1.1. Completeness, closedness, compactness, and metric spaces

(a) If $Y \subseteq X$ is a complete subspace (i.e., $Y \subseteq X$ and $\left(Y,\left.d\right|_{Y \times Y}\right)$ is complete), then Y is closed (i.e., a closed subset of X).

Solution: Let $\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq Y$ and $x_{0} \in X$ satisfy that $\lim \sup _{n \rightarrow \infty} d\left(y_{n}, x_{0}\right)=0$ (i.e., $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a sequence in Y which converges in $\left.(X, d)\right)$. For the proof it suffices to show that $x_{0} \in Y$. The assumption that $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a converging sequence in (X, d) implies that $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in (X, d) as well as in $\left(Y,\left.d\right|_{Y \times Y}\right)$. The assumption that $\left(Y,\left.d\right|_{Y \times Y}\right)$ is complete ensures that there exists $y_{0} \in Y$ such that $\limsup _{n \rightarrow \infty} d\left(y_{n}, y_{0}\right)=\left.\lim \sup _{n \rightarrow \infty} d\right|_{Y \times Y}\left(y_{n}, y_{0}\right)=0$. Hence, we obtain that

$$
d\left(x_{0}, y_{0}\right) \leq \limsup _{n \rightarrow \infty}\left(d\left(x_{0}, y_{n}\right)+d\left(y_{n}, y_{0}\right)\right) \leq \limsup _{n \rightarrow \infty} d\left(x_{0}, y_{n}\right)+\limsup _{n \rightarrow \infty} d\left(y_{n}, y_{0}\right)=0
$$

which implies that $x_{0}=y_{0} \in Y$, as desired.
(b) If (X, d) is complete, then every closed subset $Y \subseteq X$ is complete (i.e., $\left(Y,\left.d\right|_{Y \times Y}\right)$ is complete).

Solution: Let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in $\left(Y,\left.d\right|_{Y \times Y}\right)$. This implies that $\left(y_{n}\right)_{n \in \mathbb{N}}$ is also a Cauchy sequence in (X, d). By the completeness of (X, d), there exists $x_{0} \in X$ such that $\lim \sup _{n \rightarrow \infty} d\left(y_{n}, x_{0}\right)=0$. The closedness of Y in (X, d) ensures that $x_{0} \in Y$. Hence, we have that

$$
\left.\limsup _{n \rightarrow \infty} d\right|_{Y \times Y}\left(y_{n}, x_{0}\right)=\limsup _{n \rightarrow \infty} d\left(y_{n}, x_{0}\right)=0,
$$

that is, $\left(y_{n}\right)_{n \in \mathbb{N}}$ converges to y_{0} in $\left(Y,\left.d\right|_{Y \times Y}\right)$.
(c) If (X, d) is compact, then (X, d) is complete.

Solution: Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in (X, d). The compactness of (X, d) implies that there exists $x_{0} \in X$ and a sequence $\left(n_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ with $n_{k} \nearrow \infty$ for $k \rightarrow \infty$ such that $\lim \sup _{k \rightarrow \infty} d\left(x_{n_{k}}, x_{0}\right)=0$. Hence:

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} d\left(x_{n}, x_{0}\right) & =\limsup _{n \rightarrow \infty} \sup _{m \geq n} d\left(x_{m}, x_{0}\right) \\
& =\limsup _{k \rightarrow \infty} \sup _{m \geq n_{k}} d\left(x_{m}, x_{0}\right) \\
& \leq \limsup _{k \rightarrow \infty} \sup _{m \geq n_{k}}\left(d\left(x_{m}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{0}\right)\right) \\
& \leq \limsup _{k \rightarrow \infty} \sup _{m \geq n_{k}} d\left(x_{m}, x_{n_{k}}\right)+\limsup _{k \rightarrow \infty} d\left(x_{n_{k}}, x_{0}\right)=0,
\end{aligned}
$$

that is, $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to x_{0}. This proves that (X, d) is complete.

