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4.1. Null and non-null limits

Denote by c the subspace of `∞ containing all the convergent sequences and let c0
denote the subspace of sequences converging to 0.

(a) Prove that c is a closed subspace of `∞.

Solution: Let (x(n))n∈N ⊆ c be a sequence (of sequences x(n) = (x(n)
k )k∈N ∈ c) which

converges in `∞ to x(∞) = (x(∞)
k )k∈N ∈ `∞. Since we have for every n ∈ N that the

evaluation functional `∞ 3 (yk)k∈N 7→ yn ∈ R is linear and bounded (with operator
norm 1), we may infer that

x
(∞)
k = lim

n→∞
x

(n)
k for all k ∈ N.

Moreover, due to (x(n))n∈N converging to x(∞) in (`∞, ‖·‖`∞) and due to (x(n))n∈N ⊆ c,
there exist N : (0,∞)→ N and M : N× (0,∞)→ N such that

sup
n≥Nε
‖x(n) − x(∞)‖`∞ ≤ ε for all ε ∈ (0,∞)

and

sup
n,m≥Mk,ε

|x(k)
n − x(k)

m | ≤ ε for all k ∈ N, ε ∈ (0,∞).

Thus, we obtain for all ε ∈ (0,∞) that

sup
n,m≥MNε,ε

|x(∞)
n −x(∞)

m | ≤ sup
n,m≥MNε,ε

(|x(∞)
n −x(Nε)

n |+|x(Nε)
n −x(Nε)

m |+|x(Nε)
m −x(∞)

m |) ≤ 3ε,

which proves that x(∞) is a Cauchy sequence in (R, |·|) and therefore belongs to c.
(By arguing that the linear mapping cť 3 (yk)k∈N 7→ limk→∞ yk ∈ R is continuous,
we could show that limk→∞ x

(∞)
k = limn→∞[limk→∞ x

(n)
k ], but this is not needed for

proving closedness of c in `∞).

(b) Show that c is separable.

Solution: Since Q is countable and dense in R, it suffices to find a countable set
with dense span (instead of a countable dense set) in c for demonstrating separability
of c. With regard to the existence of a countable set with dense span, we define the
sequences e(1), e(2), e(3), . . . , e(∞) ∈ c as follows:

e(k)
n =


1 for k =∞,
1 for k ∈ N, n = k,

0 for k ∈ N, n 6= k,
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that is, e(∞) is the sequence constantly equal to 1 and the sequences e(k), k ∈ N,
vanish everywhere except for one entry (namely the kth for e(k)) where they equal 1.
Clearly, {e(k) | k ∈ N∪{∞}} ⊆ c. Moreover, we claim that span{e(k) | k ∈ N∪{∞}}
lies dense in c. For this, let x = (xk)k∈N ∈ c be arbitrary. Then it holds for every
n ∈ N that

y(n) :=
(

lim
k→∞

xk

)
e(∞) +

n∑
m=1

(xm − lim
k→∞

xk)e(m) ∈ span{e(k) | k ∈ N ∪ {∞}}.

In addition, note that

lim sup
n→∞

‖y(n) − x‖`∞ = lim sup
n→∞

sup
m>n
|xm − lim

k→∞
xk| = 0,

i.e., (y(n))n∈N converges in `∞ to x.

(c) Construct an isomorphism between c and c0.

Solution: We implicitly already used the isomorphism in the previous exercise.
Define the mappings T : c0 → c and S : c→ c0 by

Tx = (x1 + xn+1)n∈N for all x = (xn)n∈N ∈ c0,

Sx = ( lim
n→∞

xn, x1 − lim
n→∞

xn, x2 − lim
n→∞

xn, . . .) for all x = (xn)n∈N ∈ c.

