
d-math
Prof. J. Teichmann

Functional Analysis I
Solution to Problem Set 3

ETH Zürich
Autumn 2021

3.1. The space of bounded linear operators

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed K-vector spaces with K ∈ {R,C}. Let L(X, Y )
be the space of bounded K-linear operators T : X → Y , equipped with the norm
‖·‖L(X,Y ) : L(X, Y )→ [0,∞), defined by

‖T‖L(X,Y ) = sup
x 6=0

‖Tx‖Y
‖x‖X

for all T ∈ L(X, Y ).

(a) Prove that

‖T‖L(X,Y ) = sup
‖x‖X≤1

‖Tx‖Y = sup
‖x‖X=1

‖Tx‖Y for all T ∈ L(X, Y ).

Solution: Linearity of T and the fact that X \ {0} = {λx : λ ∈ K \ {0}, ‖x‖X = 1}
imply

sup
x 6=0

‖Tx‖Y
‖x‖X

= sup
‖x‖X=1,λ∈K\{0}

‖T (λx)‖Y
‖λx‖X

= sup
‖x‖X=1,λ∈K\{0}

‖Tx‖Y
‖x‖X

= sup
‖x‖X=1

‖Tx‖Y
‖x‖X

= sup
‖x‖X=1

‖Tx‖Y .

Moreover, due to {x ∈ X : ‖x‖X ≤ 1} = {λx : |λ| ≤ 1, ‖x‖X = 1} we obtain

sup
‖x‖X≤1

‖Tx‖Y = sup
|λ|≤1,‖x‖X=1

‖T (λx)‖Y = sup
|λ|≤1,‖x‖X=1

λ‖Tx‖Y = sup
‖x‖X=1

‖Tx‖Y .

(b) Prove that ‖·‖L(X,Y ) is indeed a norm on L(X, Y ).

Solution: Clearly, ‖·‖L(X,Y ) : L(X, Y )→ [0,∞) is well-defined. Moreover, ‖T‖L(X,Y ) =
0 for T ∈ L(X, Y ) implies that ‖Tx‖Y ≤ 0‖x‖X = 0 for all x ∈ X, i.e., Tx = 0 ∈ Y
for all x ∈ X, which just means T = 0 ∈ L(X, Y ). Next, note that, by (a), we have
for all λ ∈ K, T ∈ L(X, Y ) that

‖λT‖L(X,Y ) = sup
‖x‖X≤1

‖(λT )x‖Y = sup
‖x‖X≤1

‖λTx‖Y = sup
‖x‖X≤1

|λ|‖Tx‖Y

= |λ|‖T‖L(X,Y ).

In addition, we obtain for S, T ∈ L(X, Y ):

‖S + T‖L(X,Y ) = sup
‖x‖X≤1

‖(S + T )x‖Y = sup
‖x‖X≤1

‖Sx+ Tx‖Y

≤ sup
‖x‖X≤1

(‖Sx‖Y + ‖Tx‖Y ) ≤ sup
‖x‖X≤1

‖Sx‖Y + sup
‖x‖X≤1

‖Tx‖Y

= ‖S‖L(X,Y ) + ‖T‖L(X,Y ).
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(c) Prove that (L(X, Y ), ‖·‖L(X,Y )) is a K-Banach space if and only if (Y, ‖·‖Y ) is a
K-Banach space or X = {0}.

Solution: Let us assume that Y is a K-Banach space. Let (Tk)k∈N ⊆ L(X, Y ) be an
arbitrary Cauchy sequence in (L(X, Y ), ‖·‖L(X,Y )). This implies for every x ∈ X that
(Tkx)k∈N ⊆ Y is Cauchy in (Y, ‖·‖Y ). By the completeness of (Y, ‖·‖Y ), there exists
a map T∞ : X → Y (which a priori does not need to be linear) satisfying for every
x ∈ X that lim supk→∞‖Tkx− T∞(x)‖Y = 0. The linearity of the mappings (Tk)k∈N,
though, ensures that T∞ is also a linear map. The fact that Cauchy sequences are
bounded implies that