1.2. Metrics on sequence spaces

Let (M, d) be a metric space. Consider the set of all M-valued sequences

$$
S=\left\{\left(s_{n}\right)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N}: s_{n} \in M\right\} .
$$

Let the function $\delta: S \times S \rightarrow[0, \infty)$ be defined by

$$
\delta\left(\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}\right)=\sum_{n \in \mathbb{N}} 2^{-n} \frac{d\left(x_{n}, y_{n}\right)}{1+d\left(x_{n}, y_{n}\right)} .
$$

(a) Show that δ is a metric on S.

Solution: Note first that for all $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}} \in S$ we have that:

$$
\delta\left(\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}\right)=\sum_{n \in \mathbb{N}} 2^{-n} \frac{d\left(x_{n}, y_{n}\right)}{1+d\left(x_{n}, y_{n}\right)} \in\left[0, \sum_{n \in \mathbb{N}} 2^{-n}\right] \subseteq[0, \infty)
$$

So δ is well-defined. Clearly, δ is symmetric and vanishes if and only if it holds for every $n \in \mathbb{N}$ that $d\left(x_{n}, y_{n}\right)=0$ (and hence $x_{n}=y_{n}$), which is equivalent to $\left(x_{n}\right)_{n \in \mathbb{N}}=\left(y_{n}\right)_{n \in \mathbb{N}}$ in S. Next we prove that the triangle inequality holds. Let $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}},\left(z_{n}\right)_{n \in \mathbb{N}} \in S$. Note that for every $n \in \mathbb{N}$ there holds:

$$
\begin{aligned}
\frac{d\left(x_{n}, z_{n}\right)}{1+d\left(x_{n}, z_{n}\right)} & =1-\frac{1}{1+d\left(x_{n}, z_{n}\right)} \\
& \leq 1-\frac{1}{1+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, z_{n}\right)} \\
& =\frac{d\left(x_{n}, y_{n}\right)+d\left(y_{n}, z_{n}\right)}{1+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, z_{n}\right)} \\
& =\frac{d\left(x_{n}, y_{n}\right)}{1+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, z_{n}\right)}+\frac{d\left(y_{n}, z_{n}\right)}{1+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, z_{n}\right)} \\
& \leq \frac{d\left(x_{n}, y_{n}\right)}{1+d\left(x_{n}, y_{n}\right)}+\frac{d\left(y_{n}, z_{n}\right)}{1+d\left(y_{n}, z_{n}\right)} .
\end{aligned}
$$

Summation implies:

$$
\delta\left(\left(x_{n}\right)_{n \in \mathbb{N}},\left(z_{n}\right)_{n \in \mathbb{N}}\right) \leq \delta\left(\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}}\right)+\delta\left(\left(y_{n}\right)_{n \in \mathbb{N}},\left(z_{n}\right)_{n \in \mathbb{N}}\right) .
$$

That is, the triangle inequality holds. Thus, δ is a metric on S.
(b) Prove that (S, δ) is a complete metric space if (M, d) is a complete metric space.

Solution: Note first that a Cauchy sequence in S is a sequence $\left(a_{k}\right)_{k \in \mathbb{N}}$ of sequences $a_{k}=\left(a_{k, n}\right)_{n \in \mathbb{N}}, k \in \mathbb{N}$, so that, for every $\varepsilon \in(0, \infty)$, there exists $K \in \mathbb{N}$ so that

$$
\delta\left(a_{k}, a_{l}\right)=\sum_{n \in \mathbb{N}} 2^{-n} \frac{d\left(a_{k, n}, a_{l, n}\right)}{1+d\left(a_{k, n}, a_{l, n}\right)}<\varepsilon \quad \text { for all } k, l \geq K
$$

Claim: $\left(a_{k}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence in (S, δ) if and only if, for every fixed $n \in \mathbb{N}$, $\left(a_{k, n}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence in (M, d).