T is welldefined as limn→∞(Tx)n = limn→∞(x1 + xn+1) = x1 for every x ∈ c0 and S
is welldefined as limn→∞(xn − limk→∞ xk) = 0 for every x ∈ c. T and S are clearly
linear. Moreover, T and S are clearly bounded (with operator norm 2). Finally, the
fact that

TSx = ((Sx)1 + (Sx)n+1)n∈N = ( lim
k→∞

xk + (xn − lim
k→∞

xk))n∈N = x

for all x = (xn)n∈N ∈ c and the fact that

STx = ( lim
n→∞

(Tx)n, (Tx)1 − lim
n→∞

(Tx)n, (Tx)2 − lim
n→∞

(Tx)n, . . .)

= ( lim
n→∞

(Tx)n, x1 + x2 − lim
n→∞

(Tx)n, x1 + x3 − lim
n→∞

(Tx)n, . . .)

= (x1, x2, x3, . . .) = x

for all x = (xn)n∈N ∈ c0 show bijectivity of T and S.

4.2. Baby Riesz representation

Let p ∈ [1,∞). Show that ϕ belongs to the dual space of `p, (i.e., ϕ ∈ (`p)′ = L(`p,R))
if and only if there exists (fn)n∈N ∈ `q such that

ϕ((xn)n∈N) =
∞∑
n=1

fnxn for all (xn)n∈N ∈ `p,
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where q ∈ [1,∞] is such that 1
p

+ 1
q

= 1 (with the convention 1
∞ = 0).

Solution: ”⇐”: Let (fn)n∈N ∈ `q. Hölder’s inequality ensures for all x = (xk)k∈N ∈ `p
that

∞∑
k=1
|fkxk| ≤ ‖f‖`q‖x‖`p .

In particular, it holds that ∑∞k=1 fkxk exists for every x = (xk)k∈N ∈ `p and the
mapping `p 3 x 7→ ∑∞

k=1 fkxk ∈ R is welldefined, linear and continuous.

”⇒”: Consider the case 1 < p <∞, in which case q = p
p−1 ∈ (1,∞). Let ϕ ∈ L(`p,R),

that is, ϕ is linear and there exists C ∈ [0,∞) satisfying

|ϕ(x)| ≤ C‖x‖`p for all x ∈ `p. (1)

For every n ∈ N, let en := (δnk)k∈N ∈ `p. Since ‖en‖`p = 1 for every n ∈ N, we obtain
by the above inequality that (ϕ(en))n∈N ⊆ `∞ with ‖(ϕ(en))n∈N‖`∞ ≤ C. Moreover,
it clearly holds for all x = (xk)k∈N ∈ `p and all n ∈ N that

ϕ

(
n∑
k=1

xkek

)
=

n∑
k=1

ϕ(ek)xk.

Moreover, by (1), we have for all x = (xk)k∈N ∈ `p and all n ∈ N that
∣∣∣∣∣
n∑
k=1

ϕ(ek)xk
∣∣∣∣∣ ≤ C

(
n∑
k=1
|xk|p

)1
p

≤ C‖x‖`p .

Hence, we obtain for every n ∈ N, by choosing x(n) = (x(n)
k )k∈N ∈ `p such that

x
(n)
k =

ϕ(ek)|ϕ(ek)|
1
p−1−1 if k ≤ n and ϕ(ek) 6= 0,

0 if k > n or ϕ(ek) = 0,

that

n∑
k=1
|ϕ(ek)|

p
p−1 = ϕ(x(n)) ≤ C

(
n∑
k=1
|ϕ(ek)|

p
p−1

)1
p

.

This implies that
[
n∑
k=1
|ϕ(ek)|

p
p−1

] p−1
p

≤ C for all n ∈ N.
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By letting n → ∞, we obtain (ϕ(ek))k∈N ∈ `
p
p−1 with ‖(ϕ(ek))k∈N‖

`
p
p−1
≤ C. Since

this holds for every C satisfying (1), we have ‖(ϕ(ek))k∈N‖
`
p
p−1
≤ ‖ϕ‖L(`p,R). Moreover,

since for every x = (xk)k∈N ∈ `p it holds that

lim sup
n→∞

∥∥∥∥∥x−
n∑
k=1

xkek

∥∥∥∥∥
`p

= 0,

we obtain by continuity of ϕ and by Hölder’s inequality for every x = (xk)k∈N ∈ `p:

ϕ(x) = lim
n→∞

ϕ

(
n∑
k=1

xkek

)
= lim

n→∞

n∑
k=1

ϕ(ek)xk =
∞∑
k=1

ϕ(ek)xk.

