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1.1. Completeness, closedness, compactness, and metric spaces

(a) If Y ⊆ X is a complete subspace (i.e., Y ⊆ X and (Y, d|Y×Y ) is complete), then
Y is closed (i.e., a closed subset of X).

Solution: Let (yn)n∈N ⊆ Y and x0 ∈ X satisfy that lim supn→∞ d(yn, x0) = 0 (i.e.,
(yn)n∈N is a sequence in Y which converges in (X, d)). For the proof it suffices to
show that x0 ∈ Y . The assumption that (yn)n∈N is a converging sequence in (X, d)
implies that (yn)n∈N is a Cauchy sequence in (X, d) as well as in (Y, d|Y×Y ). The
assumption that (Y, d|Y×Y ) is complete ensures that there exists y0 ∈ Y such that
lim supn→∞ d(yn, y0) = lim supn→∞ d|Y×Y (yn, y0) = 0. Hence, we obtain that

d(x0, y0) ≤ lim sup
n→∞

(d(x0, yn)+d(yn, y0)) ≤ lim sup
n→∞

d(x0, yn)+lim sup
n→∞

d(yn, y0) = 0,

which implies that x0 = y0 ∈ Y , as desired.

(b) If (X, d) is complete, then every closed subset Y ⊆ X is complete (i.e., (Y, d|Y×Y )
is complete).

Solution: Let (yn)n∈N be a Cauchy sequence in (Y, d|Y×Y ). This implies that (yn)n∈N
is also a Cauchy sequence in (X, d). By the completeness of (X, d), there exists
x0 ∈ X such that lim supn→∞ d(yn, x0) = 0. The closedness of Y in (X, d) ensures
that x0 ∈ Y . Hence, we have that

lim sup
n→∞

d|Y×Y (yn, x0) = lim sup
n→∞

d(yn, x0) = 0,

that is, (yn)n∈N converges to y0 in (Y, d|Y×Y ).

(c) If (X, d) is compact, then (X, d) is complete.

Solution: Let (xn)n∈N be a Cauchy sequence in (X, d). The compactness of (X, d)
implies that there exists x0 ∈ X and a sequence (nk)k∈N ⊆ N with nk ↗ ∞ for
k →∞ such that lim supk→∞ d(xnk

, x0) = 0. Hence:

lim sup
n→∞

d(xn, x0) = lim sup
n→∞

sup
m≥n

d(xm, x0)

= lim sup
k→∞

sup
m≥nk

d(xm, x0)

≤ lim sup
k→∞

sup
m≥nk

(d(xm, xnk
) + d(xnk

, x0))

≤ lim sup
k→∞

sup
m≥nk

d(xm, xnk
) + lim sup

k→∞
d(xnk

, x0) = 0,

that is, (xn)n∈N converges to x0. This proves that (X, d) is complete.
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1.2. Metrics on sequence spaces

Let (M,d) be a metric space. Consider the set of all M -valued sequences

S = {(sn)n∈N | ∀n ∈ N : sn ∈M}.

Let the function δ : S × S → [0,∞) be defined by

δ((xn)n∈N, (yn)n∈N) =
∑
n∈N

2−n d(xn, yn)
1 + d(xn, yn) .

(a) Show that δ is a metric on S.

Solution: Note first that for all (xn)n∈N, (yn)n∈N ∈ S we have that:

δ((xn)n∈N, (yn)n∈N) =
∑
n∈N

2−n d(xn, yn)
1 + d(xn, yn) ∈

0,
∑
n∈N

2−n

 ⊆ [0,∞).

So δ is well-defined. Clearly, δ is symmetric and vanishes if and only if it holds
for every n ∈ N that d(xn, yn) = 0 (and hence xn = yn), which is equivalent to
(xn)n∈N = (yn)n∈N in S. Next we prove that the triangle inequality holds. Let
(xn)n∈N, (yn)n∈N, (zn)n∈N ∈ S. Note that for every n ∈ N there holds:

d(xn, zn)
1 + d(xn, zn) = 1− 1

1 + d(xn, zn)

≤ 1− 1
1 + d(xn, yn) + d(yn, zn)

= d(xn, yn) + d(yn, zn)
1 + d(xn, yn) + d(yn, zn)

= d(xn, yn)
1 + d(xn, yn) + d(yn, zn) + d(yn, zn)

1 + d(xn, yn) + d(yn, zn)

≤ d(xn, yn)
1 + d(xn, yn) + d(yn, zn)

1 + d(yn, zn) .

