3.1. The space of bounded linear operators

Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed \mathbb{K}-vector spaces with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. Let $L(X, Y)$ be the space of bounded \mathbb{K}-linear operators $T: X \rightarrow Y$, equipped with the norm $\|\cdot\|_{L(X, Y)}: L(X, Y) \rightarrow[0, \infty)$, defined by

$$
\|T\|_{L(X, Y)}=\sup _{x \neq 0} \frac{\|T x\|_{Y}}{\|x\|_{X}} \quad \text { for all } T \in L(X, Y)
$$

(a) Prove that

$$
\|T\|_{L(X, Y)}=\sup _{\|x\|_{X} \leq 1}\|T x\|_{Y}=\sup _{\|x\|_{X}=1}\|T x\|_{Y} \quad \text { for all } T \in L(X, Y)
$$

Solution: Linearity of T and the fact that $X \backslash\{0\}=\left\{\lambda x: \lambda \in \mathbb{K} \backslash\{0\},\|x\|_{X}=1\right\}$ imply

$$
\begin{aligned}
\sup _{x \neq 0} \frac{\|T x\|_{Y}}{\|x\|_{X}} & =\sup _{\|x\|_{X}=1, \lambda \in \mathbb{K} \backslash\{0\}} \frac{\|T(\lambda x)\|_{Y}}{\|\lambda x\|_{X}}=\sup _{\|x\|_{X}=1, \lambda \in \mathbb{K} \backslash\{0\}} \frac{\|T x\|_{Y}}{\|x\|_{X}} \\
& =\sup _{\|x\|_{X}=1} \frac{\|T x\|_{Y}}{\|x\|_{X}}=\sup _{\|x\|_{X}=1}\|T x\|_{Y} .
\end{aligned}
$$

Moreover, due to $\left\{x \in X:\|x\|_{X} \leq 1\right\}=\left\{\lambda x:|\lambda| \leq 1,\|x\|_{X}=1\right\}$ we obtain

$$
\sup _{\|x\|_{X} \leq 1}\|T x\|_{Y}=\sup _{|\lambda| \leq 1,\|x\|_{X}=1}\|T(\lambda x)\|_{Y}=\sup _{|\lambda| \leq 1,\|x\|_{X}=1} \lambda\|T x\|_{Y}=\sup _{\|x\|_{X}=1}\|T x\|_{Y}
$$

(b) Prove that $\|\cdot\|_{L(X, Y)}$ is indeed a norm on $L(X, Y)$.

Solution: Clearly, $\|\cdot\|_{L(X, Y)}: L(X, Y) \rightarrow[0, \infty)$ is well-defined. Moreover, $\|T\|_{L(X, Y)}=$ 0 for $T \in L(X, Y)$ implies that $\|T x\|_{Y} \leq 0\|x\|_{X}=0$ for all $x \in X$, i.e., $T x=0 \in Y$ for all $x \in X$, which just means $T=0 \in L(X, Y)$. Next, note that, by (a), we have for all $\lambda \in \mathbb{K}, T \in L(X, Y)$ that

$$
\begin{aligned}
\|\lambda T\|_{L(X, Y)} & =\sup _{\|x\|_{X} \leq 1}\|(\lambda T) x\|_{Y}=\sup _{\|x\|_{X} \leq 1}\|\lambda T x\|_{Y}=\sup _{\|x\|_{X} \leq 1}|\lambda|\|T x\|_{Y} \\
& =|\lambda|\|T\|_{L(X, Y)} .
\end{aligned}
$$

In addition, we obtain for $S, T \in L(X, Y)$:

$$
\begin{aligned}
\|S+T\|_{L(X, Y)} & =\sup _{\|x\|_{X} \leq 1}\|(S+T) x\|_{Y}=\sup _{\|x\|_{X} \leq 1}\|S x+T x\|_{Y} \\
& \leq \sup _{\|x\|_{X} \leq 1}\left(\|S x\|_{Y}+\|T x\|_{Y}\right) \leq \sup _{\|x\|_{X} \leq 1}\|S x\|_{Y}+\sup _{\|x\|_{X} \leq 1}\|T x\|_{Y} \\
& =\|S\|_{L(X, Y)}+\|T\|_{L(X, Y)} .
\end{aligned}
$$

(c) Prove that $\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is a \mathbb{K}-Banach space if and only if $\left(Y,\|\cdot\|_{Y}\right)$ is a \mathbb{K}-Banach space or $X=\{0\}$.

Solution: Let us assume that Y is a \mathbb{K}-Banach space. Let $\left(T_{k}\right)_{k \in \mathbb{N}} \subseteq L(X, Y)$ be an arbitrary Cauchy sequence in $\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$. This implies for every $x \in X$ that $\left(T_{k} x\right)_{k \in \mathbb{N}} \subseteq Y$ is Cauchy in $\left(Y,\|\cdot\|_{Y}\right)$. By the completeness of $\left(Y,\|\cdot\|_{Y}\right)$, there exists a map $T_{\infty}: X \rightarrow Y$ (which a priori does not need to be linear) satisfying for every $x \in X$ that $\limsup _{k \rightarrow \infty}\left\|T_{k} x-T_{\infty}(x)\right\|_{Y}=0$. The linearity of the mappings $\left(T_{k}\right)_{k \in \mathbb{N}}$, though, ensures that T_{∞} is also a linear map. The fact that Cauchy sequences are bounded implies that

$$
\left\|T_{\infty} x\right\|_{Y} \leq \sup _{n \in \mathbb{N}}\left\|T_{n}\right\|_{L(X, Y)}\|x\|_{X} \quad \text { for all } n \in \mathbb{N}
$$