In addition, Hölder’s inequality implies

|ϕ(x)| ≤
∞∑
k=1
|ϕ(ek)xk| ≤ ‖(ϕ(ek))k∈N‖

`
p
p−1
‖x‖`p for all x = (xk)k∈N ∈ `p,

i.e., ‖ϕ‖L(`p,R) ≤ ‖(ϕ(ek))k∈N‖
`
p
p−1

. The proof in the case p = 1 goes along the same
lines.

4.3. Infinite matrices

Consider the double sequence (ajk)j,k∈N with ajk ∈ R for every j, k ∈ N.

(a) Let supj,k∈N|ajk| < ∞ and let for every x = (xk)k∈N ∈ `1 the sequence Ax be
given by

[Ax]j =
∑
k∈N

ajkxk for all j ∈ N.

Show that this defines a bounded linear map from `1 to `∞ (i.e., A ∈ L(`1, `∞)).
Moreover, prove that ‖A‖ = supj,k∈N|ajk|.

Solution: For all x = (xk)k∈N ∈ `1 and all j ∈ N, it clearly holds that

|[Ax]j| ≤
∑
k∈N
|ajk||xk| ≤ sup

k∈N
|ajk|‖x‖`1 ≤ sup

j,k∈N
|ajk|‖x‖`1 ,

showing that Ax ∈ `∞ with ‖Ax‖`∞ ≤ supj,k∈N|ajk|‖x‖`1 . Hence, A maps from `1

to `∞. Linearity is clear. Moreover, the previous inequality yields ‖A‖L(`1,`∞) ≤
supj,k∈N|ajk|. For the proof of the converse inequality, let (jε)ε∈(0,∞), (kε)ε∈(0,∞) ⊆ N
satisfy for every ε ∈ (0,∞) that |ajεkε| > supj,k∈N|ajk|−ε. Setting x(ε) = (δlkε)l∈N ∈ `1

for every ε ∈ (0,∞), we obtain:

‖Ax(ε)‖`∞ ≥ |[Ax(ε)]jε| = |ajεkε| > sup
j,k∈N
|ajk| − ε.

Since ‖x(ε)‖`1 = 1 for every ε ∈ (0,∞), this implies ‖A‖L(`1,`∞) ≥ supj,k∈N|aj,k|.
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(b) Let supj∈N
∑
k∈N|ajk| <∞ and define for x = (xk)k∈N ∈ `∞ the sequence Ax as

above. Show that this defines a bounded linear map from `∞ to `∞ (i.e., A ∈ L(`∞))).
Moreover, prove that ‖A‖ = supj∈N

∑
k∈N|ajk|.

Solution: For all x = (xk)k∈N ∈ `∞ and all j ∈ N, it clearly holds that

|[Ax]j| ≤
∑
k∈N
|ajk||xk| ≤

∑
k∈N
|ajk|‖x‖`∞ ≤ sup

j∈N

∑
k∈N
|ajk|‖x‖`∞ ,

showing that Ax ∈ `∞ with ‖Ax‖`∞ ≤ supj∈N
∑
k∈N|ajk|‖x‖`∞ . Hence, A maps from

`∞ to `∞. Linearity is clear. Moreover, the previous inequality yields ‖A‖L(`∞,`∞) ≤
supj

∑
k∈N|ajk|. For the proof of the converse inequality, let (jε)ε∈(0,∞) ⊆ N sat-

isfy for every ε ∈ (0,∞) that ∑k∈N|ajεk| > supj∈N
∑
k∈N|ajk| − ε. Setting x(ε) =

(sgn(ajεk))k∈N ∈ `∞ for every ε ∈ (0,∞), we obtain:

‖Ax(ε)‖`∞ ≥ |[Ax(ε)]jε| =
∑
k∈N
|ajεk| > sup

j∈N

∑
k∈N
|ajk| − ε.

