2.1. Statements of Baire

For a metric space (M, d) we shall prove the equivalence of
(i) Every residual set $\Omega \subseteq M$ is dense in M.
(ii) The interior of every meagre set $A \subseteq M$ is empty.
(iii) The empty set is the only subset of M which is open and meagre.
(iv) Countable intersections of dense open sets are dense.

Solution: "(i) \Rightarrow (ii)": Let $A \subseteq M$ be a meagre set. Then, by definition, A^{\complement} is residual. Moreover, by (i), A^{\complement} is dense in M. Hence, $\emptyset=\left(M \backslash A^{\complement}\right)^{\circ}=A^{\circ}$.
"(ii) \Rightarrow (iii)": Let $A \subseteq M$ be open and meagre. Then $A=A^{\circ}$ and, by (ii), $A^{\circ}=\emptyset$.
"(iii) \Rightarrow (iv)": Let $A=\bigcap_{n \in \mathbb{N}} A_{n}$ be a countable intersection of dense open sets $A_{n} \subseteq M, n \in \mathbb{N}$. Fix an arbitrary $n \in \mathbb{N}$. Since A_{n} is dense, $\left(A_{n}^{\complement}\right)^{\circ}=\emptyset$. Since A_{n} is open, A_{n}^{\complement} is closed. Thus, $\left(\overline{A_{n}^{\complement}}\right)^{\circ}=\left(A_{n}^{\complement}\right)^{\circ}=\emptyset$, which means that A_{n}^{\complement} is nowhere dense. Thus, $A^{\complement}=\bigcup_{k \in \mathbb{N}} A_{k}^{\complement}$ is meagre. $\left(A^{\complement}\right)^{\circ}$ is open and meagre, hence empty by (iii). This implies that A is dense in M.
"(iv) \Rightarrow (i)": Let $\Omega \subseteq M$ be a residual set. Since $A=\Omega^{\complement}$ is meagre, $A=\cup_{n \in \mathbb{N}} A_{n}$ for nowhere dense sets $A_{n}, n \in \mathbb{N}$. Then it holds for every $n \in \mathbb{N}$ that $\emptyset=\left(\overline{A_{n}}\right)^{\circ}=$ $\left(M \backslash\left(\overline{A_{n}}\right)^{\complement}\right)^{\circ}$ which implies that $\left(\overline{A_{n}}\right)^{\complement}$ is dense in M for all $n \in \mathbb{N}$. Moreover, all the sets $\left(\overline{A_{n}}\right)^{\complement}, n \in \mathbb{N}$, are open since $\overline{A_{n}}$ is closed for every $n \in \mathbb{N}$. Then, (iv) implies density of $\bigcap_{n \in \mathbb{N}}\left(\overline{A_{n}}\right)^{\complement}$, which in turn implies the density of Ω by the following chain of (in-)equalities:

$$
\Omega=A^{\complement}=\bigcap_{n \in \mathbb{N}} A_{n}^{\complement} \supseteq \bigcap_{n \in \mathbb{N}}\left(\overline{A_{n}}\right)^{\complement} .
$$

2.2. Algebraic (Hamel) bases for Banach spaces

Let X be a vector space. An algebraic basis for X is a subset $E \subseteq X$ such that every $x \in X$ is uniquely given as finite linear combination of elements in E.
(a) Show that, if $(X,\|\cdot\|)$ is a Banach space, then any algebraic basis for X is either finite or uncountable.

Solution: Assume by contradiction that X has a countably infinite algebraic basis $\left\{e_{1}, e_{2}, \ldots\right\}$. For $n \in \mathbb{N}$ we define the linear subspaces $A_{n}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\} \subseteq X$.

For every $n \in \mathbb{N}$, we find that, being a finite dimensional subspace, A_{n} is closed (why?). Suppose that there exists $n \in \mathbb{N}$ such that A_{n} has non-empty interior. Then there exist $x \in A_{n}$ and $\varepsilon \in(0, \infty)$ such that $B_{\varepsilon}(x) \subseteq A_{n}$, where $B_{\varepsilon}(x)$ denotes the
open ε-ball with center x. Since A_{n} is a linear subspace, we may subtract $x \in A_{n}$ from the elements in $B_{\varepsilon}(x)$ to obtain $B_{\varepsilon}(0) \subseteq A_{n}$. For the same reason,

$$
A_{n} \supseteq\left\{\lambda y \mid \lambda>0, y \in B_{\varepsilon}(x)\right\}=X
$$