‖T∞x‖Y ≤ sup
n∈N
‖Tn‖L(X,Y )‖x‖X for all n ∈ N,

i.e., that T∞ is a bounded linear map. Thus, T∞ ∈ L(X, Y ). Moreover, due to the
sequence (Tk)k∈N being Cauchy in (L(X, Y ), ‖·‖L(X,Y )), there exists N : (0,∞)→ N
such that for every ε ∈ (0,∞) it holds that supk,m≥Nε‖Tk − Tm‖L(X,Y ) ≤ ε. By T∞
being the pointwise (sometimes also called strong) limit of the sequence (Tk)k∈N,
there exists M : (0,∞) ×X → N such that for all ε ∈ (0,∞), x ∈ X it holds that
supm≥Mε,x

‖Tmx− T∞x‖Y ≤ ε. Using these, we get for every ε ∈ (0,∞) the following
estimate:

sup
k≥Nε

sup
‖x‖X≤1

‖Tkx− T∞x‖Y

≤ sup
k≥Nε

sup
‖x‖X≤1

[
‖Tkx− Tmax{Nε,Mε,x}x‖Y + ‖Tmax{Nε,Mε,x}x− T∞x‖Y

]
≤ sup

k≥Nε

[
‖Tk − Tmax{Nε,Mε,x}‖L(X,Y ) + ε

]
≤ 2ε.

Thus, we obtain Tk → T∞ in (L(X, Y ), ‖·‖L(X,Y )) as k → ∞, which completes the
proof that (L(X, Y ), ‖·‖L(X,Y )) is complete.

For the converse, let us assume that (L(X, Y ), ‖·‖L(X,Y )) is a Banach space and
that X 6= {0}. Let (yn)n∈N ⊆ Y by a Cauchy sequence in (Y, ‖·‖Y ). Moreover, let
x0 ∈ X \ {0} with ‖x0‖X = 1 be fixed. The theorem of Hahn–Banach implies that
there exists a continuous linear functional ϕ ∈ X∗ = L(X,K) satisfying ‖ϕ‖L(X,K) = 1
and ϕ(x0) = ‖x0‖X = 1. Define now for every n ∈ N the continuous linear mapping
Tn : X → Y by setting Tnx = ϕ(x)yn for every x ∈ X. Note that (Tn)n∈N ⊆ L(X, Y )
is Cauchy in (L(X, Y ), ‖·‖L(X,Y )) due to (yn)n∈N being Cauchy in (Y, ‖·‖Y ). Hence,
there exists T∞ ∈ L(X, Y ) such that Tn → T∞ in (L(X, Y ), ‖·‖L(X,Y )) as n → ∞.
This implies in particular, that yn = Tnx0 → T∞x0 =: y∞ in (Y, ‖·‖Y ).

(d) Prove that the dual space L(X,K) of X is complete.

Solution: This follows immediately from (c) and the completeness of (K, |·|).
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3.2. Lipschitz functions

LetX = Lip([0, 1],R) be the vector space of Lischitz continuous functions from [0, 1] to
R and let Y = C1([0, 1],R) be the vector space of continuously differentiable functions
from [0, 1] to R. Define the functions ‖·‖Lip : X → [0,∞) and ‖·‖C1 : Y → [0,∞) by

‖x‖Lip = sup
s∈[0,1]

|x(s)|+ sup
s,t∈[0,1]
s 6=t

∣∣∣∣∣x(s)− x(t)
s− t

∣∣∣∣∣ for all x ∈ X,

‖y‖C1 = sup
s∈[0,1]

|x(s)|+ sup
s∈[0,1]

|x′(s)| for all y ∈ Y.

(a) Prove that ‖·‖Lip is a norm on X.

Solution: This is left to the interested reader.

(b) Show that (X, ‖·‖Lip) is a Banach space.

