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2.1. Statements of Baire

For a metric space (M,d) we shall prove the equivalence of

(i) Every residual set Ω ⊆M is dense in M .
(ii) The interior of every meagre set A ⊆M is empty.
(iii) The empty set is the only subset of M which is open and meagre.
(iv) Countable intersections of dense open sets are dense.

Solution: “(i) ⇒ (ii)”: Let A ⊆ M be a meagre set. Then, by definition, A{ is
residual. Moreover, by (i), A{ is dense in M . Hence, ∅ = (M \ A{)◦ = A◦.

“(ii)⇒ (iii)”: Let A ⊆M be open and meagre. Then A = A◦ and, by (ii), A◦ = ∅.

“(iii) ⇒ (iv)”: Let A = ⋂
n∈NAn be a countable intersection of dense open sets

An ⊆M , n ∈ N. Fix an arbitrary n ∈ N. Since An is dense, (A{
n)◦ = ∅. Since An is

open, A{
n is closed. Thus, (A{

n)◦ = (A{
n)◦ = ∅, which means that A{

n is nowhere dense.
Thus, A{ = ⋃

k∈NA
{
k is meagre. (A{)◦ is open and meagre, hence empty by (iii). This

implies that A is dense in M .

“(iv) ⇒ (i)”: Let Ω ⊆ M be a residual set. Since A = Ω{ is meagre, A = ⋃
n∈NAn

for nowhere dense sets An, n ∈ N. Then it holds for every n ∈ N that ∅ = (An)◦ =
(M \ (An){)◦ which implies that (An){ is dense in M for all n ∈ N. Moreover, all the
sets (An){, n ∈ N, are open since An is closed for every n ∈ N. Then, (iv) implies
density of ⋂n∈N(An){, which in turn implies the density of Ω by the following chain
of (in-)equalities:

Ω = A{ =
⋂

n∈N
A{

n ⊇
⋂

n∈N
(An){.

2.2. Algebraic (Hamel) bases for Banach spaces

Let X be a vector space. An algebraic basis for X is a subset E ⊆ X such that every
x ∈ X is uniquely given as finite linear combination of elements in E.

(a) Show that, if (X, ‖·‖) is a Banach space, then any algebraic basis for X is either
finite or uncountable.

Solution: Assume by contradiction that X has a countably infinite algebraic basis
{e1, e2, . . .}. For n ∈ N we define the linear subspaces An = span{e1, . . . , en} ⊆ X.

For every n ∈ N, we find that, being a finite dimensional subspace, An is closed
(why?). Suppose that there exists n ∈ N such that An has non-empty interior. Then
there exist x ∈ An and ε ∈ (0,∞) such that Bε(x) ⊆ An, where Bε(x) denotes the
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open ε-ball with center x. Since An is a linear subspace, we may subtract x ∈ An

from the elements in Bε(x) to obtain Bε(0) ⊆ An. For the same reason,

An ⊇ {λy | λ > 0, y ∈ Bε(x)} = X.

This implies dimX ≤ n which contradicts our assumption that the algebraic basis of
X is infinite. Thus, for every n ∈ N, the set An must have empty interior and, being
also closed, needs to be nowhere dense. By assumption,

X =
⋃

n∈N
An,

which implies that X is meager. Since X is complete, this contradicts Baire’s Theorem.

(b) Let P be the vector space of all real-valued polynomials over R, i.e.,

P =
{
p : R→ R | ∃n ∈ N0, a0, a1, . . . , an ∈ R : ∀t ∈ R : p(t) =

n∑
k=0

akt
k

}
.

Show that there is no norm ‖·‖ : P → [0,∞) on P turning (P , ‖·‖) into a Banach
space.

Solution: With the monomials {R 3 x 7→ xn ∈ R | n ∈ N} ⊆ P constituting a
countably infinite algebraic basis of P , the previous part implies that (P , ‖·‖) cannot
be a Banach space, no matter what the norm ‖·‖ is.

