omega)^n}$ for all $\lambda \in (\omega, \infty)$, $n \in \mathbb{N}$, is the generator of a C^0 -semigroup.

assignment: 17 December 2021 due: 24 December 2021

3/4

13.4. A heat semigroup

Let $B: D_B \subseteq L^2((0,1),\mathbb{R}) \to L^2((0,1),\mathbb{R})$ denote the self-adjoint extension of $A: C_c^{\infty}((0,1),\mathbb{R}) \subseteq L^2((0,1),\mathbb{R}) \to L^2((0,1),\mathbb{R}))$, given by Af = -f'' for all $f \in D_A$, which we constructed in Problem 13.2 (*The Dirichlet–Laplace operator as a Friedrich extension*). In this exercise we dwell on the spectral representation of B obtained in part (h) of Problem 13.2 to construct the associated C^0 -semigroup and prove some regularity properties.

(a) Prove that there exists a C^0 -semigroup $(T_t)_{t \in [0,\infty)} \subseteq L(L^2((0,1),\mathbb{R}))$ whose generator is -B.

- (b) Prove for all $t \in (0, \infty)$, $f \in L^2((0, 1), \mathbb{R})$ that
 - $T_t f \in C^{\infty}([0,1],\mathbb{R})$ in the sense that there is a (necessarily unique) element of $C^{\infty}([0,1],\mathbb{R})$ in the L^2 -equivalence class $T_t f$ and
 - $(T_t f)(0) = 0 = (T_t f)(1)$ in the sense that the unique element of $C^{\infty}([0, 1], \mathbb{R})$ in the L^2 -equivalence class $T_t f$ takes on the value 0 on $\{0, 1\}$.

(c) Prove for all $x \in (0,1)$, $f \in L^2((0,1),\mathbb{R})$ that $(0,\infty) \ni t \mapsto (T_t f)(x) \in \mathbb{R}$ is smooth (where we identify $T_t f \in L^2((0,1),\mathbb{R})$ for $t \in (0,\infty)$, $f \in L^2((0,1),\mathbb{R})$ with its continuous representative, which exists according to (b)) so that $(T_t f)(x)$ is defined for every $x \in (0,1)$.

(d) Prove for all $f \in L^2((0,1),\mathbb{R})$ that $u: (0,\infty) \times [0,1] \to \mathbb{R}$, given by $u(t,x) = (T_t f)(x) \in \mathbb{R}$ for all $t \in (0,\infty), x \in [0,1]$, satisfies that

$$\begin{cases} (\partial_t u)(t,x) &= (\partial_x^2 u)(t,x), & \text{ for all } t \in (0,\infty), x \in (0,1), \\ u(t,0) &= 0, & \text{ for all } t \in (0,\infty), \\ u(t,1) &= 0, & \text{ for all } t \in (0,\infty), \\ \lim \sup_{t \searrow 0} \|u(t,\cdot) - f\|_{L^2} &= 0. \end{cases}$$

(e) Finally, prove for all $f \in L^2((0,1),\mathbb{R}), v \in C^{\infty}((0,\infty) \times [0,1],\mathbb{R})$ satisfying

$$\begin{cases} (\partial_t v)(t,x) &= (\partial_x^2 v)(t,x) & \text{ for all } t \in (0,\infty), x \in (0,1), \\ v(t,0) &= 0 & \text{ for all } t \in (0,\infty), \\ v(t,1) &= 0 & \text{ for all } t \in (0,\infty), \\ \lim \sup_{t \searrow 0} \|v(t,\cdot) - f\|_{L^2} &= 0, \end{cases}$$

that $v(t,x) = (T_t f)(x)$ for all $(t,x) \in (0,\infty) \times [0,1]$.