Solution: Let (xn)n∈N ⊆ X be a Cauchy sequence. This entails in particular that
(xn)n∈N is a Cauchy sequence in (C([0, 1],R), ‖·‖C([0,1],R)). Hence, there exists x∞ ∈
C([0, 1],R) such that (xn)n∈N converges uniformly to x∞. Moreover, boundedness of
Cauchy sequences implies that supn∈N sups,t∈[0,1],s 6=t

∣∣∣xn(s)−xn(t)
s−t

∣∣∣ <∞, i.e., there exists
L ∈ R such that we have for all n ∈ N, s, t ∈ [0, 1] that |xn(s) − xn(t)| ≤ L|s − t|.
This implies that x∞ is Lipschitz with Lipschitz constant bounded by L. Finally, it
remains to show that the convergence is also in (X, ‖·‖Lip). For this, note that – due
to the Cauchy property – there exists N : (0,∞)→ N so that for all ε ∈ (0,∞) and
all m,n ≥ Nε it holds that sups,t∈[0,1],s 6=t

∣∣∣ (xn(s)−xm(s))−(xn(t)−xm(t))
s−t

∣∣∣ ≤ ε. Moreover, by
uniform convergence, there exists M : (0,∞)× [0, 1]2 → N such that for all s, t ∈ [0, 1]
with s 6= t, all ε ∈ (0,∞), and all n ≥ Mε,s,t we have ‖xn − x∞‖C([0,1],R) ≤ ε|s − t|.
Thus, we get for all ε ∈ (0,∞), all s, t ∈ [0, 1] with s 6= t, and all n ≥ Nε:

|(xn(s)− x∞(s))− (xn(t)− x∞(t))|
≤ |(xn(s)− xmax{Nε,Mε,s,t}(s))− (xn(t)− xmax{Nε,Mε,s,t}(t))|

+ |xmax{Nε,Mε,s,t}(s)− x∞(s)|+ |x∞(t)− xmax{Nε,Mε,s,t}(t)|
≤ ε|s− t|+ 2‖xmax{Nε,Mε,s,t} − x∞‖C([0,1],R) ≤ 3ε|s− t|,

which establishes that (xn)n∈N converges to x∞ in (X, ‖·‖Lip).

(c) Demonstrate that (Y, ‖·‖C1) is isometrically embedded in (X, ‖·‖Lip) and that Y
is closed in (X, ‖·‖Lip).

Solution: Observe for every y ∈ C1([0, 1],R) that, by the fundamental theorem of
calculus and compactness of the interval [0, 1], y is also Lipschitz continuous. More
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precisely, for all s, t ∈ [0, 1], we have:

|y(s)− y(t)| ≤
∣∣∣∣∫ s

t
y′(r) dr

∣∣∣∣ ≤ |s− t|‖y′‖C([0,1],R).

This implies in particular that ‖y‖Lip ≤ ‖y‖C1([0,1],R). Since, on the other hand, for
every t ∈ [0, 1] there must be a sequence (sn)n∈N ⊆ [0, 1]\{t} with limn→∞

y(sn)−y(t)
sn−t =

y′(t), we must have that ‖y‖C1([0,1],R) ≤ ‖y‖Lip. This estabslishes that Y is isometrically
embedded in X. For the closedness of Y in X we just notice that Y is complete.
Indeed, if (yn)n∈N is a Cauchy sequence in Y , then (yn) and (y′n) are Cauchy sequences
in C([0, 1],R). Thus, there exist y∞, z∞ ∈ C([0, 1],R) such that lim supn→∞‖yn −
y∞‖+ ‖y′n − z∞‖ = 0. The fundamental theorem of calculus now shows that z∞ is
the derivative of y∞ as we have for all s, t ∈ [0, 1]:

y∞(t)− y∞(s) = lim
n→∞

[yn(t)− yn(s)] = lim
n→∞

∫ t

s
y′n(r) dr =

∫ t

s
z∞(r) dr.

(Beware: not just this representation, but the representation together with the fact
that z∞ is continuous imply that y∞ is classically differentiable everywhere.)

3.3. Completion of metric spaces

Let (X, d) be a metric space. A completion of (X, d) is a triple (X, δ, ι), where (X, δ) is
a complete metric space and ι : X → X is an isometric embedding with dense image.