2.3. A real analysis application

Let f ∈ C0([0,∞)) be a continuous function satisfying

∀t ∈ [0,∞) : lim
n→∞

f(nt) = 0.

Prove that limt→∞ f(t) = 0.

Solution: Given f ∈ C0([0,∞)) satisfying ∀t ∈ [0,∞) : lim
n→∞

f(nt) = 0 we define
the functions fn : [0,∞) → R, n ∈ N, via fn(t) = |f(nt)| for all t ∈ [0,∞), n ∈ N.
Let ε ∈ (0,∞) and define for every N ∈ N the set

AN :=
∞⋂

n=N

{t ∈ [0,∞) | fn(t) ≤ ε}.

Since for every n ∈ N the function fn is continuous, we have that the pre-image
f−1

n ([0, ε]) = {t ∈ [0,∞) | fn(t) ≤ ε} is closed for all n ∈ N. Thus, the set AN is
closed as intersection of closed sets. By assumption,

∀t ∈ [0,∞) ∃Nt ∈ N ∀n ≥ Nt : fn(t) ≤ ε
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(i.e., ∀t ∈ [0,∞)∃Nt ∈ N : t ∈ ANt) which implies

[0,∞) =
∞⋃

N=1
AN .

Baire’s Theorem, applied to the complete metric space ([0,∞), |·|), implies that there
exists N0 ∈ N such that AN0 has non-empty interior, i.e., there exist 0 ≤ a < b such
that (a, b) ⊆ AN0 . This implies

∀n ≥ N0 ∀t ∈ (a, b) : fn(t) ≤ ε

⇔ ∀n ≥ N0 ∀t ∈ (na, nb) : |f(t)| ≤ ε.

If n > a
b−a

, then (n+ 1)a < nb. For the intervals Ja,b(n) := (na, nb) this means that
Ja,b(n) ∩ Ja,b(n+ 1) 6= ∅. Letting N1 > max{N0,

a
b−a
}, we therefore obtain

∀t > N1a : |f(t)| ≤ ε.

This proves lim
t→∞

f(t) = 0 since ε ∈ (0,∞) was arbitrary.

2.4. Singularity condensation

Let (X, ‖·‖X) be a Banach space and let (Y1, ‖·‖Y1), (Y2, ‖·‖Y2), . . . be normed spaces.
For every n ∈ N, let Gn ⊆ L(X, Yn) be an unbounded set of linear continuous
mappings from X to Yn. Prove that there exists x ∈ X satisfying for all n ∈ N that
supT∈Gn

‖Tx‖Yn =∞.

Solution: Assume for a contradiction that for every x ∈ X there exists n ∈ N such
that supT∈Gn

‖Tx‖Yn < ∞. In other words, we can write X = ⋃
n∈NAn with An

defined for every n ∈ N via

An =
{
x ∈ X : sup

T∈Gn

‖Tx‖Yn <∞
}
.

Note that X would be meagre if all the sets An, n ∈ N, were meagre. Since X is not
meagre by Baire’s Theorem, we thus conclude that there exists N ∈ N so that AN is
not meagre. Observe that AN may be represented as AN = ⋃

k∈NBk with Bk defined
for every k ∈ N by

Bk =
{
x ∈ X : sup

T∈GN

‖Tx‖YN
≤ k

}
.

The assumption that GN is a set of linear continuous mappings from X to YN implies
that Bk is closed for every k ∈ N. Together with the fact that AN is not meagre,
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we deduce the existence of K ∈ N such that B◦K 6= ∅. That is, there exist x ∈ X,
ε ∈ (0,∞) so that {y ∈ X : ‖y − x‖X < ε} ⊆ Bk. This, on the other hand, implies
for every y ∈ X with ‖y‖X ≤ 1 that

‖Ty‖YN
= 2
ε

∥∥∥∥T(x+ ε

2y − x
)∥∥∥∥

YN

≤ 2
ε

(∥∥∥∥T(x+ ε

2y
)∥∥∥∥

YN

+ ‖Tx‖YN

)
≤ 4k

ε
, for all T ∈ GN .