Proof of the Claim: Sufficiency: let $\left(a_{k}\right)_{k \in \mathbb{N}}$ be Cauchy in (S, δ). Then there exists $K:(0, \infty) \rightarrow \mathbb{N}$ such that for all $\varepsilon \in(0, \infty), k, l \in \mathbb{N}$ with $k, l \geq K_{\varepsilon}$ it holds that

$$
\delta\left(a_{k}, a_{l}\right)=\sum_{m \in \mathbb{N}} 2^{-m} \frac{d\left(a_{k, m}, a_{l, m}\right)}{1+d\left(a_{k, m}, a_{l, m}\right)} \leq \varepsilon .
$$

Consequently, it follows for all $\varepsilon \in(0, \infty), n, k, l \in \mathbb{N}$ with $k, l \geq K_{\varepsilon}$ that

$$
\frac{d\left(a_{k, n}, a_{l, n}\right)}{1+d\left(a_{k, n}, a_{l, n}\right)} \leq 2^{n} \varepsilon
$$

Thus, for all $\varepsilon \in(0, \infty), n, k, l \in \mathbb{N}$ with $k, l \geq K_{\min \left\{\varepsilon, 2^{-(n+1)}\right\}}$ we deduce

$$
d\left(a_{k, n}, a_{l, n}\right) \leq \frac{2^{n} \varepsilon}{1-2^{n} \varepsilon} .
$$

This implies for every $n \in \mathbb{N}$ that $\left(a_{k, n}\right)_{k \in \mathbb{N}} \subseteq M$ is Cauchy in (M, d).
Necessity: assume for every $n \in \mathbb{N}$ that $\left(a_{k, n}\right)_{k \in \mathbb{N}}$ is Cauchy in (M, d). Note that, for every $k, l, N \in \mathbb{N}$ we may always estimate

$$
\begin{aligned}
\sum_{n \in \mathbb{N}} 2^{-n} \frac{d\left(a_{k, n}, a_{l, n}\right)}{1+d\left(a_{k, n}, a_{l, n}\right)} & =\sum_{n=0}^{N} 2^{-n} \frac{d\left(a_{k, n}, a_{l, n}\right)}{1+d\left(a_{k, n}, a_{l, n}\right)}+\sum_{n \geq N+1} 2^{-n} \frac{d\left(a_{k, n}, a_{l, n}\right)}{1+d\left(a_{k, n}, a_{l, n}\right)} \\
& \leq \sum_{n=0}^{N} 2^{-n} \frac{d\left(a_{k, n}, a_{l, n}\right)}{1+d\left(a_{k, n}, a_{l, n}\right)}+2^{-N} .
\end{aligned}
$$

By assumption, for every $\varepsilon \in(0, \infty)$ and every $n \in \mathbb{N}$, there exists $N(\varepsilon, n) \in \mathbb{N}$ so that $d\left(a_{n, k}, a_{n, l}\right) \leq \varepsilon$ for all $k, l \geq N(\varepsilon, n)$. Moreover, for every $\varepsilon \in(0, \infty)$ there exists $M_{\varepsilon} \in \mathbb{N}$ with $2^{-M_{\varepsilon}} \leq \varepsilon$. Finally, define $K:(0, \infty) \rightarrow \mathbb{N}$ by $K_{\varepsilon}=$ $\max \left\{M_{\varepsilon}, N(\varepsilon, 1), \ldots, N\left(\varepsilon, M_{\varepsilon}\right)\right\}$ for every $\varepsilon \in(0, \infty)$. Consequently, we obtain for all $\varepsilon \in(0, \infty), k, l \in \mathbb{N}$ with $k, l \geq K_{\varepsilon}$ that

$$
\delta\left(a_{k}, a_{l}\right)=\sum_{n=0}^{M_{\varepsilon}} 2^{-n} \frac{d\left(a_{k, n}, a_{l, n}\right)}{1+d\left(a_{k, n}, a_{l, n}\right)}+2^{-M_{\varepsilon}} \leq \sum_{n=0}^{M_{\varepsilon}} 2^{-n} \varepsilon+\varepsilon \leq 3 \varepsilon,
$$

which implies that $\left(a_{k}\right)_{k \in \mathbb{N}}$ is Cauchy in (S, δ).