Summation implies:

δ((xn)n∈N, (zn)n∈N) ≤ δ((xn)n∈N, (yn)n∈N) + δ((yn)n∈N, (zn)n∈N).

That is, the triangle inequality holds. Thus, δ is a metric on S.

(b) Prove that (S, δ) is a complete metric space if (M,d) is a complete metric space.
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Solution: Note first that a Cauchy sequence in S is a sequence (ak)k∈N of sequences
ak = (ak,n)n∈N, k ∈ N, so that, for every ε ∈ (0,∞), there exists K ∈ N so that

δ(ak, al) =
∑
n∈N

2−n d(ak,n, al,n)
1 + d(ak,n, al,n) < ε for all k, l ≥ K.

Claim: (ak)k∈N is a Cauchy sequence in (S, δ) if and only if, for every fixed n ∈ N,
(ak,n)k∈N is a Cauchy sequence in (M,d).

Proof of the Claim: Sufficiency: let (ak)k∈N be Cauchy in (S, δ). Then there exists
K : (0,∞)→ N such that for all ε ∈ (0,∞), k, l ∈ N with k, l ≥ Kε it holds that

δ(ak, al) =
∑

m∈N
2−m d(ak,m, al,m)

1 + d(ak,m, al,m) ≤ ε.

Consequently, it follows for all ε ∈ (0,∞), n, k, l ∈ N with k, l ≥ Kε that

d(ak,n, al,n)
1 + d(ak,n, al,n) ≤ 2nε.

Thus, for all ε ∈ (0,∞), n, k, l ∈ N with k, l ≥ Kmin{ε,2−(n+1)} we deduce

d(ak,n, al,n) ≤ 2nε

1− 2nε
.

This implies for every n ∈ N that (ak,n)k∈N ⊆M is Cauchy in (M,d).

Necessity: assume for every n ∈ N that (ak,n)k∈N is Cauchy in (M,d). Note that, for
every k, l, N ∈ N we may always estimate

∑
n∈N

2−n d(ak,n, al,n)
1 + d(ak,n, al,n) =

N∑
n=0

2−n d(ak,n, al,n)
1 + d(ak,n, al,n) +

∑
n≥N+1

2−n d(ak,n, al,n)
1 + d(ak,n, al,n)

≤
N∑

n=0
2−n d(ak,n, al,n)

1 + d(ak,n, al,n) + 2−N .

By assumption, for every ε ∈ (0,∞) and every n ∈ N, there exists N(ε, n) ∈ N
so that d(an,k, an,l) ≤ ε for all k, l ≥ N(ε, n). Moreover, for every ε ∈ (0,∞)
there exists Mε ∈ N with 2−Mε ≤ ε. Finally, define K : (0,∞) → N by Kε =
max{Mε, N(ε, 1), . . . , N(ε,Mε)} for every ε ∈ (0,∞). Consequently, we obtain for all
ε ∈ (0,∞), k, l ∈ N with k, l ≥ Kε that

δ(ak, al) =
Mε∑
n=0

2−n d(ak,n, al,n)
1 + d(ak,n, al,n) + 2−Mε ≤

Mε∑
n=0

2−nε+ ε ≤ 3ε,

which implies that (ak)k∈N is Cauchy in (S, δ).
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Let now (ak)k∈N be a Cauchy sequence in S. By the Claim, for every n ∈ N, (ak,n)k∈N is
Cauchy in (M,d) and thus converges to some element αn ∈M . Defining α = (αn)n∈N
as an element of S and arguing as in the proof of the Claim above (“necessity” part),
it is possible to find, for every ε ∈ (0,∞), some Kε ∈ N so that d(ak, a) ≤ ε for every
k ≥ Kε. Consequently (ak)k∈N converges to α in (S, d). This establishes that (S, δ) is
complete.

1.3. Bounded metrics

Let (X, d) be a metric space and let T be the topology on X which is induced by d.
Prove that there exists a metric δ on X which induces the same topology T and is
bounded, i.e., there exists C ∈ R such that for all x, y ∈ X it holds that δ(x, y) ≤ C.

Solution: Let δ : X ×X → [0,∞) satisfy for all x, y ∈ X that

δ(x, y) = d(x, y)
1 + d(x, y) .