Since ‖x(ε)‖`∞ ≤ 1 for every ε ∈ (0,∞), this implies ‖A‖L(`∞,`∞) ≥ supj∈N
∑
k∈N|aj,k|.

4.4. The Fourier coefficients of functions in L1([0, 2π])

For f ∈ L1([0, 2π],C), we define the kth Fourier coefficient to be

f̂(k) =
∫ 2π

0
f(t)e−ikt dt

and let F(f) = (f̂(k))k∈Z.

(a) Show that F : L1([0, 2π],C)→ `∞(Z,C) defines a bounded linear operator.

Solution: For every f ∈ L1([0, 2π],C) and every k ∈ Z, we have that∣∣∣∣∫ 2π

0
f(t)e−ikt dt

∣∣∣∣ ≤ ∫ 2π

0
|f(t)e−ikt| dt = ‖f‖L1([0,2π],C),

which implies that F is well-defined and bounded (with operator norm bounded by
1). Linearity is immediate from the linearity of the integral.

(b) Prove the Riemann–Lebesgue lemma, that is, lim sup|k|→∞|f̂(k)| = 0 for all
f ∈ L1([0, 2π],C).

Solution: First, consider f ∈ C([0, 2π],C). Being uniformly continuous, there exists
δ : (0,∞)→ (0,∞) satisfying for all ε ∈ (0,∞) that(

x, y ∈ [0, 2π] and |x− y| < δ(ε)
)
⇒ |f(x)− f(y)| ≤ ε.
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Hence, for every ε ∈ (0,∞) and all k ∈ N, we have that∣∣∣∣∣∣∣
∫ 2π

0
f(t)e−ikt dt−

b 2π
δ(ε) c∑
m=0

f(mδ(ε))
∫ min{(m+1)δ(ε),2π}

mδ(ε)
e−ikt dt

∣∣∣∣∣∣∣ ≤ 2πε.

Moreover, for every ε ∈ (0,∞), it holds

lim sup
k→∞

∣∣∣∣∣∣∣
b 2π
δ(ε) c∑
m=0

f(mδ(ε))
∫ min{(m+1)δ(ε),2π}

mδ(ε)
e−ikt dt

∣∣∣∣∣∣∣ ≤ lim sup
k→∞

2
k
‖f‖sup

(⌊
2π
δ(ε)

⌋
+ 1

)
= 0.

Combining the above two inequalities implies that

lim sup
k→∞

∣∣∣∣∫ 2π

0
f(t)e−ikt dt

∣∣∣∣ ≤ 2πε for all ε ∈ (0,∞),

proving the claim for f ∈ C([0, 2π],C). Next assume f ∈ L1([0, 2π],C). Since
C([0, 2π],C) lies dense in L1([0, 2π],C), there exists gε ∈ C([0, 2π],C) for every
ε ∈ (0,∞) such that ‖f − gε‖L1([0,2π],C) ≤ ε. Hence, we have for every ε ∈ (0,∞) that

lim sup
k→∞

∣∣∣∣∫ 2π

0
e−iktf(t) dt

∣∣∣∣ ≤ lim sup
k→∞

∣∣∣∣∫ 2π

0
e−iktgε(t) dt

∣∣∣∣+ ε = ε.

This completes the proof.

(c) Let c0(Z,C) ⊆ `∞(Z,C) be the closed subspace of sequences converging to zero.
Prove that F : L1([0, 2π],C)→ c0(Z,C) has dense range but is not onto.