i.e., that T_{∞} is a bounded linear map. Thus, $T_{\infty} \in L(X, Y)$. Moreover, due to the sequence $\left(T_{k}\right)_{k \in \mathbb{N}}$ being Cauchy in $\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$, there exists $N:(0, \infty) \rightarrow \mathbb{N}$ such that for every $\varepsilon \in(0, \infty)$ it holds that $\sup _{k, m \geq N_{\varepsilon}}\left\|T_{k}-T_{m}\right\|_{L(X, Y)} \leq \varepsilon$. By T_{∞} being the pointwise (sometimes also called strong) limit of the sequence $\left(T_{k}\right)_{k \in \mathbb{N}}$, there exists $M:(0, \infty) \times X \rightarrow \mathbb{N}$ such that for all $\varepsilon \in(0, \infty), x \in X$ it holds that $\sup _{m \geq M_{\varepsilon, x}}\left\|T_{m} x-T_{\infty} x\right\|_{Y} \leq \varepsilon$. Using these, we get for every $\varepsilon \in(0, \infty)$ the following estimate:

$$
\begin{aligned}
& \sup _{k \geq N_{\varepsilon}} \sup _{x \|_{X} \leq 1}\left\|T_{k} x-T_{\infty} x\right\|_{Y} \\
& \leq \sup _{k \geq N_{\varepsilon}\|x\|_{X} \leq 1} \sup _{n}\left[\left\|T_{k} x-T_{\max \left\{N_{\varepsilon}, M_{\varepsilon, x}\right\}} x\right\|_{Y}+\left\|T_{\max \left\{N_{\varepsilon}, M_{\varepsilon, x}\right\}} x-T_{\infty} x\right\|_{Y}\right] \\
& \leq \sup _{k \geq N_{\varepsilon}}\left[\left\|T_{k}-T_{\max \left\{N_{\varepsilon}, M_{\varepsilon, x}\right\}}\right\|_{L(X, Y)}+\varepsilon\right] \leq 2 \varepsilon .
\end{aligned}
$$

Thus, we obtain $T_{k} \rightarrow T_{\infty}$ in $\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ as $k \rightarrow \infty$, which completes the proof that $\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is complete.

For the converse, let us assume that $\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ is a Banach space and that $X \neq\{0\}$. Let $\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq Y$ by a Cauchy sequence in $\left(Y,\|\cdot\|_{Y}\right)$. Moreover, let $x_{0} \in X \backslash\{0\}$ with $\left\|x_{0}\right\|_{X}=1$ be fixed. The theorem of Hahn-Banach implies that there exists a continuous linear functional $\varphi \in X^{*}=L(X, \mathbb{K})$ satisfying $\|\varphi\|_{L(X, \mathbb{K})}=1$ and $\varphi\left(x_{0}\right)=\left\|x_{0}\right\|_{X}=1$. Define now for every $n \in \mathbb{N}$ the continuous linear mapping $T_{n}: X \rightarrow Y$ by setting $T_{n} x=\varphi(x) y_{n}$ for every $x \in X$. Note that $\left(T_{n}\right)_{n \in \mathbb{N}} \subseteq L(X, Y)$ is Cauchy in $\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ due to $\left(y_{n}\right)_{n \in \mathbb{N}}$ being Cauchy in $\left(Y,\|\cdot\|_{Y}\right)$. Hence, there exists $T_{\infty} \in L(X, Y)$ such that $T_{n} \rightarrow T_{\infty}$ in $\left(L(X, Y),\|\cdot\|_{L(X, Y)}\right)$ as $n \rightarrow \infty$. This implies in particular, that $y_{n}=T_{n} x_{0} \rightarrow T_{\infty} x_{0}=: y_{\infty}$ in $\left(Y,\|\cdot\|_{Y}\right)$.
(d) Prove that the dual space $L(X, \mathbb{K})$ of X is complete.

Solution: This follows immediately from (c) and the completeness of $(\mathbb{K},|\cdot|)$.

3.2. Lipschitz functions

Let $X=\operatorname{Lip}([0,1], \mathbb{R})$ be the vector space of Lischitz continuous functions from $[0,1]$ to \mathbb{R} and let $Y=C^{1}([0,1], \mathbb{R})$ be the vector space of continuously differentiable functions from $[0,1]$ to \mathbb{R}. Define the functions $\|\cdot\|_{\text {Lip }}: X \rightarrow[0, \infty)$ and $\|\cdot\|_{\mathrm{C}^{1}}: Y \rightarrow[0, \infty)$ by

$$
\begin{aligned}
& \|x\|_{\text {Lip }}=\sup _{s \in[0,1]}|x(s)|+\sup _{s, t \in[0,1]}\left|\frac{x(s)-x(t)}{s \neq t}\right| \quad \text { for all } x \in X, \\
& \|y\|_{\mathrm{C}^{1}}=\sup _{s \in[0,1]}|x(s)|+\sup _{s \in[0,1]}\left|x^{\prime}(s)\right| \quad \text { for all } y \in Y .
\end{aligned}
$$

(a) Prove that $\|\cdot\|_{\text {Lip }}$ is a norm on X.

Solution: This is left to the interested reader.
(b) Show that $\left(X,\|\cdot\|_{\text {Lip }}\right)$ is a Banach space.