Let now $\left(a_{k}\right)_{k \in \mathbb{N}}$ be a Cauchy sequence in S. By the Claim, for every $n \in \mathbb{N},\left(a_{k, n}\right)_{k \in \mathbb{N}}$ is Cauchy in (M, d) and thus converges to some element $\alpha_{n} \in M$. Defining $\alpha=\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ as an element of S and arguing as in the proof of the Claim above ("necessity" part), it is possible to find, for every $\varepsilon \in(0, \infty)$, some $K_{\varepsilon} \in \mathbb{N}$ so that $d\left(a_{k}, a\right) \leq \varepsilon$ for every $k \geq K_{\varepsilon}$. Consequently $\left(a_{k}\right)_{k \in \mathbb{N}}$ converges to α in (S, d). This establishes that (S, δ) is complete.

1.3. Bounded metrics

Let (X, d) be a metric space and let \mathcal{T} be the topology on X which is induced by d. Prove that there exists a metric δ on X which induces the same topology \mathcal{T} and is bounded, i.e., there exists $C \in \mathbb{R}$ such that for all $x, y \in X$ it holds that $\delta(x, y) \leq C$.
Solution: Let $\delta: X \times X \rightarrow[0, \infty)$ satisfy for all $x, y \in X$ that

$$
\delta(x, y)=\frac{d(x, y)}{1+d(x, y)} .
$$

Calculations similar to the ones in exercise 1.2 demonstrate that δ is a metric on X. Moreover, it holds clearly for every $x, y \in X$ that $\delta(x, y) \leq 1$. It remains to show that δ induces \mathcal{T}. Note that for all $\varepsilon \in(0,1), x \in X$ it holds that

$$
\{y \in X: \delta(y, x)<\varepsilon\}=\left\{y \in X: d(y, x)<\frac{\varepsilon}{1-\varepsilon}\right\} .
$$

This and the fact that $\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon}{1-\varepsilon}=0$ imply that every open set w.r.t. d is also open w.r.t. δ and vice versa.

1.4. Cantor's intersection theorem

The diameter of a subset A of a metric space (X, d) is defined by

$$
\operatorname{diam}(A)=\sup (\{0\} \cup\{d(x, y) \mid x, y \in A\})
$$

(a) Prove that a metric space (X, d) is complete if and only if it holds for every nested sequence $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \ldots$ of non-empty closed subsets $A_{n} \subseteq X, n \in \mathbb{N}$, with $\operatorname{diam}\left(A_{n}\right) \rightarrow 0$ for $n \rightarrow \infty$ that $\bigcap_{n \in \mathbb{N}} A_{n} \neq 0$. Moreover, prove that in this case $\bigcap_{n \in \mathbb{N}} A_{n}$ has exactly one element.
Solution: First, let us assume that (X, d) is complete and let $A_{1} \supseteq A_{2} \supseteq \ldots$ be a nested sequence of non-empty closed subsets satisfying $\lim \sup _{n \rightarrow \infty} \operatorname{diam}\left(A_{n}\right)=0$. Since for every $n \in \mathbb{N}$ it is assumed that $A_{n} \neq \emptyset$, there exists a sequence $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq X$ so that for every $n \in \mathbb{N}$ it holds that $a_{n} \in A_{n}$. Note that the nestedness of the sets $A_{n}, n \in \mathbb{N}$, implies for all $m, n \in \mathbb{N}$ with $n>m$ that $a_{n} \in A_{n} \subseteq A_{m}$. Combining this
with the assumption on the diameters of the sets $A_{n}, n \in \mathbb{N}$, we obtain for all $N \in \mathbb{N}$ that

$$
\limsup _{N \rightarrow \infty} \sup _{m, n \geq N} d\left(a_{m}, a_{n}\right) \leq \limsup _{N \rightarrow \infty} \operatorname{diam}\left(A_{N}\right)=0
$$