Calculations similar to the ones in exercise 1.2 demonstrate that δ is a metric on X.
Moreover, it holds clearly for every x, y ∈ X that δ(x, y) ≤ 1. It remains to show
that δ induces T . Note that for all ε ∈ (0, 1), x ∈ X it holds that

{y ∈ X : δ(y, x) < ε} =
{
y ∈ X : d(y, x) < ε

1− ε

}
.

This and the fact that limε→0
ε

1−ε
= 0 imply that every open set w.r.t. d is also open

w.r.t. δ and vice versa.

1.4. Cantor’s intersection theorem

The diameter of a subset A of a metric space (X, d) is defined by

diam(A) = sup({0} ∪ {d(x, y) | x, y ∈ A}).

(a) Prove that a metric space (X, d) is complete if and only if it holds for every
nested sequence A1 ⊇ A2 ⊇ A3 ⊇ . . . of non-empty closed subsets An ⊆ X, n ∈ N,
with diam(An)→ 0 for n→∞ that ⋂n∈NAn 6= 0. Moreover, prove that in this case⋂

n∈NAn has exactly one element.

Solution: First, let us assume that (X, d) is complete and let A1 ⊇ A2 ⊇ . . . be a
nested sequence of non-empty closed subsets satisfying lim supn→∞ diam(An) = 0.
Since for every n ∈ N it is assumed that An 6= ∅, there exists a sequence (an)n∈N ⊆ X
so that for every n ∈ N it holds that an ∈ An. Note that the nestedness of the sets
An, n ∈ N, implies for all m,n ∈ N with n > m that an ∈ An ⊆ Am. Combining this
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with the assumption on the diameters of the sets An, n ∈ N, we obtain for all N ∈ N
that

lim sup
N→∞

sup
m,n≥N

d(am, an) ≤ lim sup
N→∞

diam(AN) = 0.

Hence, (an)n∈N is Cauchy. The assumed completeness of (X, d) ensures that the
Cauchy sequence (an)n∈N converges to some a0 ∈ X. Finally, observing that for all
n ∈ N it holds that {am : m ≥ n} ⊆ An, we find – using the closedness of the sets Am,
m ∈ N – for every n ∈ N that a = limm→∞ am ∈ An. Thus, a ∈

⋂
n∈NAn. Moreover,

note that for all b ∈ ⋂n∈NAn we get, due to the fact that for every n ∈ N it holds
that a, b ∈ An:

d(a, b) = lim sup
n→∞

d(a, b) ≤ lim sup
n→∞

diam(An) = 0.

That is, a = b and ⋂n∈NAn = {a}.

Next we prove the converse. Assume that the metric space (X, d) has the property
that for every nested sequence A1 ⊇ A2 ⊇ A3 ⊇ . . . with diam(An) → 0 as n → ∞
it holds that ⋂n∈NAn 6= ∅. Let (an)n∈N ⊆ X be a Cauchy sequence. Due to this,
there exists a sequence (Nk)k∈N with N1 < N2 < N3 < . . . such that for all k ∈ N,
m,n ≥ Nk it holds that d(am, an) < 2−k. Finally, let for every k ∈ N the set Ak be
given by

Ak = {x ∈ X : d(x, aNk
) ≤ 21−k}.

First we note that for every k ∈ N it holds that Ak is closed. Moreover, we have for
every k ∈ N that lim supk→∞ diam(Ak) ≤ lim supk→∞ 22−k = 0. Furthermore, note
that for every k ∈ N and every x ∈ Ak+1 it holds that

d(x, aNk
) ≤ d(x, aNk+1) + d(aNk+1 , aNk

) ≤ 21−(k+1) + 2−k = 21−k.

Thus, for every k ∈ N we have Ak ⊇ Ak+1. According to the assumption, there exists
a∞ ∈ X satisfying a∞ ∈ Ak for every k ∈ N. This implies that

lim sup
n→∞

d(an, a∞) = lim sup
k→∞

sup
n≥Nk

d(an, a∞) ≤ lim sup
k→∞

(d(an, aNk
) + d(aNk

, a∞)

≤ lim sup
k→∞

(2−k + diam(Ak)) = 0.

Thus, (an)n∈N has a limit in X. This completes the proof that (X, d) is complete.