Solution: Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ be a Cauchy sequence. This entails in particular that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\left(C([0,1], \mathbb{R}),\|\cdot\|_{C([0,1], \mathbb{R})}\right)$. Hence, there exists $x_{\infty} \in$ $C([0,1], \mathbb{R})$ such that $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges uniformly to x_{∞}. Moreover, boundedness of Cauchy sequences implies that $\sup _{n \in \mathbb{N}} \sup _{s, t \in[0,1], s \neq t}\left|\frac{x_{n}(s)-x_{n}(t)}{s-t}\right|<\infty$, i.e., there exists $L \in \mathbb{R}$ such that we have for all $n \in \mathbb{N}, s, t \in[0,1]$ that $\left|x_{n}(s)-x_{n}(t)\right| \leq L|s-t|$. This implies that x_{∞} is Lipschitz with Lipschitz constant bounded by L. Finally, it remains to show that the convergence is also in $\left(X,\|\cdot\|_{\text {Lip }}\right)$. For this, note that - due to the Cauchy property - there exists $N:(0, \infty) \rightarrow \mathbb{N}$ so that for all $\varepsilon \in(0, \infty)$ and all $m, n \geq N_{\varepsilon}$ it holds that $\sup _{s, t \in[0,1], s \neq t}\left|\frac{\left(x_{n}(s)-x_{m}(s)\right)-\left(x_{n}(t)-x_{m}(t)\right)}{s-t}\right| \leq \varepsilon$. Moreover, by uniform convergence, there exists $M:(0, \infty) \times[0,1]^{2} \rightarrow \mathbb{N}$ such that for all $s, t \in[0,1]$ with $s \neq t$, all $\varepsilon \in(0, \infty)$, and all $n \geq M_{\varepsilon, s, t}$ we have $\left\|x_{n}-x_{\infty}\right\|_{C([0,1], \mathbb{R})} \leq \varepsilon|s-t|$. Thus, we get for all $\varepsilon \in(0, \infty)$, all $s, t \in[0,1]$ with $s \neq t$, and all $n \geq N_{\varepsilon}$:

$$
\begin{aligned}
& \left|\left(x_{n}(s)-x_{\infty}(s)\right)-\left(x_{n}(t)-x_{\infty}(t)\right)\right| \\
& \leq\left|\left(x_{n}(s)-x_{\max \left\{N_{\varepsilon}, M_{\varepsilon, s, t}\right\}}(s)\right)-\left(x_{n}(t)-x_{\max \left\{N_{\varepsilon}, M_{\varepsilon, s, t}\right\}}(t)\right)\right| \\
& \left.\quad+\left|x_{\max \left\{N_{\varepsilon}, M_{\varepsilon}, s, t\right\}}(s)-x_{\infty}(s)\right|+\mid x_{\infty}(t)-x_{\max \left\{N_{\varepsilon}, M_{\varepsilon}, s, t\right.}\right\}(t) \mid \\
& \leq \varepsilon|s-t|+2\left\|x_{\max \left\{N_{\varepsilon}, M_{\varepsilon, s, t}\right\}}-x_{\infty}\right\|_{C([0,1], \mathbb{R})} \leq 3 \varepsilon|s-t|,
\end{aligned}
$$

which establishes that $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to x_{∞} in $\left(X,\|\cdot\|_{\text {Lip }}\right)$.
(c) Demonstrate that $\left(Y,\|\cdot\|_{C^{1}}\right)$ is isometrically embedded in $\left(X,\|\cdot\|_{\text {Lip }}\right)$ and that Y is closed in $\left(X,\|\cdot\|_{\text {Lip }}\right)$.

Solution: Observe for every $y \in C^{1}([0,1], \mathbb{R})$ that, by the fundamental theorem of calculus and compactness of the interval $[0,1], y$ is also Lipschitz continuous. More
precisely, for all $s, t \in[0,1]$, we have:

$$
|y(s)-y(t)| \leq\left|\int_{t}^{s} y^{\prime}(r) d r\right| \leq|s-t|\left\|y^{\prime}\right\|_{C([0,1], \mathbb{R})} .
$$

This implies in particular that $\|y\|_{\text {Lip }} \leq\|y\|_{C^{1}([0,1], \mathbb{R})}$. Since, on the other hand, for every $t \in[0,1]$ there must be a sequence $\left(s_{n}\right)_{n \in \mathbb{N}} \subseteq[0,1] \backslash\{t\}$ with $\lim _{n \rightarrow \infty} \frac{y\left(s_{n}\right)-y(t)}{s_{n}-t}=$ $y^{\prime}(t)$, we must have that $\|y\|_{C^{1}([0,1], \mathbb{R})} \leq\|y\|_{\text {Lip }}$. This estabslishes that Y is isometrically embedded in X. For the closedness of Y in X we just notice that Y is complete. Indeed, if $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in Y, then $\left(y_{n}\right)$ and $\left(y_{n}^{\prime}\right)$ are Cauchy sequences in $C([0,1], \mathbb{R})$. Thus, there exist $y_{\infty}, z_{\infty} \in C([0,1], \mathbb{R})$ such that $\lim \sup _{n \rightarrow \infty} \| y_{n}-$ $y_{\infty}\|+\| y_{n}^{\prime}-z_{\infty} \|=0$. The fundamental theorem of calculus now shows that z_{∞} is the derivative of y_{∞} as we have for all $s, t \in[0,1]$:

$$
y_{\infty}(t)-y_{\infty}(s)=\lim _{n \rightarrow \infty}\left[y_{n}(t)-y_{n}(s)\right]=\lim _{n \rightarrow \infty} \int_{s}^{t} y_{n}^{\prime}(r) d r=\int_{s}^{t} z_{\infty}(r) d r .
$$

(Beware: not just this representation, but the representation together with the fact that z_{∞} is continuous imply that y_{∞} is classically differentiable everywhere.)

3.3. Completion of metric spaces

Let (X, d) be a metric space. A completion of (X, d) is a triple $(\mathbb{X}, \delta, \iota)$, where (\mathbb{X}, δ) is a complete metric space and $\iota: X \rightarrow \mathbb{X}$ is an isometric embedding with dense image.
(a) Let $(\mathbb{X}, \delta, \iota)$ be a completion of X . Then it satisfies the following universal property: whenever $\phi: X \rightarrow Y$ is 1-Lipschitz to a complete metric space $\left(Y, d_{Y}\right)$ then there is a unique 1-Lipschitz map $\Phi: \mathbb{X} \rightarrow Y$ such that $\phi=\Phi \circ \iota$.