Hence, $\left(a_{n}\right)_{n \in \mathbb{N}}$ is Cauchy. The assumed completeness of (X, d) ensures that the Cauchy sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ converges to some $a_{0} \in X$. Finally, observing that for all $n \in \mathbb{N}$ it holds that $\left\{a_{m}: m \geq n\right\} \subseteq A_{n}$, we find - using the closedness of the sets A_{m}, $m \in \mathbb{N}$ - for every $n \in \mathbb{N}$ that $a=\lim _{m \rightarrow \infty} a_{m} \in A_{n}$. Thus, $a \in \bigcap_{n \in \mathbb{N}} A_{n}$. Moreover, note that for all $b \in \bigcap_{n \in \mathbb{N}} A_{n}$ we get, due to the fact that for every $n \in \mathbb{N}$ it holds that $a, b \in A_{n}$:

$$
d(a, b)=\limsup _{n \rightarrow \infty} d(a, b) \leq \limsup _{n \rightarrow \infty} \operatorname{diam}\left(A_{n}\right)=0
$$

That is, $a=b$ and $\bigcap_{n \in \mathbb{N}} A_{n}=\{a\}$.
Next we prove the converse. Assume that the metric space (X, d) has the property that for every nested sequence $A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \ldots$ with $\operatorname{diam}\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ it holds that $\bigcap_{n \in \mathbb{N}} A_{n} \neq \emptyset$. Let $\left(a_{n}\right)_{n \in \mathbb{N}} \subseteq X$ be a Cauchy sequence. Due to this, there exists a sequence $\left(N_{k}\right)_{k \in \mathbb{N}}$ with $N_{1}<N_{2}<N_{3}<\ldots$ such that for all $k \in \mathbb{N}$, $m, n \geq N_{k}$ it holds that $d\left(a_{m}, a_{n}\right)<2^{-k}$. Finally, let for every $k \in \mathbb{N}$ the set A_{k} be given by

$$
A_{k}=\left\{x \in X: d\left(x, a_{N_{k}}\right) \leq 2^{1-k}\right\} .
$$

First we note that for every $k \in \mathbb{N}$ it holds that A_{k} is closed. Moreover, we have for every $k \in \mathbb{N}$ that $\lim \sup _{k \rightarrow \infty} \operatorname{diam}\left(A_{k}\right) \leq \lim \sup _{k \rightarrow \infty} 2^{2-k}=0$. Furthermore, note that for every $k \in \mathbb{N}$ and every $x \in A_{k+1}$ it holds that

$$
d\left(x, a_{N_{k}}\right) \leq d\left(x, a_{N_{k+1}}\right)+d\left(a_{N_{k+1}}, a_{N_{k}}\right) \leq 2^{1-(k+1)}+2^{-k}=2^{1-k} .
$$

Thus, for every $k \in \mathbb{N}$ we have $A_{k} \supseteq A_{k+1}$. According to the assumption, there exists $a_{\infty} \in X$ satisfying $a_{\infty} \in A_{k}$ for every $k \in \mathbb{N}$. This implies that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} d\left(a_{n}, a_{\infty}\right) & =\limsup _{k \rightarrow \infty} \sup _{n \geq N_{k}} d\left(a_{n}, a_{\infty}\right) \leq \limsup _{k \rightarrow \infty}\left(d\left(a_{n}, a_{N_{k}}\right)+d\left(a_{N_{k}}, a_{\infty}\right)\right. \\
& \leq \limsup _{k \rightarrow \infty}\left(2^{-k}+\operatorname{diam}\left(A_{k}\right)\right)=0 .
\end{aligned}
$$

Thus, $\left(a_{n}\right)_{n \in \mathbb{N}}$ has a limit in X. This completes the proof that (X, d) is complete.
(b) Find an example of a complete metric space and a nested sequence of non-empty closed bounded subsets with empty intersection.