This implies $\operatorname{dim} X \leq n$ which contradicts our assumption that the algebraic basis of X is infinite. Thus, for every $n \in \mathbb{N}$, the set A_{n} must have empty interior and, being also closed, needs to be nowhere dense. By assumption,

$$
X=\bigcup_{n \in \mathbb{N}} A_{n},
$$

which implies that X is meager. Since X is complete, this contradicts Baire's Theorem.
(b) Let \mathcal{P} be the vector space of all real-valued polynomials over \mathbb{R}, i.e.,

$$
\mathcal{P}=\left\{p: \mathbb{R} \rightarrow \mathbb{R} \mid \exists n \in \mathbb{N}_{0}, a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}: \forall t \in \mathbb{R}: p(t)=\sum_{k=0}^{n} a_{k} t^{k}\right\}
$$

Show that there is no norm $\|\cdot\|: \mathcal{P} \rightarrow[0, \infty)$ on \mathcal{P} turning $(\mathcal{P},\|\cdot\|)$ into a Banach space.

Solution: With the monomials $\left\{\mathbb{R} \ni x \mapsto x^{n} \in \mathbb{R} \mid n \in \mathbb{N}\right\} \subseteq \mathcal{P}$ constituting a countably infinite algebraic basis of \mathcal{P}, the previous part implies that $(\mathcal{P},\|\cdot\|)$ cannot be a Banach space, no matter what the norm $\|\cdot\|$ is.

2.3. A real analysis application

Let $f \in C^{0}([0, \infty))$ be a continuous function satisfying

$$
\forall t \in[0, \infty): \lim _{n \rightarrow \infty} f(n t)=0
$$

Prove that $\lim _{t \rightarrow \infty} f(t)=0$.
Solution: Given $f \in C^{0}([0, \infty))$ satisfying $\forall t \in[0, \infty): \lim _{n \rightarrow \infty} f(n t)=0$ we define the functions $f_{n}:[0, \infty) \rightarrow \mathbb{R}, n \in \mathbb{N}$, via $f_{n}(t)=|f(n t)|$ for all $t \in[0, \infty), n \in \mathbb{N}$. Let $\varepsilon \in(0, \infty)$ and define for every $N \in \mathbb{N}$ the set

$$
A_{N}:=\bigcap_{n=N}^{\infty}\left\{t \in[0, \infty) \mid f_{n}(t) \leq \varepsilon\right\} .
$$

Since for every $n \in \mathbb{N}$ the function f_{n} is continuous, we have that the pre-image $f_{n}^{-1}([0, \varepsilon])=\left\{t \in[0, \infty) \mid f_{n}(t) \leq \varepsilon\right\}$ is closed for all $n \in \mathbb{N}$. Thus, the set A_{N} is closed as intersection of closed sets. By assumption,

$$
\forall t \in[0, \infty) \quad \exists N_{t} \in \mathbb{N} \quad \forall n \geq N_{t}: \quad f_{n}(t) \leq \varepsilon
$$

(i.e., $\forall t \in[0, \infty) \exists N_{t} \in \mathbb{N}: t \in A_{N_{t}}$) which implies

$$
[0, \infty)=\bigcup_{N=1}^{\infty} A_{N}
$$

Baire's Theorem, applied to the complete metric space $([0, \infty),|\cdot|)$, implies that there exists $N_{0} \in \mathbb{N}$ such that $A_{N_{0}}$ has non-empty interior, i.e., there exist $0 \leq a<b$ such that $(a, b) \subseteq A_{N_{0}}$. This implies

$$
\begin{aligned}
& \forall n \geq N_{0} \quad \forall t \in(a, b): \quad f_{n}(t) \leq \varepsilon \\
& \Leftrightarrow \quad \forall n \geq N_{0} \quad \forall t \in(n a, n b):|f(t)| \leq \varepsilon .
\end{aligned}
$$

If $n>\frac{a}{b-a}$, then $(n+1) a<n b$. For the intervals $J_{a, b}(n):=(n a, n b)$ this means that $J_{a, b}(n) \cap J_{a, b}(n+1) \neq \emptyset$. Letting $N_{1}>\max \left\{N_{0}, \frac{a}{b-a}\right\}$, we therefore obtain

$$
\forall t>N_{1} a: \quad|f(t)| \leq \varepsilon
$$

This proves $\lim _{t \rightarrow \infty} f(t)=0$ since $\varepsilon \in(0, \infty)$ was arbitrary.