This, on the other hand, contradicts the assumption that GN is unbounded.

2.5. Discrete Lp-spaces and inclusions

Let (xn)n∈N ⊆ R be a sequence. Define, for every p ∈ [1,∞],

‖(xn)n∈N‖`p =



(∑
n∈N
|xn|p

)1/p

if p <∞,

sup
n∈N
|xn| if p =∞,

and let `p = {(xn)n∈N | ‖(xn)n∈N‖`p <∞}.

(a) Show for every p ∈ [1,∞] that (`p, ‖·‖`p) is a Banach space.

Solution: Let (xn)n∈N ⊆ `p with xn = (xn,k)k∈N, n ∈ N, be a Cauchy sequence. This
implies that for every k ∈ N, the sequence (xn,k)n∈N ⊆ R is Cauchy in R. Hence, there
exists a sequence (ak)k∈N ⊆ R satisfying for every k ∈ N that lim supn→∞ |xn,k−ak| = 0.
It remains to show that (ak)k∈N ∈ `p and that (xn)n∈N ⊆ `p converges to (ak)k∈N. We
argue in the following only for p ∈ [1,∞) and leave the case p = ∞ as an exercise.
The fact that Cauchy sequences are bounded and the fact that (xn,k)n∈N converges to
ak for every k ∈ N imply for every N ∈ N that

N∑
k=1
|ak|p = lim

n→∞

N∑
k=1
|xn,k|p ≤ sup

n∈N
‖xn‖p

`p <∞.

Letting N →∞ establishes (ak)k∈N ∈ `p. Moreover, for every N ∈ N, we have:

N∑
k=1
|ak − xn,k|p = lim

m→∞

N∑
k=1
|xm,k − xn,k|p ≤ sup

m≥n
‖xm − xn‖p

`p .

Hence, for all n ∈ N, it holds that ‖a− xn‖`p ≤ supm≥n‖xm − xn‖`p . Since (xn)n∈N is
a Cauchy sequence, the right-hand side tends to 0 as n→∞.

Let now 1 ≤ p < q ≤ ∞. Prove that:
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(b) `p ( `q and ‖(xn)n∈N‖`q ≤ ‖(xn)n∈N‖`p for every (xn)n∈N ∈ `p.

Solution: It suffices to prove the inequality ‖x‖`q ≤ ‖x‖`p for all x ∈ `p which implies
the inclusion `p ⊆ `q by definition of the spaces. Since (n−

1
p )n∈N ∈ `q \`p, the inclusion

is strict.

Scaling. Since ‖x‖`q ≤ ‖x‖`p if and only if ‖λx‖`q ≤ ‖λx‖`p for some λ > 0, it suffices
to prove ‖x‖`q ≤ 1 for all x = (xn)n∈N ∈ `p with ‖x‖`p = 1.

Case q =∞. For all n ∈ N we have

|xn| =
(
|xn|p

) 1
p ≤

( ∞∑
k=1
|xk|p

) 1
p

= ‖x‖`p = 1.

Therefore, ‖x‖`∞ = supn∈N|xn| ≤ 1.

Case q < ∞. The assumption ‖x‖`p = 1 implies |xn| ≤ 1 for all n ∈ N. Since
1 ≤ p < q, we have |xn|q ≤ |xn|p for all n ∈ N. This implies the inequality

‖x‖`q =
(∑

n∈N
|xn|q

) 1
q

≤
(∑

n∈N
|xn|p

) 1
q

=
(
‖x‖p

`p

) 1
q = 1

p
q = 1.

(c) `p is meager in `q.

Solution: Define for every n ∈ N the set An as An = {x ∈ `q | ‖x‖`p ≤ n}. It is
clear that `q = ⋃

n∈NAn. It is our goal to show for every n ∈ N that An is closed and
has empty interior.