Solution: Let $X:=l^{\infty}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}\left|\sup _{n \in \mathbb{N}}\right| x_{n} \mid<\infty\right\}$ be the space of bounded real-valued sequences. Note that $\|\cdot\|_{\infty}: X \rightarrow[0, \infty)$, defined by $\left\|\left(x_{n}\right)_{n \in \mathbb{N}}\right\|_{\infty}=$ $\sup _{n \in \mathbb{N}}\left|x_{n}\right|$, defines a norm on l^{∞}. Let d denote the metric induced by $\|\cdot\|_{\infty}$. Note that (X, d) is complete (why?). Finally, let for every $n \in \mathbb{N}$ the sequence $e_{n}=\left(e_{n, k}\right)_{k \in \mathbb{N}} \in X$ be defined via

$$
e_{n, k}= \begin{cases}1 & \text { if } k=n \\ 0 & \text { else }\end{cases}
$$

Note that for all $n, m \in \mathbb{N}$ it holds that

$$
d\left(e_{n}, e_{m}\right)= \begin{cases}0 & \text { if } n=m \\ 1 & \text { else }\end{cases}
$$

The sets $A_{n}=\left\{e_{m} \mid m \geq n\right\}, n \in \mathbb{N}$, are therefore closed, nested, non-empty, and bounded. But their intersection is empty as for every $n \in \mathbb{N}$ we have that $e_{n} \notin A_{n+1}$.

1.5. Intrinsic Characterisations

Let V be a vector space over \mathbb{R}. Prove the following equivalences.
(a) The norm $\|\cdot\|$ is induced by a scalar product $\langle\cdot, \cdot\rangle$ (in the sense that there exists a scalar product $\langle\cdot, \cdot\rangle$ such that $\left.\forall x \in V:\|x\|^{2}=\langle x, x\rangle\right)$
\Leftrightarrow the norm satisfies the parallelogram identity, i. e. $\forall x, y \in V$:

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) .
$$

Hint. If $\|\cdot\|$ satisfies the parallelogram identity, consider $\langle x, y\rangle:=\frac{1}{4}\|x+y\|^{2}-\frac{1}{4}\|x-y\|^{2}$. Prove $\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$ first for $\lambda \in \mathbb{N}$, then for $\lambda \in \mathbb{Q}$ and finally for $\lambda \in \mathbb{R}$.

Solution: If the norm $\|\cdot\|$ is induced by the scalar product $\langle\cdot, \cdot\rangle$, then the parallelogram identity holds:

$$
\begin{aligned}
& \|x+y\|^{2}+\|x-y\|^{2} \\
& =\langle x+y, x+y\rangle+\langle x-y, x-y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle+\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle \\
& =2\|x\|^{2}+2\|y\|^{2} .
\end{aligned}
$$

Conversely, we assume that $\|\cdot\|$ satisfies the parallelogram identity and claim that

$$
\langle x, y\rangle:=\frac{1}{4}\|x+y\|^{2}-\frac{1}{4}\|x-y\|^{2}
$$

defines a scalar product which induces $\|\cdot\|$.

- Symmetry. Since $\|x-y\|=\|(-1)(y-x)\|=\|y-x\|$ and since $x+y=y+x$, we have $\langle x, y\rangle=\langle y, x\rangle$ for all $x, y \in V$.
- Linearity. Let $x, y, z \in V$. We use the parallelogram identity in the following way.

$$
\|(x+z)+y\|^{2}+\|(x+z)-y\|^{2}=2\|x+z\|^{2}+2\|y\|^{2} .
$$

We rewrite the equation above to obtain

$$
\|x+y+z\|^{2}=2\|x+z\|^{2}+2\|y\|^{2}-\|x-y+z\|^{2}=: A
$$

and switch the roles of x and y to get

$$
\|x+y+z\|^{2}=2\|y+z\|^{2}+2\|x\|^{2}-\|y-x+z\|^{2}=: B .
$$

Therefore,

$$
\begin{align*}
& \|x+y+z\|^{2}=\frac{A}{2}+\frac{B}{2} \\
& =\|x+z\|^{2}+\|y\|^{2}+\|y+z\|^{2}+\|x\|^{2}-\frac{\|x-y+z\|^{2}+\|y-x+z\|^{2}}{2} \tag{1}
\end{align*}
$$