Solution: For every k ∈ Z, ek := (δkn)n∈Z ∈ c0(Z,C) lies in F(L1([0, 2π],C)) as
ek = F([0, 2π] 3 t 7→ eikt ∈ C). Since span{ek : k ∈ Z} is dense in c0(Z,C) and F
is linear, we can conclude that F has dense range. If F was surjective, then the
mapping would have to be continuously invertible by the open mapping theorem
(note that F is injective – for example, because f̂(k) = 0 for all k ∈ Z implies that∫ 2π

0 f(t)p(t) dt = 0 for every trigonometric polynomial p and, by density then also for
every continuous 2π-periodic function p, leaving f = 0 as the only possibility by the
fundamental principle of the calculus of variations). In order to see that this is not
the case, consider the functions (fn)n∈N ⊆ L1([0, 2π],C), given by

fn(t) =
n∑

k=−n
eikt for all t ∈ [0, 2π].

Note that for all n ∈ N, t ∈ [0, 2π], we have that

fn(t) =
sin((n+ 1

2)t)
sin( t2) .
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Thus, we obtain for every n ∈ N:

‖fn‖L1([0,2π],C) =
∫ 2π

0

|sin((n+ 1
2)t)|

|sin( t2)| dt ≥
∫ 2π

0
(2n+ 1)

|sin((n+ 1
2)t)|

(n+ 1
2)t dt

= 2
∫ (2n+1)π

0

|sin(t)|
t

dt.

As the latter integral diverges as n→∞ (it can, for example, be bounded below by a
non-zero constant factor times partial sums of a harmonic series), while ‖F(fn)‖`∞ = 1
for every n ∈ N, F cannot be continuously invertible.

4.5. Distance to closed subspaces

Let (X, ‖·‖) be a normed R-vector space and let ϕ ∈ L(X,R) be an element of the
dual space of X.

(a) Prove for every x ∈ X that

|ϕ(x)| = ‖ϕ‖L(X,R) dist(x, ker(ϕ)),

where dist(x,A) = infv∈A‖x− v‖ for x ∈ X and ∅ 6= A ⊆ X denotes the distance of
the point x to the set A.

Solution: For ϕ = 0 ∈ L(X,R), the claim is clearly true. Thus, we assume w.l.o.g.
that ϕ 6= 0. First, observe for every x ∈ X and all v ∈ ker(ϕ) that

|ϕ(x)| = |ϕ(x− v)| ≤ ‖ϕ‖L(X,R)‖x− v‖.

Taking the infimum over v ∈ ker(ϕ) implies that |ϕ(x)| ≤ ‖ϕ‖L(X,R) dist(x, ker(ϕ))
for all x ∈ R. For the other inequality, note that there exist (yε)ε∈(0,∞) ⊆ X satisfying
for every ε ∈ (0, ‖ϕ‖L(X,R)) that ‖yε‖ ≤ 1 and |ϕ(yε)| > ‖ϕ‖L(X,R) − ε > 0. Since it
holds for every ε ∈ (0, ‖ϕ‖L(X,R)) that

ϕ(x) = ϕ(x)
ϕ(yε)

ϕ(yε) = ϕ

(
ϕ(x)
ϕ(yε)

yε

)
,

we may infer that x− ϕ(x)
ϕ(yε)yε ∈ ker(ϕ) for every ε ∈ (0, ‖ϕ‖L(X,R)). Hence, we obtain

for every ε ∈ (0, ‖ϕ‖L(X,R)):

dist(x, ker(ϕ)) = dist
(
ϕ(x)
ϕ(yε)

yε, ker(ϕ)
)

= |ϕ(x)|
|ϕ(yε)|

dist(yε, ker(ϕ))

≤ |ϕ(x)|
|ϕ(yε)|

‖yε‖ ≤
|ϕ(x)|
ϕ(yε)

≤ |ϕ(x)|
‖ϕ‖L(X,R) − ε

.
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Taking limits as ε→ 0 proves the missing inequality.

Consider now the R-vector space of continuous functions on the real half-line vanishing
at ∞, i.e.,

C0([0,∞),R) =
{
f ∈ C([0,∞),R) | lim sup

t→∞
|f(t)| = 0

}
,

equipped with the sup norm ‖·‖sup.

