4.1. Null and non-null limits

Denote by c the subspace of ℓ^{∞} containing all the convergent sequences and let c_0 denote the subspace of sequences converging to 0.

(a) Prove that c is a closed subspace of ℓ^{∞} .

Solution: Let $(x^{(n)})_{n \in \mathbb{N}} \subseteq c$ be a sequence (of sequences $x^{(n)} = (x_k^{(n)})_{k \in \mathbb{N}} \in c$) which converges in ℓ^{∞} to $x^{(\infty)} = (x_k^{(\infty)})_{k \in \mathbb{N}} \in \ell^{\infty}$. Since we have for every $n \in \mathbb{N}$ that the evaluation functional $\ell^{\infty} \ni (y_k)_{k \in \mathbb{N}} \mapsto y_n \in \mathbb{R}$ is linear and bounded (with operator norm 1), we may infer that

$$x_k^{(\infty)} = \lim_{n \to \infty} x_k^{(n)}$$
 for all $k \in \mathbb{N}$.

Moreover, due to $(x^{(n)})_{n\in\mathbb{N}}$ converging to $x^{(\infty)}$ in $(\ell^{\infty}, \|\cdot\|_{\ell^{\infty}})$ and due to $(x^{(n)})_{n\in\mathbb{N}} \subseteq c$, there exist $N: (0, \infty) \to \mathbb{N}$ and $M: \mathbb{N} \times (0, \infty) \to \mathbb{N}$ such that

$$\sup_{n \ge N_{\varepsilon}} \|x^{(n)} - x^{(\infty)}\|_{\ell^{\infty}} \le \varepsilon \quad \text{for all } \varepsilon \in (0, \infty)$$

and

$$\sup_{n,m \ge M_{k,\varepsilon}} |x_n^{(k)} - x_m^{(k)}| \le \varepsilon \quad \text{for all } k \in \mathbb{N}, \varepsilon \in (0,\infty).$$

Thus, we obtain for all $\varepsilon \in (0, \infty)$ that

$$\sup_{n,m\geq M_{N_{\varepsilon},\varepsilon}} |x_n^{(\infty)} - x_m^{(\infty)}| \leq \sup_{n,m\geq M_{N_{\varepsilon},\varepsilon}} (|x_n^{(\infty)} - x_n^{(N_{\varepsilon})}| + |x_n^{(N_{\varepsilon})} - x_m^{(N_{\varepsilon})}| + |x_m^{(N_{\varepsilon})} - x_m^{(\infty)}|) \leq 3\varepsilon,$$

which proves that $x^{(\infty)}$ is a Cauchy sequence in $(\mathbb{R}, |\cdot|)$ and therefore belongs to c. (By arguing that the linear mapping $ct \ni (y_k)_{k\in\mathbb{N}} \mapsto \lim_{k\to\infty} y_k \in \mathbb{R}$ is continuous, we could show that $\lim_{k\to\infty} x_k^{(\infty)} = \lim_{n\to\infty} [\lim_{k\to\infty} x_k^{(n)}]$, but this is not needed for proving closedness of c in ℓ^{∞}).

(b) Show that c is separable.

Solution: Since \mathbb{Q} is countable and dense in \mathbb{R} , it suffices to find a countable set with dense span (instead of a countable dense set) in c for demonstrating separability of c. With regard to the existence of a countable set with dense span, we define the sequences $e^{(1)}, e^{(2)}, e^{(3)}, \ldots, e^{(\infty)} \in c$ as follows:

$$e_n^{(k)} = \begin{cases} 1 & \text{for } k = \infty, \\ 1 & \text{for } k \in \mathbb{N}, n = k, \\ 0 & \text{for } k \in \mathbb{N}, n \neq k, \end{cases}$$

that is, $e^{(\infty)}$ is the sequence constantly equal to 1 and the sequences $e^{(k)}$, $k \in \mathbb{N}$, vanish everywhere except for one entry (namely the k^{th} for $e^{(k)}$) where they equal 1. Clearly, $\{e^{(k)} \mid k \in \mathbb{N} \cup \{\infty\}\} \subseteq c$. Moreover, we claim that span $\{e^{(k)} \mid k \in \mathbb{N} \cup \{\infty\}\}$ lies dense in c. For this, let $x = (x_k)_{k \in \mathbb{N}} \in c$ be arbitrary. Then it holds for every $n \in \mathbb{N}$ that

$$y^{(n)} := \left(\lim_{k \to \infty} x_k\right) e^{(\infty)} + \sum_{m=1}^n (x_m - \lim_{k \to \infty} x_k) e^{(m)} \in \operatorname{span}\{e^{(k)} \mid k \in \mathbb{N} \cup \{\infty\}\}.$$

In addition, note that

 $\limsup_{n \to \infty} \|y^{(n)} - x\|_{\ell^{\infty}} = \limsup_{n \to \infty} \sup_{m > n} |x_m - \lim_{k \to \infty} x_k| = 0,$

i.e., $(y^{(n)})_{n\in\mathbb{N}}$ converges in ℓ^{∞} to x.

(c) Construct an isomorphism between c and c_0 .