Solution: Note that with \mathbb{X} being the closure of $\iota(X)$, we have that for every $\xi \in \mathbb{X}$, there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ satisfying $\lim \sup _{n \rightarrow \infty} \delta\left(\iota\left(x_{n}\right), \xi\right)=0$. If there is a continuous map $\Phi: \mathbb{X} \rightarrow Y$ with $\phi=\Phi \circ \iota$, then it needs to hold that

$$
\Phi(\xi)=\lim _{n \rightarrow \infty} \Phi\left(\iota\left(x_{n}\right)\right)=\lim _{n \rightarrow \infty} \phi\left(x_{n}\right) .
$$

Hence, we (try to) define $\Phi: \mathbb{X} \rightarrow Y$ by

$$
\Phi(\xi)=\lim _{n \rightarrow \infty} \phi\left(x_{n}\right) \quad \text { for all } \xi \in \mathbb{X} \text { and all }\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X \text { with } \limsup _{n \rightarrow \infty} \delta\left(\xi, \iota\left(x_{n}\right)\right)=0
$$

If this was well-defined, then we would have for sure that $\phi=\Phi \circ \iota$. It thus remains to show that Φ defined as above is indeed well-defined and 1-Lipschitz. So let $\xi \in \mathbb{X}$ and $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ be such that $\iota\left(x_{n}\right) \rightarrow \xi$ in (\mathbb{X}, δ) as $n \rightarrow \infty$. This implies that $\left(\iota\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in (\mathbb{X}, δ). The assumption that $\iota: X \rightarrow \mathbb{X}$ is an isometry hence implies that $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ is Cauchy in (X, d). Since ϕ is 1-Lipschitz, the sequence
$\left(\phi\left(x_{n}\right)\right)_{n \in \mathbb{N}} \subseteq Y$ is Cauchy in $\left(Y, d_{Y}\right)$. As $\left(Y, d_{Y}\right)$ is complete, there exists $y \in Y$ so that $\lim \sup _{n \rightarrow \infty} d_{Y}\left(\phi\left(x_{n}\right), y\right)=0$. Moreover, note that if $\left(\tilde{x}_{n}\right)_{n \in \mathbb{N}} \subseteq X$ is another sequence with $\lim \sup _{n \rightarrow \infty} \delta\left(\iota\left(\tilde{x}_{n}\right), \xi\right)=0$, then

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} d_{Y}\left(\phi\left(\tilde{x}_{n}\right), y\right) & \leq \limsup _{n \rightarrow \infty} d_{Y}\left(\phi\left(\tilde{x}_{n}\right), \phi\left(x_{n}\right)\right)+\underbrace{\limsup _{n \rightarrow \infty} d_{Y}\left(\phi\left(x_{n}\right), y\right)}_{=0} \\
& \leq \limsup _{n \rightarrow \infty} \underbrace{d\left(\tilde{x}_{n}, x_{n}\right)}_{=\delta\left(\iota\left(\tilde{x}_{n}\right), \iota\left(x_{n}\right)\right)} \\
& \leq \limsup _{n \rightarrow \infty} \delta\left(\iota\left(\tilde{x}_{n}\right), \xi\right)+\limsup _{n \rightarrow \infty} d_{Y}\left(\xi, \iota\left(x_{n}\right)\right)=0 .
\end{aligned}
$$

Hence, there indeed exists a map $\Phi: \mathbb{X} \rightarrow Y$ satisfying for all $\xi \in \mathbb{X}$ and all $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq$ X with $\lim \sup _{n \rightarrow \infty} \delta\left(\iota\left(x_{n}\right), \xi\right)=0$ that $\limsup _{n \rightarrow \infty} d_{Y}\left(\Phi(\xi), \phi\left(x_{n}\right)\right)=0$. (This implies in particular that $\Phi(\iota(x))=\phi(x)$ for every $x \in X$.) Finally, for all $\xi_{1}, \xi_{2} \in \mathbb{X}$ and all $\left(x_{n}^{(1)}\right)_{n \in \mathbb{N}},\left(x_{n}^{(2)}\right)_{n \in \mathbb{N}}$ satisfying $\iota\left(x_{n}^{(1)}\right) \rightarrow \xi_{1}$ and $\iota\left(x_{n}^{(2)}\right) \rightarrow \xi_{2}$, we obtain

$$
\begin{aligned}
& d_{Y}\left(\Phi\left(\xi_{1}\right), \Phi\left(\xi_{2}\right)\right) \\
& \leq \limsup _{n \rightarrow \infty}[\underbrace{d_{Y}\left(\Phi\left(\xi_{1}\right), \phi\left(x_{n}^{(1)}\right)\right)}_{\rightarrow 0 \text { as } n \rightarrow \infty}+d_{Y}\left(\phi\left(x_{n}^{(1)}\right), \phi\left(x_{n}^{(2)}\right)\right)+\underbrace{d_{Y}\left(\phi\left(x_{n}^{(2)}\right), \Phi\left(\xi_{2}\right)\right)}_{\rightarrow 0 \text { as } n \rightarrow \infty}] \\
& \leq \limsup _{n \rightarrow \infty} d\left(x_{n}^{(1)}, x_{n}^{(2)}\right)=\limsup _{n \rightarrow \infty} \delta\left(\iota\left(x_{n}^{(1)}\right), \iota\left(x_{n}^{(2)}\right)\right)=\delta\left(\xi^{(1)}, \xi^{(2)}\right),
\end{aligned}
$$

which ascertains the desired Lipschitz property of Φ.
(b) If ($\mathbb{X}_{1}, \delta_{1}, \iota_{1}$) and ($\mathbb{X}_{2}, \delta_{2}, \iota_{2}$) are two completions of X, then there exists a unique isometric isomorphism $\psi: \mathbb{X}_{1} \rightarrow \mathbb{X}_{2}$ such that $\iota_{2}=\psi \circ \iota_{1}$.