2.4. Singularity condensation

Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space and let $\left(Y_{1},\|\cdot\|_{Y_{1}}\right),\left(Y_{2},\|\cdot\|_{Y_{2}}\right), \ldots$ be normed spaces. For every $n \in \mathbb{N}$, let $G_{n} \subseteq L\left(X, Y_{n}\right)$ be an unbounded set of linear continuous mappings from X to Y_{n}. Prove that there exists $x \in X$ satisfying for all $n \in \mathbb{N}$ that $\sup _{T \in G_{n}}\|T x\|_{Y_{n}}=\infty$.
Solution: Assume for a contradiction that for every $x \in X$ there exists $n \in \mathbb{N}$ such that $\sup _{T \in G_{n}}\|T x\|_{Y_{n}}<\infty$. In other words, we can write $X=\bigcup_{n \in \mathbb{N}} A_{n}$ with A_{n} defined for every $n \in \mathbb{N}$ via

$$
A_{n}=\left\{x \in X: \sup _{T \in G_{n}}\|T x\|_{Y_{n}}<\infty\right\}
$$

Note that X would be meagre if all the sets $A_{n}, n \in \mathbb{N}$, were meagre. Since X is not meagre by Baire's Theorem, we thus conclude that there exists $N \in \mathbb{N}$ so that A_{N} is not meagre. Observe that A_{N} may be represented as $A_{N}=\bigcup_{k \in \mathbb{N}} B_{k}$ with B_{k} defined for every $k \in \mathbb{N}$ by

$$
B_{k}=\left\{x \in X: \sup _{T \in G_{N}}\|T x\|_{Y_{N}} \leq k\right\} .
$$

The assumption that G_{N} is a set of linear continuous mappings from X to Y_{N} implies that B_{k} is closed for every $k \in \mathbb{N}$. Together with the fact that A_{N} is not meagre,
we deduce the existence of $K \in \mathbb{N}$ such that $B_{K}^{\circ} \neq \emptyset$. That is, there exist $x \in X$, $\varepsilon \in(0, \infty)$ so that $\left\{y \in X:\|y-x\|_{X}<\varepsilon\right\} \subseteq B_{k}$. This, on the other hand, implies for every $y \in X$ with $\|y\|_{X} \leq 1$ that

$$
\begin{aligned}
\|T y\|_{Y_{N}} & =\frac{2}{\varepsilon}\left\|T\left(x+\frac{\varepsilon}{2} y-x\right)\right\|_{Y_{N}} \\
& \leq \frac{2}{\varepsilon}\left(\left\|T\left(x+\frac{\varepsilon}{2} y\right)\right\|_{Y_{N}}+\|T x\|_{Y_{N}}\right) \leq \frac{4 k}{\varepsilon}, \quad \text { for all } T \in G_{N} .
\end{aligned}
$$

This, on the other hand, contradicts the assumption that G_{N} is unbounded.

2.5. Discrete L^{p}-spaces and inclusions

Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ be a sequence. Define, for every $p \in[1, \infty]$,

$$
\left\|\left(x_{n}\right)_{n \in \mathbb{N}}\right\|_{\ell p}= \begin{cases}\left(\sum_{n \in \mathbb{N}}\left|x_{n}\right|^{p}\right)^{1 / p} & \text { if } p<\infty \\ \sup _{n \in \mathbb{N}}\left|x_{n}\right| & \text { if } p=\infty\end{cases}
$$

and let $\ell^{p}=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \mid\left\|\left(x_{n}\right)_{n \in \mathbb{N}}\right\|_{\ell^{p}}<\infty\right\}$.
(a) Show for every $p \in[1, \infty]$ that $\left(\ell^{p},\|\cdot\|_{\ell^{p}}\right)$ is a Banach space.