(a) Let (X, δ, ι) be a completion of X. Then it satisfies the following universal property:
whenever φ : X → Y is 1-Lipschitz to a complete metric space (Y, dY ) then there is a
unique 1-Lipschitz map Φ: X→ Y such that φ = Φ ◦ ι.

Solution: Note that with X being the closure of ι(X), we have that for every ξ ∈ X,
there exists a sequence (xn)n∈N ⊆ X satisfying lim supn→∞ δ(ι(xn), ξ) = 0. If there is
a continuous map Φ: X→ Y with φ = Φ ◦ ι, then it needs to hold that

Φ(ξ) = lim
n→∞

Φ(ι(xn)) = lim
n→∞

φ(xn).

Hence, we (try to) define Φ: X→ Y by

Φ(ξ) = lim
n→∞

φ(xn) for all ξ ∈ X and all (xn)n∈N ⊆ X with lim sup
n→∞

δ(ξ, ι(xn)) = 0.

If this was well-defined, then we would have for sure that φ = Φ◦ ι. It thus remains to
show that Φ defined as above is indeed well-defined and 1-Lipschitz. So let ξ ∈ X and
(xn)n∈N ⊆ X be such that ι(xn)→ ξ in (X, δ) as n→∞. This implies that (ι(xn))n∈N
is a Cauchy sequence in (X, δ). The assumption that ι : X → X is an isometry hence
implies that (xn)n∈N ⊆ X is Cauchy in (X, d). Since φ is 1-Lipschitz, the sequence
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(φ(xn))n∈N ⊆ Y is Cauchy in (Y, dY ). As (Y, dY ) is complete, there exists y ∈ Y so
that lim supn→∞ dY (φ(xn), y) = 0. Moreover, note that if (x̃n)n∈N ⊆ X is another
sequence with lim supn→∞ δ(ι(x̃n), ξ) = 0, then

lim sup
n→∞

dY (φ(x̃n), y) ≤ lim sup
n→∞

dY (φ(x̃n), φ(xn)) + lim sup
n→∞

dY (φ(xn), y)︸ ︷︷ ︸
=0

≤ lim sup
n→∞

d(x̃n, xn)︸ ︷︷ ︸
=δ(ι(x̃n),ι(xn))

≤ lim sup
n→∞

δ(ι(x̃n), ξ) + lim sup
n→∞

dY (ξ, ι(xn)) = 0.

Hence, there indeed exists a map Φ: X→ Y satisfying for all ξ ∈ X and all (xn)n∈N ⊆
X with lim supn→∞ δ(ι(xn), ξ) = 0 that lim supn→∞ dY (Φ(ξ), φ(xn)) = 0. (This
implies in particular that Φ(ι(x)) = φ(x) for every x ∈ X.) Finally, for all ξ1, ξ2 ∈ X
and all (x(1)

n )n∈N, (x(2)
n )n∈N satisfying ι(x(1)

n )→ ξ1 and ι(x(2)
n )→ ξ2, we obtain

dY (Φ(ξ1),Φ(ξ2))

≤ lim sup
n→∞

dY (Φ(ξ1), φ(x(1)
n ))︸ ︷︷ ︸

→0 as n→∞

+ dY (φ(x(1)
n ), φ(x(2)

n )) + dY (φ(x(2)
n ),Φ(ξ2))︸ ︷︷ ︸

→0 as n→∞


≤ lim sup

n→∞
d(x(1)

n , x(2)
n ) = lim sup

n→∞
δ(ι(x(1)

n ), ι(x(2)
n )) = δ(ξ(1), ξ(2)),

which ascertains the desired Lipschitz property of Φ.

(b) If (X1, δ1, ι1) and (X2, δ2, ι2) are two completions of X, then there exists a unique
isometric isomorphism ψ : X1 → X2 such that ι2 = ψ ◦ ι1.