(b) Find an example of a complete metric space and a nested sequence of non-empty
closed bounded subsets with empty intersection.
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Solution: Let X := l∞ := {(xn)n∈N ⊆ R | supn∈N |xn| <∞} be the space of bounded
real-valued sequences. Note that ‖·‖∞ : X → [0,∞), defined by ‖(xn)n∈N‖∞ =
supn∈N |xn|, defines a norm on l∞. Let d denote the metric induced by ‖·‖∞. Note that
(X, d) is complete (why?). Finally, let for every n ∈ N the sequence en = (en,k)k∈N ∈ X
be defined via

en,k =
1 if k = n,

0 else.

Note that for all n,m ∈ N it holds that

d(en, em) =
0 if n = m,

1 else.

The sets An = {em | m ≥ n}, n ∈ N, are therefore closed, nested, non-empty, and
bounded. But their intersection is empty as for every n ∈ N we have that en /∈ An+1.

1.5. Intrinsic Characterisations

Let V be a vector space over R. Prove the following equivalences.

(a) The norm ‖·‖ is induced by a scalar product 〈·, ·〉 (in the sense that there exists
a scalar product 〈·, ·〉 such that ∀x ∈ V : ‖x‖2 = 〈x, x〉)

⇔ the norm satisfies the parallelogram identity, i. e. ∀x, y ∈ V :

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
.

Hint. If ‖·‖ satisfies the parallelogram identity, consider 〈x, y〉 := 1
4‖x+y‖2− 1

4‖x−y‖
2.

Prove 〈λx, y〉 = λ〈x, y〉 first for λ ∈ N, then for λ ∈ Q and finally for λ ∈ R.

Solution: If the norm ‖·‖ is induced by the scalar product 〈·, ·〉, then the parallelogram
identity holds:

‖x+ y‖2 + ‖x− y‖2

= 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉+ 〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉
= 2‖x‖2 + 2‖y‖2.

Conversely, we assume that ‖·‖ satisfies the parallelogram identity and claim that

〈x, y〉 := 1
4‖x+ y‖2 − 1

4‖x− y‖
2
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defines a scalar product which induces ‖·‖.

• Symmetry. Since ‖x− y‖ = ‖(−1)(y − x)‖ = ‖y − x‖ and since x+ y = y + x, we
have 〈x, y〉 = 〈y, x〉 for all x, y ∈ V .

• Linearity. Let x, y, z ∈ V . We use the parallelogram identity in the following way.

‖(x+ z) + y‖2 + ‖(x+ z)− y‖2 = 2‖x+ z‖2 + 2‖y‖2.

We rewrite the equation above to obtain

‖x+ y + z‖2 = 2‖x+ z‖2 + 2‖y‖2 − ‖x− y + z‖2 =: A

and switch the roles of x and y to get

‖x+ y + z‖2 = 2‖y + z‖2 + 2‖x‖2 − ‖y − x+ z‖2 =: B.

Therefore,

‖x+ y + z‖2 = A

2 + B

2

= ‖x+ z‖2 + ‖y‖2 + ‖y + z‖2 + ‖x‖2 − ‖x− y + z‖2 + ‖y − x+ z‖2

2 . (1)
Analogously,

‖x+ y − z‖2

= ‖x− z‖2 + ‖y‖2 + ‖y − z‖2 + ‖x‖2 − ‖x− y − z‖
2 + ‖y − x− z‖2

2 . (2)

Note that the last term of (1) agrees with the last term of (2). Hence, we have

〈x+ y, z〉 = 1
4‖x+ y + z‖2 − 1

4‖x+ y − z‖2

= 1
4

(
‖x+ z‖2 + ‖y + z‖2 − ‖x− z‖2 − ‖y − z‖2

)
= 〈x, z〉+ 〈y, z〉.

Let n ∈ N. By induction on the number of summands in the first slot, we have

〈nx, z〉 =
〈 n∑

k=1
x, z

〉
=

n∑
k=1
〈x, z〉 = n〈x, z〉.

Moreover, since 〈0, y〉 = 1
4

(
‖y‖2 − ‖y‖2

)
= 0,

0 = 〈0, y〉 = 〈x− x, y〉 = 〈x, y〉+ 〈−x, y〉 ⇒ 〈−x, y〉 = −〈x, y〉.

Consequently, 〈mx, z〉 = m〈x, z〉 for every m ∈ Z. Let m ∈ Z and n ∈ N. Then,〈
m

n
x, z

〉
= n

n
m
〈 1
n
x, z

〉
= m

n

〈
n

n
x, z

〉
= m

n
〈x, z〉,

last update: 1 October 2021 7/9



ETH Zürich
Autumn 2021

Functional Analysis I
Solution to Problem Set 1

d-math
Prof. J. Teichmann

which implies 〈qx, z〉 = q〈x, z〉 for every q ∈ Q.