Analogously,

$$
\begin{align*}
& \|x+y-z\|^{2} \\
& =\|x-z\|^{2}+\|y\|^{2}+\|y-z\|^{2}+\|x\|^{2}-\frac{\|x-y-z\|^{2}+\|y-x-z\|^{2}}{2} . \tag{2}
\end{align*}
$$

Note that the last term of (1) agrees with the last term of (2). Hence, we have

$$
\begin{aligned}
\langle x+y, z\rangle & =\frac{1}{4}\|x+y+z\|^{2}-\frac{1}{4}\|x+y-z\|^{2} \\
& =\frac{1}{4}\left(\|x+z\|^{2}+\|y+z\|^{2}-\|x-z\|^{2}-\|y-z\|^{2}\right)=\langle x, z\rangle+\langle y, z\rangle .
\end{aligned}
$$

Let $n \in \mathbb{N}$. By induction on the number of summands in the first slot, we have

$$
\langle n x, z\rangle=\left\langle\sum_{k=1}^{n} x, z\right\rangle=\sum_{k=1}^{n}\langle x, z\rangle=n\langle x, z\rangle .
$$

Moreover, since $\langle 0, y\rangle=\frac{1}{4}\left(\|y\|^{2}-\|y\|^{2}\right)=0$,

$$
0=\langle 0, y\rangle=\langle x-x, y\rangle=\langle x, y\rangle+\langle-x, y\rangle \quad \Rightarrow\langle-x, y\rangle=-\langle x, y\rangle .
$$

Consequently, $\langle m x, z\rangle=m\langle x, z\rangle$ for every $m \in \mathbb{Z}$. Let $m \in \mathbb{Z}$ and $n \in \mathbb{N}$. Then,

$$
\left\langle\frac{m}{n} x, z\right\rangle=\frac{n}{n} m\left\langle\frac{1}{n} x, z\right\rangle=\frac{m}{n}\left\langle\frac{n}{n} x, z\right\rangle=\frac{m}{n}\langle x, z\rangle,
$$

which implies $\langle q x, z\rangle=q\langle x, z\rangle$ for every $q \in \mathbb{Q}$.
Let $\lambda \in \mathbb{R}$ and let $\left(q_{n}\right)_{n \in \mathbb{N}}$ be a sequence of rational numbers converging to λ for $n \rightarrow \infty$. Since the triangle inequality $|\|x\|-\|y\|| \leq\|x-y\|$ implies that the norm is a continuous map, we have

$$
\begin{aligned}
\langle\lambda x, z\rangle & =\frac{1}{4}\|\lambda x+z\|^{2}-\frac{1}{4}\|\lambda x-z\|^{2}=\lim _{n \rightarrow \infty}\left(\frac{1}{4}\left\|q_{n} x+z\right\|^{2}-\frac{1}{4}\left\|q_{n} x-z\right\|^{2}\right) \\
& =\lim _{n \rightarrow \infty}\left\langle q_{n} x, z\right\rangle=\lim _{n \rightarrow \infty} q_{n}\langle x, z\rangle=\lambda\langle x, z\rangle .
\end{aligned}
$$

Linearity in the second argument follows by symmetry.

- Positive-definiteness. For all $x \in V$, we have

$$
\langle x, x\rangle=\frac{1}{4}\|x+x\|^{2}-\frac{1}{4}\|x-x\|^{2}=\frac{1}{4}\|2 x\|^{2}=\|x\|^{2} \geq 0 .
$$

This also shows that $\|\cdot\|$ is induced by $\langle\cdot, \cdot\rangle$. Moreover, $\langle x, x\rangle=0 \Leftrightarrow\|x\|=0 \Leftrightarrow x=0$.
(b) The metric $d(\cdot, \cdot)$ is induced by a norm $\|\cdot\|$ (in the sense that there exists a norm $\|\cdot\|$ such that $\forall x, y \in V: d(x, y)=\|x-y\|)$
\Leftrightarrow the metric is translation invariant and homogeneous, i. e. $\forall v, x, y \in V \forall \lambda \in \mathbb{R}$:

$$
\begin{aligned}
d(x+v, y+v) & =d(x, y) \\
d(\lambda x, \lambda y) & =|\lambda| d(x, y) .
\end{aligned}
$$