Solution: According to (a), there exist a 1-Lipschitz map ψ : X1 → X2 satisfying
ι2 = ψ◦ι1 and a 1-Lipschitz map φ : X2 → X1 satisfying ι1 = φ◦ι2. Hence, we have for
all ξ ∈ ι1(X) that (φ ◦ψ)(ξ) = ξ and for all η ∈ ι2(X) that (ψ ◦φ)(η) = η. Continuity
of ψ and φ, paired with ι1(X) = X1 and ι2(X) = X2 ensures that ψ ◦ φ = idX2 and
φ ◦ ψ = idX1 . Hence, ψ and φ are bijective. Both being 1-Lipschitz, we obtain for all
x1, y1 ∈ X1 and x2, y2 ∈ X2:

δ1(x1, y1) = δ1(φ(ψ(x1)), φ(ψ(y1))) ≤ δ2(ψ(x1), ψ(y1)) ≤ δ1(x1, y1)
δ2(x2, y2) = δ2(ψ(φ(x2)), ψ(φ(y2))) ≤ δ1(φ(x2), φ(y2)) ≤ δ2(x2, y2).

This implies that φ and ψ are isometries.

(c) Prove the existence of a completion of (X, d).

Hint: Recall that the space of continuous bounded real-valued functions Cb(X,R)
is a Banach space with respect to the norm ‖f‖∞ = supx∈X |f(x)|. Fix x0 ∈ X.

last update: 17 October 2021 5/12



ETH Zürich
Autumn 2021

Functional Analysis I
Solution to Problem Set 3

d-math
Prof. J. Teichmann

For y ∈ X let fy(x) = d(y, x) − d(x0, x). Prove that ι(y) = fy defines an isometric
embedding ι : X → Cb(X,R) and put X = ι(X).

Solution: Note that ι is well-defined, i.e., for every y ∈ X it holds that fy is continuous
and bounded. Boundedness follows from |d(y, x)−d(x0, x)| ≤ d(y, x0) for all x, y ∈ X.
Continuity follows from |fy(x)− fy(z)| ≤ |d(y, x)− d(y, z)|+ |d(x0, x)− d(x0, z)| ≤
2d(x, z) for all x, y, z ∈ X. It remains to show that ι is an isometry. For this, note
that for all x, y1, y2 ∈ X it holds that

fy1(x)− fy2(x) = d(y1, x)− d(x0, x)− (d(y2, x)− d(x0, x)) = d(y1, x)− d(y2, x).

The triangle inequality hence implies for all y1, y2 ∈ X:

‖ι(y1)− ι(y2)‖Cb(X,R) = sup
x∈X
|fy1(x)− fy2(x)|

= sup
x∈X
|d(y1, x)− d(y2, x)| ≤ d(y1, y2).

Taking into account that fy1(y2)− fy2(y2) = d(y1, y2), we obtain that

‖ι(y1)− ι(y2)‖Cb(X,R) = d(y1, y2),

which shows that ι is an isometry. Choosing X = ι(X) completes the proof.

3.4. Compactly supported sequences and their `∞-completion

Definition. We denote the space of compactly supported sequences by

cc := {(xn)n∈N ∈ `∞ | ∃N ∈ N ∀n ≥ N : xn = 0}

and the space of sequences converging to zero by

c0 := {(xn)n∈N ∈ `∞ | lim
n→∞

xn = 0}.

(a) Show that (cc, ‖·‖`∞) is not complete. What is a completion of this space?

Solution: For every k ∈ N, let x(k) = (x(k)
n )n∈N ∈ cc be given by

x(k)
n =


1
n

for n ≤ k,

0 for n > k.

Then (x(k))k∈N is a Cauchy sequence in (cc, ‖·‖`∞). Indeed, for every element y =
(yn)n∈N ∈ cc, we have:

lim sup
k→∞

‖x(k) − y‖`∞ ≥
1

min{n ∈ N | yn = 0} > 0.