Solution: Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \ell^{p}$ with $x_{n}=\left(x_{n, k}\right)_{k \in \mathbb{N}}, n \in \mathbb{N}$, be a Cauchy sequence. This implies that for every $k \in \mathbb{N}$, the sequence $\left(x_{n, k}\right)_{n \in \mathbb{N}} \subseteq \mathbb{R}$ is Cauchy in \mathbb{R}. Hence, there exists a sequence $\left(a_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}$ satisfying for every $k \in \mathbb{N}$ that $\lim _{\sup _{n \rightarrow \infty}}\left|x_{n, k}-a_{k}\right|=0$. It remains to show that $\left(a_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$ and that $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \ell^{p}$ converges to $\left(a_{k}\right)_{k \in \mathbb{N}}$. We argue in the following only for $p \in[1, \infty)$ and leave the case $p=\infty$ as an exercise. The fact that Cauchy sequences are bounded and the fact that $\left(x_{n, k}\right)_{n \in \mathbb{N}}$ converges to a_{k} for every $k \in \mathbb{N}$ imply for every $N \in \mathbb{N}$ that

$$
\sum_{k=1}^{N}\left|a_{k}\right|^{p}=\lim _{n \rightarrow \infty} \sum_{k=1}^{N}\left|x_{n, k}\right|^{p} \leq \sup _{n \in \mathbb{N}}\left\|x_{n}\right\|_{\ell^{p}}^{p}<\infty .
$$

Letting $N \rightarrow \infty$ establishes $\left(a_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$. Moreover, for every $N \in \mathbb{N}$, we have:

$$
\sum_{k=1}^{N}\left|a_{k}-x_{n, k}\right|^{p}=\lim _{m \rightarrow \infty} \sum_{k=1}^{N}\left|x_{m, k}-x_{n, k}\right|^{p} \leq \sup _{m \geq n}\left\|x_{m}-x_{n}\right\|_{\ell^{p}}^{p} .
$$

Hence, for all $n \in \mathbb{N}$, it holds that $\left\|a-x_{n}\right\|_{\ell^{p}} \leq \sup _{m \geq n}\left\|x_{m}-x_{n}\right\|_{\ell^{p}}$. Since $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence, the right-hand side tends to 0 as $n \rightarrow \infty$.

Let now $1 \leq p<q \leq \infty$. Prove that:
(b) $\ell^{p} \subsetneq \ell^{q}$ and $\left\|\left(x_{n}\right)_{n \in \mathbb{N}}\right\|_{\ell q} \leq\left\|\left(x_{n}\right)_{n \in \mathbb{N}}\right\|_{\ell^{p}}$ for every $\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{p}$.

Solution: It suffices to prove the inequality $\|x\|_{\ell^{q}} \leq\|x\|_{\ell^{p}}$ for all $x \in \ell^{p}$ which implies the inclusion $\ell^{p} \subseteq \ell^{q}$ by definition of the spaces. Since $\left(n^{-\frac{1}{p}}\right)_{n \in \mathbb{N}} \in \ell^{q} \backslash \ell^{p}$, the inclusion is strict.

Scaling. Since $\|x\|_{\ell^{q}} \leq\|x\|_{\ell^{p}}$ if and only if $\|\lambda x\|_{\ell^{q}} \leq\|\lambda x\|_{\ell^{p}}$ for some $\lambda>0$, it suffices to prove $\|x\|_{\ell^{q}} \leq 1$ for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{p}$ with $\|x\|_{\ell^{p}}=1$.
Case $q=\infty$. For all $n \in \mathbb{N}$ we have

$$
\left|x_{n}\right|=\left(\left|x_{n}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}=\|x\|_{\ell^{p}}=1 .
$$

Therefore, $\|x\|_{\ell \infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right| \leq 1$.
Case $q<\infty$. The assumption $\|x\|_{\ell^{p}}=1$ implies $\left|x_{n}\right| \leq 1$ for all $n \in \mathbb{N}$. Since $1 \leq p<q$, we have $\left|x_{n}\right|^{q} \leq\left|x_{n}\right|^{p}$ for all $n \in \mathbb{N}$. This implies the inequality

$$
\|x\|_{\ell^{q}}=\left(\sum_{n \in \mathbb{N}}\left|x_{n}\right|^{q}\right)^{\frac{1}{q}} \leq\left(\sum_{n \in \mathbb{N}}\left|x_{n}\right|^{p^{\frac{1}{q}}}\right)^{\frac{1}{q}}=\left(\|x\|_{\ell^{p}}^{p}\right)^{\frac{1}{q}}=1^{\frac{p}{q}}=1 .
$$

(c) ℓ^{p} is meager in ℓ^{q}.