Let λ ∈ R and let (qn)n∈N be a sequence of rational numbers converging to λ for
n→∞. Since the triangle inequality |‖x‖ − ‖y‖| ≤ ‖x− y‖ implies that the norm is
a continuous map, we have

〈λx, z〉 = 1
4‖λx+ z‖2 − 1

4‖λx− z‖
2 = lim

n→∞

(
1
4‖qnx+ z‖2 − 1

4‖qnx− z‖2
)

= lim
n→∞
〈qnx, z〉 = lim

n→∞
qn〈x, z〉 = λ〈x, z〉.

Linearity in the second argument follows by symmetry.

• Positive-definiteness. For all x ∈ V , we have

〈x, x〉 = 1
4‖x+ x‖2 − 1

4‖x− x‖
2 = 1

4‖2x‖
2 = ‖x‖2 ≥ 0.

This also shows that ‖·‖ is induced by 〈·, ·〉. Moreover, 〈x, x〉 = 0⇔ ‖x‖ = 0⇔ x = 0.

(b) The metric d(·, ·) is induced by a norm ‖·‖ (in the sense that there exists a norm
‖·‖ such that ∀x, y ∈ V : d(x, y) = ‖x− y‖)

⇔ the metric is translation invariant and homogeneous, i. e. ∀v, x, y ∈ V ∀λ ∈ R:

d(x+ v, y + v) = d(x, y),

d(λx, λy) = |λ|d(x, y).

Solution: If the metric d is induced by the norm ‖·‖, then

d(x+ v, y + v) = ‖(x+ v)− (y + v)‖ = ‖x− y‖ = d(x, y),

d(λx, λy) = ‖λx− λy‖ = ‖λ(x− y)‖ = |λ|‖x− y‖.

Conversely, we assume that the metric d is translation invariant and homogeneous
and claim that

‖x‖ := d(x, 0)

defines a norm which induces d. The function ‖·‖ is indeed a norm, because for all
x, y, z ∈ V and λ ∈ R, we have

‖x‖ = 0 ⇔ d(x, 0) = 0 ⇔ x = 0,

‖λx‖ = d(λx, 0) = d(λx, λ0) = |λ|d(x, 0) = |λ|‖x‖,

‖x+ y‖ = d(x+ y, 0) ≤ d(x+ y, y) + d(y, 0) = d(x, 0) + d(y, 0) = ‖x‖+ ‖y‖.

Moreover, ‖·‖ induces the metric d since for all x, y ∈ V

‖x− y‖ = d(x− y, 0) = d(x, y).
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1.6. A classic

Let (X, d) be a non-empty complete metric space, let λ ∈ [0, 1), and let Φ: X → X
be a mapping which satisfies for all x, y ∈ X that d(Φ(x),Φ(y)) ≤ λd(x, y). Show
that there exists a unique z ∈ X which satisfies Φ(z) = z.

Solution: Let x0 ∈ X be arbitrary and let xn for n ∈ N be given by xn = Φ(xn−1).
Note that for all n ∈ N it holds that

d(xn+1, xn) = d(Φ(xn),Φ(xn−1)) ≤ λd(xn, xn−1).

Via induction, we obtain for all n ∈ N0 that d(xn+1, xn) ≤ λnd(x1, x0). The triangle
inquality hence implies for all n ∈ N0, k ∈ N that

d(xn, xn+k) ≤
k−1∑
l=0

d(xn+l+1, xn+l) ≤
k−1∑
l=0

λn+ld(x1, x0)

= λnd(x1, x0)
k−1∑
l=0

λl ≤ λn

1− λd(x1, x0).

This implies that (xn)n∈N0 is Cauchy in (X, d). Hence, there exists z ∈ X such that
xn → z as n→∞. Note that the fact that Φ is Lipschitz continuous implies that

Φ(z) = Φ( lim
n→∞

xn) = lim
n→∞

Φ(xn) = lim
n→∞

xn+1 = z.

This finishes the existence part of the proof. The fact that z is the unique fixed point
of Φ follows since for every w ∈ X with Φ(w) = w, we get:

d(z, w) = d(Φ(z),Φ(w)) ≤ λd(z, w),

which only holds if d(z, w) = 0 as λ < 1. Thus, z = w.
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