(More intuitively speaking, the limit sequence x(∞) given by x(∞)
n = 1

n
for all n ∈ N is

not in cc but in c0 \ cc. ). We claim that c0 is a completion of (cc, ‖·‖`∞).
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Proof. It suffices to show c0 = cc, where the closure is taken in `∞ because then,
(c0, ‖·‖`∞) is complete as closed subspace of the complete space (`∞, ‖·‖`∞) and
(cc, ‖·‖`∞) is clearly densely isometrically embedded.

“⊆”: Let x = (xn)n∈N ∈ c0. Let (x(k))k∈N be a sequence of sequences x(k) = (x(k)
n )n∈N

in cc given by

xkn =

xn for n ≤ k,

0 for n > k.

Let ε > 0. By assumption, there exists Nε ∈ N such that |xn| < ε for every n ≥ Nε.

⇒ ∀k ≥ Nε : ‖x(k) − x‖`∞ = sup
n>k
|0− xn| ≤ ε.

We conclude that x(k) → x in `∞ as k →∞ and since x ∈ c0 is arbitrary, c0 ⊆ cc.

“⊇”: Let x = (xn)n∈N ∈ cc. Then there exists a sequence (x(k))k∈N of sequences
x(k) = (x(k)

n )n∈N ∈ cc such that x(k) → x in `∞ as k → ∞. Let ε > 0. In particular,
there exists K ∈ N such that

sup
n∈N
|x(K)
n − xn| = ‖x(K) − x‖`∞ < ε

Since x(K) ∈ cc there exists N0 ∈ N such that x(K)
n = 0 for all n ≥ N0. This implies

that

∀n ≥ N0 : |xn| ≤ sup
n≥N0

|0− xn| < ε.

We conclude that xn → 0 as n→∞ which means that x ∈ c0.

(b) Prove the strict inclusion

∞⋃
p=1

`p ( c0.

Solution: If (xn)n∈N ∈ `p for any p ≥ 1, then necessarily xn → 0 for n → ∞ by
standard facts concerning summable series. Consequently,1

∞⋃
p=1

`p ⊆ c0.

1Note that by definition
⋃∞

p=1 `p includes `p for all p ∈ N but not for p =∞.
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The inclusion is strict, since y = (yn)n∈N ∈ c0 given by

yn = 1
log(n+ 1)

has the property that y /∈ `p for any p ≥ 1. Indeed, given any p ≥ 1 there exists
Np ∈ N such that log(n+ 1) ≤ n

1
p for every n ≥ Np which allows the estimate

∞∑
n=1

( 1
log(n+ 1)

)p
≥

∞∑
n=Np

( 1
n

1
p

)p
=

∞∑
n=Np

1
n

=∞.

3.5. Operator norms need not be achieved

We consider the space X = C([−1, 1],R) with its usual norm ‖·‖C([−1,1],R) and define

ϕ : X → R

f 7→
∫ 1

0
f(t) dt−

∫ 0

−1
f(t) dt.

(a) Show that ϕ ∈ L(X,R) with ‖ϕ‖L(X,R) ≤ 2.

Solution: Let ‖·‖ denote the usual sup norm ‖·‖C([−1,1],R). The given map ϕ : X → R
is linear by linearity of the integral. Moreover, the fact that

|ϕ(f)| ≤
∫ 1

0
|f(t)| dt+

∫ 0

−1
|f(t)| dt ≤ 2‖f‖ for all f ∈ X

implies

‖ϕ‖L(X,R) = sup
f∈X\{0}

|ϕ(f)|
‖f‖

≤ 2.

Since ϕ is linear, continuity follows from boundedness.

(b) Find a sequence (fn)n∈N in X such that ‖fn‖C([−1,1],R) = 1 for every n ∈ N and
such that ϕ(fn)→ 2 as n→∞. This in fact implies ‖ϕ‖L(X,R) = 2.

Solution: The sign function f(x) = x
|x| is approximated pointwise by the sequence

(fn)n∈N of functions fn ∈ X given by

fn(t) =


−1, for −1 ≤ t < − 1

n
,

nt, for − 1
n
≤ t < 1

n
,

1, for 1
n
≤ t ≤ 1.