Solution: If the metric d is induced by the norm $\|\cdot\|$, then

$$
\begin{aligned}
d(x+v, y+v) & =\|(x+v)-(y+v)\|=\|x-y\|=d(x, y), \\
d(\lambda x, \lambda y) & =\|\lambda x-\lambda y\|=\|\lambda(x-y)\|=|\lambda|\|x-y\| .
\end{aligned}
$$

Conversely, we assume that the metric d is translation invariant and homogeneous and claim that

$$
\|x\|:=d(x, 0)
$$

defines a norm which induces d. The function $\|\cdot\|$ is indeed a norm, because for all $x, y, z \in V$ and $\lambda \in \mathbb{R}$, we have

$$
\begin{aligned}
\|x\| & =0 \Leftrightarrow d(x, 0)=0 \Leftrightarrow x=0 \\
\|\lambda x\| & =d(\lambda x, 0)=d(\lambda x, \lambda 0)=|\lambda| d(x, 0)=|\lambda|\|x\| \\
\|x+y\| & =d(x+y, 0) \leq d(x+y, y)+d(y, 0)=d(x, 0)+d(y, 0)=\|x\|+\|y\|
\end{aligned}
$$

Moreover, $\|\cdot\|$ induces the metric d since for all $x, y \in V$

$$
\|x-y\|=d(x-y, 0)=d(x, y)
$$

1.6. A classic

Let (X, d) be a non-empty complete metric space, let $\lambda \in[0,1)$, and let $\Phi: X \rightarrow X$ be a mapping which satisfies for all $x, y \in X$ that $d(\Phi(x), \Phi(y)) \leq \lambda d(x, y)$. Show that there exists a unique $z \in X$ which satisfies $\Phi(z)=z$.

Solution: Let $x_{0} \in X$ be arbitrary and let x_{n} for $n \in \mathbb{N}$ be given by $x_{n}=\Phi\left(x_{n-1}\right)$. Note that for all $n \in \mathbb{N}$ it holds that

$$
d\left(x_{n+1}, x_{n}\right)=d\left(\Phi\left(x_{n}\right), \Phi\left(x_{n-1}\right)\right) \leq \lambda d\left(x_{n}, x_{n-1}\right) .
$$

Via induction, we obtain for all $n \in \mathbb{N}_{0}$ that $d\left(x_{n+1}, x_{n}\right) \leq \lambda^{n} d\left(x_{1}, x_{0}\right)$. The triangle inquality hence implies for all $n \in \mathbb{N}_{0}, k \in \mathbb{N}$ that

$$
\begin{aligned}
d\left(x_{n}, x_{n+k}\right) & \leq \sum_{l=0}^{k-1} d\left(x_{n+l+1}, x_{n+l}\right) \leq \sum_{l=0}^{k-1} \lambda^{n+l} d\left(x_{1}, x_{0}\right) \\
& =\lambda^{n} d\left(x_{1}, x_{0}\right) \sum_{l=0}^{k-1} \lambda^{l} \leq \frac{\lambda^{n}}{1-\lambda} d\left(x_{1}, x_{0}\right) .
\end{aligned}
$$

This implies that $\left(x_{n}\right)_{n \in \mathbb{N}_{0}}$ is Cauchy in (X, d). Hence, there exists $z \in X$ such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$. Note that the fact that Φ is Lipschitz continuous implies that

$$
\Phi(z)=\Phi\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} \Phi\left(x_{n}\right)=\lim _{n \rightarrow \infty} x_{n+1}=z
$$

This finishes the existence part of the proof. The fact that z is the unique fixed point of Φ follows since for every $w \in X$ with $\Phi(w)=w$, we get:

$$
d(z, w)=d(\Phi(z), \Phi(w)) \leq \lambda d(z, w)
$$

which only holds if $d(z, w)=0$ as $\lambda<1$. Thus, $z=w$.