Solution: According to (a), there exist a 1 -Lipschitz map $\psi: \mathbb{X}_{1} \rightarrow \mathbb{X}_{2}$ satisfying $\iota_{2}=\psi \circ \iota_{1}$ and a 1-Lipschitz map $\phi: \mathbb{X}_{2} \rightarrow \mathbb{X}_{1}$ satisfying $\iota_{1}=\phi \circ \iota_{2}$. Hence, we have for all $\xi \in \iota_{1}(X)$ that $(\phi \circ \psi)(\xi)=\xi$ and for all $\eta \in \iota_{2}(X)$ that $(\psi \circ \phi)(\eta)=\eta$. Continuity of ψ and ϕ, paired with $\overline{\iota_{1}(X)}=\mathbb{X}_{1}$ and $\overline{\iota_{2}(X)}=\mathbb{X}_{2}$ ensures that $\psi \circ \phi=\mathrm{id}_{\mathbb{X}_{2}}$ and $\phi \circ \psi=\operatorname{id}_{\mathbb{X}_{1}}$. Hence, ψ and ϕ are bijective. Both being 1-Lipschitz, we obtain for all $x_{1}, y_{1} \in \mathbb{X}_{1}$ and $x_{2}, y_{2} \in \mathbb{X}_{2}$:

$$
\begin{aligned}
& \delta_{1}\left(x_{1}, y_{1}\right)=\delta_{1}\left(\phi\left(\psi\left(x_{1}\right)\right), \phi\left(\psi\left(y_{1}\right)\right)\right) \leq \delta_{2}\left(\psi\left(x_{1}\right), \psi\left(y_{1}\right)\right) \leq \delta_{1}\left(x_{1}, y_{1}\right) \\
& \delta_{2}\left(x_{2}, y_{2}\right)=\delta_{2}\left(\psi\left(\phi\left(x_{2}\right)\right), \psi\left(\phi\left(y_{2}\right)\right)\right) \leq \delta_{1}\left(\phi\left(x_{2}\right), \phi\left(y_{2}\right)\right) \leq \delta_{2}\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

This implies that ϕ and ψ are isometries.
(c) Prove the existence of a completion of (X, d).

Hint: Recall that the space of continuous bounded real-valued functions $C_{b}(X, \mathbb{R})$ is a Banach space with respect to the norm $\|f\|_{\infty}=\sup _{x \in X}|f(x)|$. Fix $x_{0} \in X$.

For $y \in X$ let $f_{y}(x)=d(y, x)-d\left(x_{0}, x\right)$. Prove that $\iota(y)=f_{y}$ defines an isometric embedding $\iota: X \rightarrow C_{b}(X, \mathbb{R})$ and put $\mathbb{X}=\overline{\iota(X)}$.

Solution: Note that ι is well-defined, i.e., for every $y \in X$ it holds that f_{y} is continuous and bounded. Boundedness follows from $\left|d(y, x)-d\left(x_{0}, x\right)\right| \leq d\left(y, x_{0}\right)$ for all $x, y \in X$. Continuity follows from $\left|f_{y}(x)-f_{y}(z)\right| \leq|d(y, x)-d(y, z)|+\left|d\left(x_{0}, x\right)-d\left(x_{0}, z\right)\right| \leq$ $2 d(x, z)$ for all $x, y, z \in X$. It remains to show that ι is an isometry. For this, note that for all $x, y_{1}, y_{2} \in X$ it holds that

$$
f_{y_{1}}(x)-f_{y_{2}}(x)=d\left(y_{1}, x\right)-d\left(x_{0}, x\right)-\left(d\left(y_{2}, x\right)-d\left(x_{0}, x\right)\right)=d\left(y_{1}, x\right)-d\left(y_{2}, x\right) .
$$

The triangle inequality hence implies for all $y_{1}, y_{2} \in X$:

$$
\begin{aligned}
\left\|\iota\left(y_{1}\right)-\iota\left(y_{2}\right)\right\|_{C_{b}(X, \mathbb{R})} & =\sup _{x \in X}\left|f_{y_{1}}(x)-f_{y_{2}}(x)\right| \\
& =\sup _{x \in X}\left|d\left(y_{1}, x\right)-d\left(y_{2}, x\right)\right| \leq d\left(y_{1}, y_{2}\right) .
\end{aligned}
$$

Taking into account that $f_{y_{1}}\left(y_{2}\right)-f_{y_{2}}\left(y_{2}\right)=d\left(y_{1}, y_{2}\right)$, we obtain that

$$
\left\|\iota\left(y_{1}\right)-\iota\left(y_{2}\right)\right\|_{C_{b}(X, \mathbb{R})}=d\left(y_{1}, y_{2}\right),
$$

which shows that ι is an isometry. Choosing $\mathbb{X}=\overline{\iota(X)}$ completes the proof.

3.4. Compactly supported sequences and their ℓ^{∞}-completion

Definition. We denote the space of compactly supported sequences by

$$
c_{c}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \exists N \in \mathbb{N} \forall n \geq N: x_{n}=0\right\}
$$

and the space of sequences converging to zero by

$$
c_{0}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \lim _{n \rightarrow \infty} x_{n}=0\right\} .
$$

(a) Show that $\left(c_{c},\|\cdot\|_{\ell \infty}\right)$ is not complete. What is a completion of this space?

Solution: For every $k \in \mathbb{N}$, let $x^{(k)}=\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}} \in c_{c}$ be given by

$$
x_{n}^{(k)}= \begin{cases}\frac{1}{n} & \text { for } n \leq k, \\ 0 & \text { for } n>k\end{cases}
$$

Then $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence in $\left(c_{c},\|\cdot\|_{\ell \infty}\right)$. Indeed, for every element $y=$ $\left(y_{n}\right)_{n \in \mathbb{N}} \in c_{c}$, we have:

$$
\limsup _{k \rightarrow \infty}\left\|x^{(k)}-y\right\|_{\ell \infty} \geq \frac{1}{\min \left\{n \in \mathbb{N} \mid y_{n}=0\right\}}>0
$$

(More intuitively speaking, the limit sequence $x^{(\infty)}$ given by $x_{n}^{(\infty)}=\frac{1}{n}$ for all $n \in \mathbb{N}$ is not in c_{c} but in $\left.c_{0} \backslash c_{c}.\right)$. We claim that c_{0} is a completion of $\left(c_{c},\|\cdot\|_{\ell \infty}\right)$.