In particular, ‖fn‖X = 1 for every n ∈ N. Computing the integrals explicitly, or
applying the dominated convergence theorem, we have

lim
n→∞

ϕ(fn) = 2.
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(c) Prove that there does not exist f ∈ X with ‖f‖C([−1,1],R) = 1 and |ϕ(f)| = 2.

Solution: Suppose there exists f ∈ X with ‖f‖ = 1 and |ϕ(f)| = 2. Since ϕ is
linear, we may assume ϕ(f) = 2, otherwise we replace f by −f . Then, the estimates∣∣∣∣∫ 1

0
f(t) dt

∣∣∣∣ ≤ max
x∈[−1,1]

|f(x)| = ‖f‖X = 1,
∣∣∣∣∫ 0

−1
f(t) dt

∣∣∣∣ ≤ 1,

imply by definition of ϕ that∫ 1

0
f(t) dt = −

∫ 0

−1
f(t) dt = 1. (∗)

Since f is bounded from above by 1 we can conclude from (∗) that f |[0,1] ≡ 1. In fact,
if f(t∗) < 1 for some t∗ ∈ [0, 1], then – by continuity – f < 1 in some neighbourhood
of t∗ (in [0, 1]) of f which together with the uniform bound f ≤ 1 contradicts (∗).

Analogously, we conclude f |[−1,0] ≡ −1 which (combined with f |[0,1] ≡ 1) leads to a
contradiction at 0.

3.6. Unbounded map and approximations

As in problem 3.4, we denote the space of compactly supported sequences by

cc := {(xn)n∈N ∈ `∞ | ∃N ∈ N ∀n ≥ N : xn = 0}

endowed with the norm ‖·‖`∞ . Consider the map

T : cc → cc

(xn)n∈N 7→ (nxn)n∈N

(a) Show that T is not continuous.

Solution: The operation T : (xn)n∈N 7→ (nxn)n∈N is linear in each entry and therefore
linear as map T : cc → cc. For every k ∈ N we define the sequence e(k) = (e(k)

n )n∈N ∈ cc
by

e(k)
n =

1, if n = k,

0, otherwise.

Then, ‖e(k)‖`∞ = 1 for every k ∈ N but ‖Te(k)‖`∞ = k is unbounded for k ∈ N.
As unbounded linear map, T is not continuous. (Or, put differently: the sequence
( e(k)

k
)k∈N ⊆ cc converges to 0 as k → ∞, but (T ( e(k)

k
))k∈N cannot converge to 0 as

k →∞, since ‖T ( e(k)

k
)‖`∞ = 1 for every k ∈ N.)
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(b) Construct continuous linear maps Tm : cc → cc such that

∀x ∈ cc : Tmx
m→∞−−−→ Tx.

Solution: For every m ∈ N we define

Tm : cc → cc

(xn)n∈N 7→ (x1, 2x2, 3x3, . . . ,mxm, 0, 0, . . .)

Then Tm is linear. Tm : (cc, ‖·‖`∞) → (cc, ‖·‖`∞) is also bounded for every (fixed)
m ∈ N since for every x = (xn)n∈N ∈ cc

‖Tmx‖ = sup
n∈N
|(Tmx)n| = max

n∈{1,...,m}
|nxn| ≤ m‖x‖`∞ .

Hence, Tm is continuous.

Let x = (xn)n∈N ∈ cc be fixed. Then there exists N ∈ N such that xn = 0 for all
n ≥ N which implies Tmx = Tx for all m ≥ N . In particular,

Tmx
m→∞−−−→ Tx.

3.7. Volterra equation

Let k ∈ C([0, 1]2,R). The Volterra integral operator Tk : C([0, 1],R)→ C([0, 1],R) is
given by

(Tkf)(t) =
∫ t

0
k(t, s)f(s) ds for all t ∈ [0, 1], f ∈ C([0, 1],R).

(a) Prove that Tk is well-defined and continuous.

Solution: Tkf is well-defined for every f ∈ C([0, 1],R) as k is continuous. Tk is
clearly linear and clearly bounded (as k is continuous and [0, 1]2 is compact).