Let n ∈ N be arbitrary but fixed. In order to show that An is closed in (`q, ‖·‖`q), we
will prove that the limit of every `q-convergent sequence with elements in An is also
in An. Let (a(k))k∈N be a sequence of elements a(k) = (a(k)

j )j∈N ∈ An, k ∈ N. Suppose
b = (bj)j∈N ∈ `q satisfies lim

k→∞
‖a(k) − b‖`q = 0. Then, for every j ∈ N,

|a(k)
j − bj| ≤

(∑
i∈N
|a(k)

i − bi|q
) 1

q

= ‖a(k) − b‖`q
k→∞−−−→ 0.

Let N ∈ N be arbitrary. By continuity of |·|p : R→ R, we have

N∑
j=1
|bj|p = lim

k→∞

N∑
j=1
|a(k)

j |p ≤ lim sup
k→∞

‖a(k)‖p
`p ≤ np

since the number of summands is finite. In the limit N → ∞, we see ‖b‖p
`p ≤ np,

which implies b ∈ An. Therefore, An is closed in (`q, ‖·‖`q).
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Next we show that A◦n = ∅. Towards a contradiction, suppose An has non-empty
interior in the `q- topology. Then there exist a = (am)m∈N ∈ An and ε > 0 such that

B := {x ∈ `q | ‖a− x‖`q < ε} ⊆ An.

Consider b = (bm)m∈N ∈ `q given by bm = m−
1
p . Indeed, ∑∞m=1m

− q
p <∞ since p < q.

We define z = (zm)m∈N by

zm = am + εbm

2‖b‖`q

.

Then ‖a− z‖`q = ε
2 and z ∈ B. However, b /∈ `p and a ∈ `p imply z /∈ `p ⊇ An which

contradicts B ⊆ An. Therefore, An has empty interior in (`q, ‖·‖`q). Being closed
with empty interior, An is nowhere dense in (`q, ‖·‖`q).

Since `p = ⋃
n∈NAn we may conclude that `p is meagre in `q.

(d) ⋃1≤r<q `
r ( `q.

Solution: Since `p1 ⊆ `p2 for p1 < p2 by (b) we have
⋃

p∈[1,q[
`p =

⋃
p∈[1,q[∩Q

`p.

By (c), the right hand side is a countable union of meagre subsets of (`q, ‖·‖`q) and
therefore meagre itself (see lecture notes, Beispiel 1.3.2.iii). Being complete, `q is not
meagre in (`q, ‖·‖`q). Therefore, we may conclude strict inclusion

⋃
p∈[1,q[∩Q

`p ( `q.

2.6. A reformulation of completeness for Banach spaces

Let (X, ‖·‖) be a normed vector space. Prove that the following statements are
equivalent.

(a) (X, ‖·‖) is a Banach space.

(b) For every sequence (xn)n∈N in X with
∞∑

k=1
‖xn‖ <∞ the limit lim

N→∞

N∑
n=1

xn exists.
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Solution: If (X, ‖·‖) is a Banach space, and (xk)k∈N any sequence in X with∑∞
k=1‖xk‖ < ∞, then (sn)n∈N given by sn = ∑n

k=1 xk is a Cauchy sequence (and
hence convergent) since by assumption, for every ε ∈ (0,∞) there exists Nε ∈ N such
that for every m ≥ n ≥ Nε,

‖sm − sn‖ ≤
m∑

k=n+1
‖xk‖ ≤

∞∑
k=Nε+1

‖xk‖ < ε.

Conversely, we assume for every sequence (xk)k∈N in X that ∑∞k=1‖xk‖ <∞ implies
convergence of sn = ∑n

k=1 xk in X for n→∞. Let (yn)n∈N be a Cauchy sequence in
X. Then,

∀k ∈ N ∃Nk ∈ N ∀n,m ≥ Nk : ‖yn − ym‖ ≤ 2−k.