Proof. It suffices to show $c_{0}=\overline{c_{c}}$, where the closure is taken in ℓ^{∞} because then, $\left(c_{0},\|\cdot\|_{\ell \infty}\right)$ is complete as closed subspace of the complete space ($\ell^{\infty},\|\cdot\|_{\ell \infty}$) and $\left(c_{c}, \|_{\ell_{\ell \infty}}\right)$ is clearly densely isometrically embedded.
" \subseteq ": Let $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}$. Let $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ be a sequence of sequences $x^{(k)}=\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}}$ in c_{c} given by

$$
x_{n}^{k}= \begin{cases}x_{n} & \text { for } n \leq k, \\ 0 & \text { for } n>k\end{cases}
$$

Let $\varepsilon>0$. By assumption, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{n}\right|<\varepsilon$ for every $n \geq N_{\varepsilon}$.

$$
\Rightarrow \forall k \geq N_{\varepsilon}: \quad\left\|x^{(k)}-x\right\|_{\ell \infty}=\sup _{n>k}\left|0-x_{n}\right| \leq \varepsilon .
$$

We conclude that $x^{(k)} \rightarrow x$ in ℓ^{∞} as $k \rightarrow \infty$ and since $x \in c_{0}$ is arbitrary, $c_{0} \subseteq \overline{c_{c}}$.
" \supseteq ": Let $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \overline{c_{c}}$. Then there exists a sequence $\left(x^{(k)}\right)_{k \in \mathbb{N}}$ of sequences $x^{(k)}=\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}} \in c_{c}$ such that $x^{(k)} \rightarrow x$ in ℓ^{∞} as $k \rightarrow \infty$. Let $\varepsilon>0$. In particular, there exists $K \in \mathbb{N}$ such that

$$
\sup _{n \in \mathbb{N}}\left|x_{n}^{(K)}-x_{n}\right|=\left\|x^{(K)}-x\right\|_{\ell \infty}<\varepsilon
$$

Since $x^{(K)} \in c_{c}$ there exists $N_{0} \in \mathbb{N}$ such that $x_{n}^{(K)}=0$ for all $n \geq N_{0}$. This implies that

$$
\forall n \geq N_{0}: \quad\left|x_{n}\right| \leq \sup _{n \geq N_{0}}\left|0-x_{n}\right|<\varepsilon .
$$

We conclude that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ which means that $x \in c_{0}$.
(b) Prove the strict inclusion

$$
\bigcup_{p=1}^{\infty} \ell^{p} \subsetneq c_{0} .
$$

Solution: If $\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{p}$ for any $p \geq 1$, then necessarily $x_{n} \rightarrow 0$ for $n \rightarrow \infty$ by standard facts concerning summable series. Consequently, ${ }^{1}$

$$
\bigcup_{p=1}^{\infty} \ell^{p} \subseteq c_{0}
$$

[^0]The inclusion is strict, since $y=\left(y_{n}\right)_{n \in \mathbb{N}} \in c_{0}$ given by

$$
y_{n}=\frac{1}{\log (n+1)}
$$

has the property that $y \notin \ell^{p}$ for any $p \geq 1$. Indeed, given any $p \geq 1$ there exists $N_{p} \in \mathbb{N}$ such that $\log (n+1) \leq n^{\frac{1}{p}}$ for every $n \geq N_{p}$ which allows the estimate

$$
\sum_{n=1}^{\infty}\left(\frac{1}{\log (n+1)}\right)^{p} \geq \sum_{n=N_{p}}^{\infty}\left(\frac{1}{n^{\frac{1}{p}}}\right)^{p}=\sum_{n=N_{p}}^{\infty} \frac{1}{n}=\infty .
$$

3.5. Operator norms need not be achieved

We consider the space $X=C([-1,1], \mathbb{R})$ with its usual norm $\|\cdot\|_{C([-1,1], \mathbb{R})}$ and define

$$
\begin{aligned}
\varphi: X & \rightarrow \mathbb{R} \\
f & \mapsto \int_{0}^{1} f(t) d t-\int_{-1}^{0} f(t) d t .
\end{aligned}
$$

(a) Show that $\varphi \in L(X, \mathbb{R})$ with $\|\varphi\|_{L(X, \mathbb{R})} \leq 2$.

Solution: Let $\|\cdot\|$ denote the usual sup norm $\|\cdot\|_{C([-1,1], \mathbb{R})}$. The given map $\varphi: X \rightarrow \mathbb{R}$ is linear by linearity of the integral. Moreover, the fact that

$$
|\varphi(f)| \leq \int_{0}^{1}|f(t)| d t+\int_{-1}^{0}|f(t)| d t \leq 2\|f\| \quad \text { for all } f \in X
$$

implies

$$
\|\varphi\|_{L(X, \mathbb{R})}=\sup _{f \in X \backslash\{0\}} \frac{|\varphi(f)|}{\|f\|} \leq 2
$$

Since φ is linear, continuity follows from boundedness.
(b) Find a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in X such that $\left\|f_{n}\right\|_{C([-1,1], \mathbb{R})}=1$ for every $n \in \mathbb{N}$ and such that $\varphi\left(f_{n}\right) \rightarrow 2$ as $n \rightarrow \infty$. This in fact implies $\|\varphi\|_{L(X, \mathbb{R})}=2$.
Solution: The sign function $f(x)=\frac{x}{|x|}$ is approximated pointwise by the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of functions $f_{n} \in X$ given by

$$
f_{n}(t)= \begin{cases}-1, & \text { for }-1 \leq t<-\frac{1}{n} \\ n t, & \text { for }-\frac{1}{n} \leq t<\frac{1}{n} \\ 1, & \text { for } \quad \frac{1}{n} \leq t \leq 1\end{cases}
$$

In particular, $\left\|f_{n}\right\|_{X}=1$ for every $n \in \mathbb{N}$. Computing the integrals explicitly, or applying the dominated convergence theorem, we have

$$
\lim _{n \rightarrow \infty} \varphi\left(f_{n}\right)=2
$$

(c) Prove that there does not exist $f \in X$ with $\|f\|_{C([-1,1], \mathbb{R})}=1$ and $|\varphi(f)|=2$.