Solution: Define for every $n \in \mathbb{N}$ the set A_{n} as $A_{n}=\left\{x \in \ell^{q} \mid\|x\|_{\ell^{p}} \leq n\right\}$. It is clear that $\ell^{q}=\bigcup_{n \in \mathbb{N}} A_{n}$. It is our goal to show for every $n \in \mathbb{N}$ that A_{n} is closed and has empty interior.

Let $n \in \mathbb{N}$ be arbitrary but fixed. In order to show that A_{n} is closed in $\left(\ell^{q},\|\cdot\|_{\ell^{q}}\right)$, we will prove that the limit of every ℓ^{q}-convergent sequence with elements in A_{n} is also in A_{n}. Let $\left(a^{(k)}\right)_{k \in \mathbb{N}}$ be a sequence of elements $a^{(k)}=\left(a_{j}^{(k)}\right)_{j \in \mathbb{N}} \in A_{n}, k \in \mathbb{N}$. Suppose $b=\left(b_{j}\right)_{j \in \mathbb{N}} \in \ell^{q}$ satisfies $\lim _{k \rightarrow \infty}\left\|a^{(k)}-b\right\|_{\ell^{q}}=0$. Then, for every $j \in \mathbb{N}$,

$$
\left|a_{j}^{(k)}-b_{j}\right| \leq\left(\sum_{i \in \mathbb{N}}\left|a_{i}^{(k)}-b_{i}\right|^{q}\right)^{\frac{1}{q}}=\left\|a^{(k)}-b\right\|_{\ell^{q}} \xrightarrow{k \rightarrow \infty} 0 .
$$

Let $N \in \mathbb{N}$ be arbitrary. By continuity of $|\cdot|^{p}: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
\sum_{j=1}^{N}\left|b_{j}\right|^{p}=\lim _{k \rightarrow \infty} \sum_{j=1}^{N}\left|a_{j}^{(k)}\right|^{p} \leq \limsup _{k \rightarrow \infty}\left\|a^{(k)}\right\|_{\ell^{p}}^{p} \leq n^{p}
$$

since the number of summands is finite. In the limit $N \rightarrow \infty$, we see $\|b\|_{\ell^{p}}^{p} \leq n^{p}$, which implies $b \in A_{n}$. Therefore, A_{n} is closed in $\left(\ell^{q},\|\cdot\|_{\ell q}\right)$.

Next we show that $A_{n}^{\circ}=\emptyset$. Towards a contradiction, suppose A_{n} has non-empty interior in the ℓ^{q} - topology. Then there exist $a=\left(a_{m}\right)_{m \in \mathbb{N}} \in A_{n}$ and $\varepsilon>0$ such that

$$
B:=\left\{x \in \ell^{q} \mid\|a-x\|_{\ell q}<\varepsilon\right\} \subseteq A_{n} .
$$

Consider $b=\left(b_{m}\right)_{m \in \mathbb{N}} \in \ell^{q}$ given by $b_{m}=m^{-\frac{1}{p}}$. Indeed, $\sum_{m=1}^{\infty} m^{-\frac{q}{p}}<\infty$ since $p<q$. We define $z=\left(z_{m}\right)_{m \in \mathbb{N}}$ by

$$
z_{m}=a_{m}+\frac{\varepsilon b_{m}}{2\|b\|_{\ell}} .
$$

Then $\|a-z\|_{\ell^{q}}=\frac{\varepsilon}{2}$ and $z \in B$. However, $b \notin \ell^{p}$ and $a \in \ell^{p}$ imply $z \notin \ell^{p} \supseteq A_{n}$ which contradicts $B \subseteq A_{n}$. Therefore, A_{n} has empty interior in ($\ell^{q},\|\cdot\|_{\ell^{q}}$). Being closed with empty interior, A_{n} is nowhere dense in $\left(\ell^{q},\|\cdot\|_{\ell^{q}}\right)$.

Since $\ell^{p}=\bigcup_{n \in \mathbb{N}} A_{n}$ we may conclude that ℓ^{p} is meagre in ℓ^{q}.
(d) $\bigcup_{1 \leq r<q} \ell^{r} \subsetneq \ell^{q}$.