(b) For λ ∈ R, let ‖·‖λ : C([0, 1],R)→ [0,∞) be defined by ‖f‖λ = supt∈[0,1] e
−λt|f(t)|

for every f ∈ C([0, 1],R). Show that ‖·‖λ defines a norm equivalent to the supremum
norm on C([0, 1],R).

Solution: The fact that for every λ ∈ R it holds that 0 < inft∈[0,1] e
λt ≤ supt∈[0,1] e

λt <
∞ implies[

inf
t∈[0,1]

eλt
]

sup
t∈[0,1]

|f(t)| ≤ ‖f‖λ ≤
[

sup
t∈[0,1]

eλt
]

sup
t∈[0,1]

|f(t)| for all λ ∈ R.
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(c) Estimate the operator norm of Tk on (C([0, 1],R), ‖·‖λ).

Solution: Note that for all λ ∈ R, f ∈ C([0, 1],R) it holds that

‖Tkf‖λ = sup
t∈[0,1]

|e−λt(Tkf)(t)|

= sup
t∈[0,1]

∣∣∣∣∫ t

0
e−λ(t−s)k(t, s)e−λsf(s) ds

∣∣∣∣
≤ sup

t∈[0,1]

∫ t

0
e−λ(t−s)‖k‖C([0,1]2,R)‖f‖λ ds

≤


‖k‖C([0,1]2,R)‖f‖λ λ = 0,
1
λ
‖k‖C([0,1]2,R)‖f‖λ λ > 0,

e|λ|

|λ| ‖k‖C([0,1]2,R)‖f‖λ λ < 0.

(d) Show that for every g ∈ C([0, 1],R) there exists a unique f ∈ C([0, 1],R)
satisfying

∀t ∈ [0, 1] : f(t) +
∫ t

0
k(t, s)f(s) ds = g(t).

Solution: Let λ > 2‖k‖C([0,1]2,R) and consider the map Φ: X → X, given by Φ(f) =
g − Tkf for every f ∈ X. Observe for all f1, f2 ∈ X that

‖Φ(f1)− Φ(f2)‖λ = ‖Tk(f2 − f1)‖λ ≤
1
2‖f2 − f1‖λ.

Banach’s fixed point theorem (cf. also problem 1.6) ensures that there exists a unique
f ∈ X such that Φ(f) = f .

Alternative solution: For (d), which is undoubtedly the goal of (a)–(c), we can argue
in a slightly different way by calculating the spectral radius of the operator Tk. We
claim that for every n ∈ N and every f ∈ C([0, 1],R) and t ∈ [0, 1],

|(T nf)(t)| ≤ tn

n!‖k‖
n
C([0,1]2,R)‖f‖C([0,1],R).

We prove this claim by induction. For n = 1 we have for all f ∈ C([0, 1],R), t ∈ [0, 1]
that

|(Tf)(t)| ≤
∫ t

0
|k(t, s)||f(s)| ds ≤ t‖k‖C0([0,1]2,R)‖f‖C([0,1],R).
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Suppose the claim is true for some n ∈ N. Then, we get for all f ∈ C([0, 1],R),
t ∈ [0, 1]:

|(T n+1f)(t)| ≤
∫ t

0
|k(t, s)||(T nf)(s)| ds

≤ 1
n!‖k‖

n+1
C([0,1]2,R)‖f‖C([0,1],R)

∫ t

0
sn ds

= tn+1

(n+ 1)!‖k‖
n+1
C([0,1]2,R)‖f‖C([0,1],R)

which proves the claim. Since 0 ≤ t ≤ 1, the claim implies

rT := lim
n→∞
‖T n‖

1
n ≤ lim

n→∞

‖k‖C([0,1]2,R)

(n!) 1
n

= 0.

From rT = 0 we conclude that the operator (I + T ) = (I − (−T )) is invertible with
bounded inverse (Satz 2.2.7). The solution to the Volterra equation f + Tf = g is
then given by f = (1 + T )−1g.
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