Solution: Suppose there exists $f \in X$ with $\|f\|=1$ and $|\varphi(f)|=2$. Since φ is linear, we may assume $\varphi(f)=2$, otherwise we replace f by $-f$. Then, the estimates

$$
\left|\int_{0}^{1} f(t) d t\right| \leq \max _{x \in[-1,1]}|f(x)|=\|f\|_{X}=1, \quad\left|\int_{-1}^{0} f(t) d t\right| \leq 1,
$$

imply by definition of φ that

$$
\begin{equation*}
\int_{0}^{1} f(t) d t=-\int_{-1}^{0} f(t) d t=1 \tag{*}
\end{equation*}
$$

Since f is bounded from above by 1 we can conclude from $(*)$ that $\left.f\right|_{[0,1]} \equiv 1$. In fact, if $f\left(t^{*}\right)<1$ for some $t^{*} \in[0,1]$, then - by continuity $-f<1$ in some neighbourhood of t^{*} (in $[0,1]$) of f which together with the uniform bound $f \leq 1$ contradicts $(*)$.

Analogously, we conclude $\left.f\right|_{[-1,0]} \equiv-1$ which (combined with $\left.f\right|_{[0,1]} \equiv 1$) leads to a contradiction at 0 .

3.6. Unbounded map and approximations

As in problem 3.4, we denote the space of compactly supported sequences by

$$
c_{c}:=\left\{\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} \mid \exists N \in \mathbb{N} \forall n \geq N: x_{n}=0\right\}
$$

endowed with the norm $\|\cdot\|_{\ell \infty}$. Consider the map

$$
\begin{aligned}
T: c_{c} & \rightarrow c_{c} \\
\left(x_{n}\right)_{n \in \mathbb{N}} & \mapsto\left(n x_{n}\right)_{n \in \mathbb{N}}
\end{aligned}
$$

(a) Show that T is not continuous.

Solution: The operation T : $\left(x_{n}\right)_{n \in \mathbb{N}} \mapsto\left(n x_{n}\right)_{n \in \mathbb{N}}$ is linear in each entry and therefore linear as map $T: c_{c} \rightarrow c_{c}$. For every $k \in \mathbb{N}$ we define the sequence $e^{(k)}=\left(e_{n}^{(k)}\right)_{n \in \mathbb{N}} \in c_{c}$ by

$$
e_{n}^{(k)}= \begin{cases}1, & \text { if } n=k \\ 0, & \text { otherwise }\end{cases}
$$

Then, $\left\|e^{(k)}\right\|_{\ell^{\infty}}=1$ for every $k \in \mathbb{N}$ but $\left\|T e^{(k)}\right\|_{\ell^{\infty}}=k$ is unbounded for $k \in \mathbb{N}$. As unbounded linear map, T is not continuous. (Or, put differently: the sequence $\left(\frac{e^{(k)}}{k}\right)_{k \in \mathbb{N}} \subseteq c_{c}$ converges to 0 as $k \rightarrow \infty$, but $\left(T\left(\frac{e^{(k)}}{k}\right)\right)_{k \in \mathbb{N}}$ cannot converge to 0 as $k \rightarrow \infty$, since $\left\|T\left(\frac{e^{(k)}}{k}\right)\right\|_{e_{\infty}}=1$ for every $k \in \mathbb{N}$.)
(b) Construct continuous linear maps $T_{m}: c_{c} \rightarrow c_{c}$ such that

$$
\forall x \in c_{c}: \quad T_{m} x \xrightarrow{m \rightarrow \infty} T x
$$

Solution: For every $m \in \mathbb{N}$ we define

$$
\begin{aligned}
T_{m}: c_{c} & \rightarrow c_{c} \\
\left(x_{n}\right)_{n \in \mathbb{N}} & \mapsto\left(x_{1}, 2 x_{2}, 3 x_{3}, \ldots, m x_{m}, 0,0, \ldots\right)
\end{aligned}
$$

Then T_{m} is linear. $T_{m}:\left(c_{c},\|\cdot\|_{\ell \infty}\right) \rightarrow\left(c_{c},\|\cdot\|_{\ell \infty}\right)$ is also bounded for every (fixed) $m \in \mathbb{N}$ since for every $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{c}$

$$
\left\|T_{m} x\right\|=\sup _{n \in \mathbb{N}}\left|\left(T_{m} x\right)_{n}\right|=\max _{n \in\{1, \ldots, m\}}\left|n x_{n}\right| \leq m\|x\|_{\ell_{\infty}} .
$$

Hence, T_{m} is continuous.
Let $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{c}$ be fixed. Then there exists $N \in \mathbb{N}$ such that $x_{n}=0$ for all $n \geq N$ which implies $T_{m} x=T x$ for all $m \geq N$. In particular,

$$
T_{m} x \xrightarrow{m \rightarrow \infty} T x .
$$

3.7. Volterra equation

Let $k \in C\left([0,1]^{2}, \mathbb{R}\right)$. The Volterra integral operator $T_{k}: C([0,1], \mathbb{R}) \rightarrow C([0,1], \mathbb{R})$ is given by

$$
\left(T_{k} f\right)(t)=\int_{0}^{t} k(t, s) f(s) d s \quad \text { for all } t \in[0,1], f \in C([0,1], \mathbb{R})
$$

(a) Prove that T_{k} is well-defined and continuous.