Solution: Since $\ell^{p_{1}} \subseteq \ell^{p_{2}}$ for $p_{1}<p_{2}$ by (b) we have

$$
\bigcup_{p \in[1, q[} \ell^{p}=\bigcup_{p \in[1, q[\cap \mathbb{Q}} \ell^{p} .
$$

By (c), the right hand side is a countable union of meagre subsets of $\left(\ell^{q},\|\cdot\|_{\ell^{q}}\right)$ and therefore meagre itself (see lecture notes, Beispiel 1.3.2.iii). Being complete, ℓ^{q} is not meagre in ($\ell^{q},\|\cdot\|_{\ell q}$). Therefore, we may conclude strict inclusion

$$
\bigcup_{p \in[1, q \mid \cap \mathbb{Q}} \ell^{p} \subsetneq \ell^{q} .
$$

2.6. A reformulation of completeness for Banach spaces

Let $(X,\|\cdot\|)$ be a normed vector space. Prove that the following statements are equivalent.
(a) $(X,\|\cdot\|)$ is a Banach space.
(b) For every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X with $\sum_{k=1}^{\infty}\left\|x_{n}\right\|<\infty$ the limit $\lim _{N \rightarrow \infty} \sum_{n=1}^{N} x_{n}$ exists.

Solution: If $(X,\|\cdot\|)$ is a Banach space, and $\left(x_{k}\right)_{k \in \mathbb{N}}$ any sequence in X with $\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty$, then $\left(s_{n}\right)_{n \in \mathbb{N}}$ given by $s_{n}=\sum_{k=1}^{n} x_{k}$ is a Cauchy sequence (and hence convergent) since by assumption, for every $\varepsilon \in(0, \infty)$ there exists $N_{\varepsilon} \in \mathbb{N}$ such that for every $m \geq n \geq N_{\varepsilon}$,

$$
\left\|s_{m}-s_{n}\right\| \leq \sum_{k=n+1}^{m}\left\|x_{k}\right\| \leq \sum_{k=N_{\varepsilon}+1}^{\infty}\left\|x_{k}\right\|<\varepsilon
$$

Conversely, we assume for every sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ in X that $\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty$ implies convergence of $s_{n}=\sum_{k=1}^{n} x_{k}$ in X for $n \rightarrow \infty$. Let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in X. Then,

$$
\forall k \in \mathbb{N} \quad \exists N_{k} \in \mathbb{N} \quad \forall n, m \geq N_{k}: \quad\left\|y_{n}-y_{m}\right\| \leq 2^{-k}
$$

Without loss of generality, we can assume $N_{k+1}>N_{k}$. Let $x_{k}:=y_{N_{k+1}}-y_{N_{k}}$. Then,

$$
\sum_{k=1}^{\infty}\left\|x_{k}\right\|=\sum_{k=1}^{\infty}\left\|y_{N_{k+1}}-y_{N_{k}}\right\| \leq \sum_{k=1}^{\infty} 2^{-k}<\infty
$$

which by assumption implies that the sequence $\left(s_{n}\right)_{n \in \mathbb{N}} \subseteq X$, given by

$$
s_{n}=\sum_{k=1}^{n} x_{k}=\sum_{k=1}^{n}\left(y_{N_{k+1}}-y_{N_{k}}\right)=y_{N_{n+1}}-y_{N_{1}}, \quad \text { for all } n \in \mathbb{N}, i ́
$$

converges in X for $n \rightarrow \infty$. Hence, $\left(y_{N_{n}}\right)_{n \in \mathbb{N}}$ is a convergent subsequence of $\left(y_{n}\right)_{n \in \mathbb{N}}$. Since $\left(y_{n}\right)_{n \in \mathbb{N}}$ is Cauchy, it converges to the same limit in X. Thus, $(X,\|\cdot\|)$ is complete.

2.7. Infinite-dimensional vector spaces and separability

(a) Let $\emptyset \neq \Omega \subseteq \mathbb{R}^{n}$ be an open set. Show that $L^{p}(\Omega)$ is an infinite-dimensional vector space for all $1 \leq p \leq \infty$.