Without loss of generality, we can assume Nk+1 > Nk. Let xk := yNk+1 − yNk
. Then,

∞∑
k=1
‖xk‖ =

∞∑
k=1
‖yNk+1 − yNk

‖ ≤
∞∑

k=1
2−k <∞,

which by assumption implies that the sequence (sn)n∈N ⊆ X, given by

sn =
n∑

k=1
xk =

n∑
k=1

(yNk+1 − yNk
) = yNn+1 − yN1 , for all n ∈ N, ĺ

converges in X for n→∞. Hence, (yNn)n∈N is a convergent subsequence of (yn)n∈N.
Since (yn)n∈N is Cauchy, it converges to the same limit in X. Thus, (X, ‖·‖) is
complete.

2.7. Infinite-dimensional vector spaces and separability

(a) Let ∅ 6= Ω ⊆ Rn be an open set. Show that Lp(Ω) is an infinite-dimensional
vector space for all 1 ≤ p ≤ ∞.

Solution: Suppose by contradiction, Lp(Ω) has finite dimension d ∈ N. Since
∅ 6= Ω ⊆ Rn is open there exist d+1 disjoint balls Bi := Bri

(xi) ⊆ Ω for i = 1, . . . , d+1.
For every i ∈ {1, 2, . . . , d+ 1} let ϕi : Ω→ R be given by

ϕi(x) = max
{

0, 1− 4|x− xi|2

r2
i

}
.

Ω Bi

+ ++
xi

ϕi
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Then, ϕ1, . . . , ϕd+1 ∈ Cc(Ω) ⊆ Lp(Ω) with disjoint supports. Moreover, since the
subset {ϕ1, . . . , ϕd+1} contains more than d elements, it must be linearly dependent.
Let λ1, . . . , λd+1 ∈ R be not all equal to 0 such that

d+1∑
i=1

λiϕi = 0.

However, if we multiply by ϕj for any j ∈ {1, . . . , d+ 1} and integrate over Ω,

0 =
∫

Ω

d+1∑
i=1

λiϕiϕj dµ =
∫

Ω
λiϕ

2
j dµ = λj

∫
Ω
ϕ2

j dµ ⇒ λj = 0.

(b) Let (X,A, µ) be a measure space. Recall that if X is separable and the measure µ
is finite (or, more generally, σ-finite) and if 1 ≤ p <∞, then the space Lp(X,A, µ) is
separable. Roughly speaking, in the simple case when X = (0, 1), A = Borel-σ-algebra
and µ = L1, this relies on the fact that any element in those spaces can be arbitrarily
well approximated by a function of the form

f =
k∑

i=1
qi χBi

for k ∈ N, Bi := Bri
(xi), qi ∈ Q, xi ∈ Q ∩ (0, 1), 0 < ri ∈ Q.

Show that instead
(
L∞((0, 1)), ‖·‖L∞((0,1))

)
is not separable, i.e., it does not contain

a countable dense subset.

Solution: We define In := ( 1
n+1 ,

1
n
) ⊆ (0, 1) for n ∈ N and consider the characteristic

function χIn of In, i. e.

χIn(x) :=

1, if x ∈ In,

0, if x ∈ (0, 1) \ In.

Given any subset ∅ 6= M ⊆ N we define the function fM ∈ L∞((0, 1)) by

fM(x) :=
∑

n∈M

χIn(x)

Since the intervals In, n ∈ N, are pairwise disjoint, open and non-empty, we have
‖fM‖L∞ = 1 for every ∅ 6= M ⊆ N. For the same reason,

‖fM − fM ′‖L∞ = 1.

if M 6= M ′. Therefore, the balls BM = {g ∈ L∞((0, 1)) | ‖g − fM‖L∞ < 1
3} are

pairwise disjoint. If S ⊆ L∞((0, 1)) is any dense subset, then S ∩BM 6= ∅ for every
∅ 6= M ⊆ N. Thus, there is a surjective map S → {BM | ∅ 6= M ⊆ N}. Since there
are uncountably many different subsets of N, the set S must be uncountable as well.
Therefore, L∞((0, 1)) does not admit a countable dense subset.

8/8 last update: 9 October 2021