Solution: $T_{k} f$ is well-defined for every $f \in C([0,1], \mathbb{R})$ as k is continuous. T_{k} is clearly linear and clearly bounded (as k is continuous and $[0,1]^{2}$ is compact).
(b) For $\lambda \in \mathbb{R}$, let $\|\cdot\|_{\lambda}: C([0,1], \mathbb{R}) \rightarrow[0, \infty)$ be defined by $\|f\|_{\lambda}=\sup _{t \in[0,1]} e^{-\lambda t}|f(t)|$ for every $f \in C([0,1], \mathbb{R})$. Show that $\|\cdot\|_{\lambda}$ defines a norm equivalent to the supremum norm on $C([0,1], \mathbb{R})$.
Solution: The fact that for every $\lambda \in \mathbb{R}$ it holds that $0<\inf _{t \in[0,1]} e^{\lambda t} \leq \sup _{t \in[0,1]} e^{\lambda t}<$ ∞ implies

$$
\left[\inf _{t \in[0,1]} e^{\lambda t}\right] \sup _{t \in[0,1]}|f(t)| \leq\|f\|_{\lambda} \leq\left[\sup _{t \in[0,1]} e^{\lambda t}\right] \sup _{t \in[0,1]}|f(t)| \quad \text { for all } \lambda \in \mathbb{R} \text {. }
$$

(c) Estimate the operator norm of T_{k} on $\left(C([0,1], \mathbb{R}),\|\cdot\|_{\lambda}\right)$.

Solution: Note that for all $\lambda \in \mathbb{R}, f \in C([0,1], \mathbb{R})$ it holds that

$$
\begin{aligned}
\left\|T_{k} f\right\|_{\lambda} & =\sup _{t \in[0,1]}\left|e^{-\lambda t}\left(T_{k} f\right)(t)\right| \\
& =\sup _{t \in[0,1]}\left|\int_{0}^{t} e^{-\lambda(t-s)} k(t, s) e^{-\lambda s} f(s) d s\right| \\
& \leq \sup _{t \in[0,1]} \int_{0}^{t} e^{-\lambda(t-s)}\|k\|_{C\left([0,1]^{2}, \mathbb{R}\right)}\|f\|_{\lambda} d s \\
& \leq \begin{cases}\|k\|_{C\left([0,1]^{2}, \mathbb{R}\right)}\|f\|_{\lambda} & \lambda=0, \\
\frac{1}{\lambda}\|k\|_{\left.C[0,1]^{2}, \mathbb{R}\right)}\|f\|_{\lambda} & \lambda>0, \\
\frac{e l \lambda}{|\lambda|}\|k\|_{C\left([0,1]^{2}, \mathbb{R}\right)}\|f\|_{\lambda} & \lambda<0 .\end{cases}
\end{aligned}
$$

(d) Show that for every $g \in C([0,1], \mathbb{R})$ there exists a unique $f \in C([0,1], \mathbb{R})$ satisfying

$$
\forall t \in[0,1]: \quad f(t)+\int_{0}^{t} k(t, s) f(s) d s=g(t)
$$

Solution: Let $\lambda>2\|k\|_{C\left([0,1]^{2}, \mathbb{R}\right)}$ and consider the map $\Phi: X \rightarrow X$, given by $\Phi(f)=$ $g-T_{k} f$ for every $f \in X$. Observe for all $f_{1}, f_{2} \in X$ that

$$
\left\|\Phi\left(f_{1}\right)-\Phi\left(f_{2}\right)\right\|_{\lambda}=\left\|T_{k}\left(f_{2}-f_{1}\right)\right\|_{\lambda} \leq \frac{1}{2}\left\|f_{2}-f_{1}\right\|_{\lambda}
$$

Banach's fixed point theorem (cf. also problem 1.6) ensures that there exists a unique $f \in X$ such that $\Phi(f)=f$.

Alternative solution: For (d), which is undoubtedly the goal of (a)-(c), we can argue in a slightly different way by calculating the spectral radius of the operator T_{k}. We claim that for every $n \in \mathbb{N}$ and every $f \in C([0,1], \mathbb{R})$ and $t \in[0,1]$,

$$
\left|\left(T^{n} f\right)(t)\right| \leq \frac{t^{n}}{n!}\|k\|_{C\left([0,1]^{2}, \mathbb{R}\right)}^{n}\|f\|_{C([0,1], \mathbb{R})}
$$

We prove this claim by induction. For $n=1$ we have for all $f \in C([0,1], \mathbb{R}), t \in[0,1]$ that

$$
|(T f)(t)| \leq \int_{0}^{t}|k(t, s)||f(s)| d s \leq t\|k\|_{C^{0}\left([0,1]^{2}, \mathbb{R}\right)}\|f\|_{C([0,1], \mathbb{R})} .
$$

Suppose the claim is true for some $n \in \mathbb{N}$. Then, we get for all $f \in C([0,1], \mathbb{R})$, $t \in[0,1]:$

$$
\begin{aligned}
\left|\left(T^{n+1} f\right)(t)\right| & \leq \int_{0}^{t}\left|k(t, s) \|\left(T^{n} f\right)(s)\right| d s \\
& \leq \frac{1}{n!}\|k\|_{C\left([0,1]^{2}, \mathbb{R}\right)}^{n+1}\|f\|_{C([0,1], \mathbb{R})} \int_{0}^{t} s^{n} d s \\
& =\frac{t^{n+1}}{(n+1)!}\|k\|_{C\left([0,1]^{2}, \mathbb{R}\right)}^{n+1}\|f\|_{C([0,1], \mathbb{R})}
\end{aligned}
$$

which proves the claim. Since $0 \leq t \leq 1$, the claim implies

$$
r_{T}:=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}} \leq \lim _{n \rightarrow \infty} \frac{\|k\|_{C\left([0,1]^{2}, \mathbb{R}\right)}}{(n!)^{\frac{1}{n}}}=0
$$

From $r_{T}=0$ we conclude that the operator $(I+T)=(I-(-T))$ is invertible with bounded inverse (Satz 2.2.7). The solution to the Volterra equation $f+T f=g$ is then given by $f=(1+T)^{-1} g$.

[^0]: ${ }^{1}$ Note that by definition $\bigcup_{p=1}^{\infty} \ell^{p}$ includes ℓ^{p} for all $p \in \mathbb{N}$ but not for $p=\infty$.