Solution: Suppose by contradiction, $L^{p}(\Omega)$ has finite dimension $d \in \mathbb{N}$. Since $\emptyset \neq \Omega \subseteq \mathbb{R}^{n}$ is open there exist $d+1$ disjoint balls $B_{i}:=B_{r_{i}}\left(x_{i}\right) \subseteq \Omega$ for $i=1, \ldots, d+1$. For every $i \in\{1,2, \ldots, d+1\}$ let $\varphi_{i}: \Omega \rightarrow \mathbb{R}$ be given by

$$
\varphi_{i}(x)=\max \left\{0,1-\frac{4\left|x-x_{i}\right|^{2}}{r_{i}^{2}}\right\}
$$

Then, $\varphi_{1}, \ldots, \varphi_{d+1} \in C_{c}(\Omega) \subseteq L^{p}(\Omega)$ with disjoint supports. Moreover, since the subset $\left\{\varphi_{1}, \ldots, \varphi_{d+1}\right\}$ contains more than d elements, it must be linearly dependent. Let $\lambda_{1}, \ldots, \lambda_{d+1} \in \mathbb{R}$ be not all equal to 0 such that

$$
\sum_{i=1}^{d+1} \lambda_{i} \varphi_{i}=0 .
$$

However, if we multiply by φ_{j} for any $j \in\{1, \ldots, d+1\}$ and integrate over Ω,

$$
0=\int_{\Omega} \sum_{i=1}^{d+1} \lambda_{i} \varphi_{i} \varphi_{j} d \mu=\int_{\Omega} \lambda_{i} \varphi_{j}^{2} d \mu=\lambda_{j} \int_{\Omega} \varphi_{j}^{2} d \mu \quad \Rightarrow \lambda_{j}=0
$$

(b) Let (X, \mathcal{A}, μ) be a measure space. Recall that if X is separable and the measure μ is finite (or, more generally, σ-finite) and if $1 \leq p<\infty$, then the space $L^{p}(X, \mathcal{A}, \mu)$ is separable. Roughly speaking, in the simple case when $X=(0,1), \mathcal{A}=$ Borel- σ-algebra and $\mu=\mathcal{L}^{1}$, this relies on the fact that any element in those spaces can be arbitrarily well approximated by a function of the form

$$
f=\sum_{i=1}^{k} q_{i} \chi_{B_{i}} \quad \text { for } k \in \mathbb{N}, B_{i}:=B_{r_{i}}\left(x_{i}\right), q_{i} \in \mathbb{Q}, x_{i} \in \mathbb{Q} \cap(0,1), 0<r_{i} \in \mathbb{Q} .
$$

Show that instead $\left(L^{\infty}((0,1)),\|\cdot\|_{L^{\infty}((0,1))}\right)$ is not separable, i.e., it does not contain a countable dense subset.

Solution: We define $I_{n}:=\left(\frac{1}{n+1}, \frac{1}{n}\right) \subseteq(0,1)$ for $n \in \mathbb{N}$ and consider the characteristic function $\chi_{I_{n}}$ of I_{n}, i. e.

$$
\chi_{I_{n}}(x):= \begin{cases}1, & \text { if } x \in I_{n} \\ 0, & \text { if } x \in(0,1) \backslash I_{n} .\end{cases}
$$

Given any subset $\emptyset \neq M \subseteq \mathbb{N}$ we define the function $f_{M} \in L^{\infty}((0,1))$ by

$$
f_{M}(x):=\sum_{n \in M} \chi_{I_{n}}(x)
$$

Since the intervals $I_{n}, n \in \mathbb{N}$, are pairwise disjoint, open and non-empty, we have $\left\|f_{M}\right\|_{L^{\infty}}=1$ for every $\emptyset \neq M \subseteq \mathbb{N}$. For the same reason,

$$
\left\|f_{M}-f_{M^{\prime}}\right\|_{L^{\infty}}=1
$$

if $M \neq M^{\prime}$. Therefore, the balls $B_{M}=\left\{g \in L^{\infty}((0,1)) \left\lvert\,\left\|g-f_{M}\right\|_{L^{\infty}}<\frac{1}{3}\right.\right\}$ are pairwise disjoint. If $S \subseteq L^{\infty}((0,1))$ is any dense subset, then $S \cap B_{M} \neq \emptyset$ for every $\emptyset \neq M \subseteq \mathbb{N}$. Thus, there is a surjective map $S \rightarrow\left\{B_{M} \mid \emptyset \neq M \subseteq \mathbb{N}\right\}$. Since there are uncountably many different subsets of \mathbb{N}, the set S must be uncountable as well. Therefore, $L^{\infty}((0,1))$ does not admit a countable dense subset.