(b) Show that H = {f ∈ C0([0,∞),R) |
∫∞

0 e−sf(s) ds = 0} is a closed subspace of
the Banach space (C([0,∞),R), ‖·‖sup).

Solution: Let (fn)n∈N ⊆ H be a sequence converging to f∞ ∈ C([0,∞),R) with
respect to the sup norm. Since, consequentially, there exist N : (0,∞) → N and
R : N× (0,∞)→ [0,∞) satisfying that

sup
n≥Nε
‖fn − f∞‖sup ≤ ε for all ε ∈ (0,∞)

and

sup
t≥Rn,ε

|fn(t)| ≤ ε for all n ∈ N, ε ∈ (0,∞),

we obtain that

sup
t≥RNε,ε

|f∞(t)| ≤ sup
t≥RNε,ε

(|fNε(t)|+ ‖f∞ − fNε‖sup) ≤ 2ε for all ε ∈ (0,∞),

which demonstrates that f∞ ∈ C0([0,∞),R). Moreover, Hölder’s inequality and the
fact that (fn)n∈N ⊆ H guarantee that∣∣∣∣∫ ∞

0
e−sf∞(s) ds

∣∣∣∣ = lim sup
n→∞

∣∣∣∣∫ ∞
0

e−sf∞(s) ds−
∫ ∞

0
e−sfn(s) ds

∣∣∣∣
≤ lim sup

n→∞

∫ ∞
0

e−s|f∞(s)− fn(s)| ds

≤ lim sup
n→∞

‖f∞ − fn‖sup = 0.

Thus, f∞ ∈ H and H is closed. Linearity of H is immediate from the linearity of the
integral.

(c) Demonstrate that for every f ∈ C0([0,∞),R) \ H, there is no h ∈ H which
realizes the distance, i.e., which satisfies dist(f,H) = ‖f − h‖sup.

Solution: Set X = C0([0,∞),R). Note that ϕ : X → R, defined by

ϕ(f) =
∫ ∞

0
e−sf(s) ds for all f ∈ X,
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defines a continuous linear functional on X (and H = ker(ϕ)). Hence, if there existed
f ∈ X \H, g ∈ H with dist(f,H) = ‖f − g‖sup, then – according to (a), linearity,
and the fact that ϕ(g) = 0 – we would have

|ϕ(f − g)| = |ϕ(f)| = ‖ϕ‖L(X,R) dist(f, ker(ϕ))
= ‖ϕ‖L(X,R) dist(f,H) = ‖ϕ‖L(X,R)‖f − g‖sup,

in other words, f − g 6= 0 would be an element at which the operator norm of ϕ
is realized. But the operator norm of ϕ is 1 and is not attained in X. Why is the
operator norm of ϕ equal to 1? Note first for all f ∈ X that

|ϕ(f)| ≤
∫ ∞

0
e−s|f(s)| ds ≤

∫ ∞
0

e−s‖f‖sup ds = ‖f‖sup,

which implies that ‖ϕ‖L(X,R) ≤ 1. On the other hand, since for every α ∈ (0,∞), the
function [0,∞) 3 s 7→ e−αs ∈ R belongs to X and has sup norm 1, we get that

‖ϕ‖L(X,R) ≥ ϕ([0,∞) 3 s 7→ e−αs ∈ R)

=
∫ ∞

0
e−(1+α)s ds = 1

1 + α
for all α ∈ (0,∞).

Letting α→ 0, we obtain ‖ϕ‖L(X,R) ≥ 1, from which we conclude ‖ϕ‖L(X,R) = 1. Why
is the operator norm of ϕ not attained? For every f ∈ C([0,∞),R) with ‖f‖sup ≤ 1,
we have that

1−
∫ ∞

0
e−sf(s) ds =

∫ ∞
0

e−s(1− f(s))︸ ︷︷ ︸
≥0

ds = 0

if and only if 1−f(s) = 0 for all s ∈ [0,∞), i.e., if and only f(s) = 1 for all s ∈ [0,∞).
But the function constantly equal to 1 does not belong to X.
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