Solution: We implicitly already used the isomorphism in the previous exercise. Define the mappings $T: c_0 \to c$ and $S: c \to c_0$ by

$$Tx = (x_1 + x_{n+1})_{n \in \mathbb{N}} \text{ for all } x = (x_n)_{n \in \mathbb{N}} \in c_0,$$

$$Sx = (\lim_{n \to \infty} x_n, x_1 - \lim_{n \to \infty} x_n, x_2 - \lim_{n \to \infty} x_n, \ldots) \text{ for all } x = (x_n)_{n \in \mathbb{N}} \in c.$$

T is welldefined as $\lim_{n\to\infty} (Tx)_n = \lim_{n\to\infty} (x_1 + x_{n+1}) = x_1$ for every $x \in c_0$ and S is welldefined as $\lim_{n\to\infty} (x_n - \lim_{k\to\infty} x_k) = 0$ for every $x \in c$. T and S are clearly linear. Moreover, T and S are clearly bounded (with operator norm 2). Finally, the fact that

$$TSx = ((Sx)_1 + (Sx)_{n+1})_{n \in \mathbb{N}} = (\lim_{k \to \infty} x_k + (x_n - \lim_{k \to \infty} x_k))_{n \in \mathbb{N}} = x$$

for all $x = (x_n)_{n \in \mathbb{N}} \in c$ and the fact that

$$STx = (\lim_{n \to \infty} (Tx)_n, (Tx)_1 - \lim_{n \to \infty} (Tx)_n, (Tx)_2 - \lim_{n \to \infty} (Tx)_n, \ldots)$$

= $(\lim_{n \to \infty} (Tx)_n, x_1 + x_2 - \lim_{n \to \infty} (Tx)_n, x_1 + x_3 - \lim_{n \to \infty} (Tx)_n, \ldots)$
= $(x_1, x_2, x_3, \ldots) = x$

for all $x = (x_n)_{n \in \mathbb{N}} \in c_0$ show bijectivity of T and S.

4.2. Baby Riesz representation

Let $p \in [1, \infty)$. Show that φ belongs to the dual space of ℓ^p , (i.e., $\varphi \in (\ell^p)' = L(\ell^p, \mathbb{R})$) if and only if there exists $(f_n)_{n \in \mathbb{N}} \in \ell^q$ such that

$$\varphi((x_n)_{n\in\mathbb{N}}) = \sum_{n=1}^{\infty} f_n x_n \text{ for all } (x_n)_{n\in\mathbb{N}} \in \ell^p,$$

where $q \in [1, \infty]$ is such that $\frac{1}{p} + \frac{1}{q} = 1$ (with the convention $\frac{1}{\infty} = 0$).

Solution: <u>"</u> \Leftarrow ": Let $(f_n)_{n \in \mathbb{N}} \in \ell^q$. Hölder's inequality ensures for all $x = (x_k)_{k \in \mathbb{N}} \in \ell^p$ that

$$\sum_{k=1}^{\infty} |f_k x_k| \le ||f||_{\ell^q} ||x||_{\ell^p}.$$

In particular, it holds that $\sum_{k=1}^{\infty} f_k x_k$ exists for every $x = (x_k)_{k \in \mathbb{N}} \in \ell^p$ and the mapping $\ell^p \ni x \mapsto \sum_{k=1}^{\infty} f_k x_k \in \mathbb{R}$ is welldefined, linear and continuous.

<u>"</u> \Rightarrow ": Consider the case $1 , in which case <math>q = \frac{p}{p-1} \in (1, \infty)$. Let $\varphi \in L(\ell^p, \mathbb{R})$, that is, φ is linear and there exists $C \in [0, \infty)$ satisfying

$$|\varphi(x)| \le C \|x\|_{\ell^p} \quad \text{for all } x \in \ell^p.$$
(1)

For every $n \in \mathbb{N}$, let $e_n := (\delta_{nk})_{k \in \mathbb{N}} \in \ell^p$. Since $||e_n||_{\ell^p} = 1$ for every $n \in \mathbb{N}$, we obtain by the above inequality that $(\varphi(e_n))_{n \in \mathbb{N}} \subseteq \ell^\infty$ with $||(\varphi(e_n))_{n \in \mathbb{N}}||_{\ell^\infty} \leq C$. Moreover, it clearly holds for all $x = (x_k)_{k \in \mathbb{N}} \in \ell^p$ and all $n \in \mathbb{N}$ that

$$\varphi\left(\sum_{k=1}^{n} x_k e_k\right) = \sum_{k=1}^{n} \varphi(e_k) x_k.$$

Moreover, by (1), we have for all $x = (x_k)_{k \in \mathbb{N}} \in \ell^p$ and all $n \in \mathbb{N}$ that

$$\left|\sum_{k=1}^{n}\varphi(e_k)x_k\right| \le C\left(\sum_{k=1}^{n}|x_k|^p\right)^{\frac{1}{p}} \le C||x||_{\ell^p}.$$

Hence, we obtain for every $n \in \mathbb{N}$, by choosing $x^{(n)} = (x_k^{(n)})_{k \in \mathbb{N}} \in \ell^p$ such that

$$x_k^{(n)} = \begin{cases} \varphi(e_k) |\varphi(e_k)|^{\frac{1}{p-1}-1} & \text{if } k \le n \text{ and } \varphi(e_k) \ne 0, \\ 0 & \text{if } k > n \text{ or } \varphi(e_k) = 0, \end{cases}$$

that

$$\sum_{k=1}^{n} |\varphi(e_k)|^{\frac{p}{p-1}} = \varphi(x^{(n)}) \le C \left(\sum_{k=1}^{n} |\varphi(e_k)|^{\frac{p}{p-1}}\right)^{\frac{1}{p}}.$$

This implies that

$$\left[\sum_{k=1}^{n} |\varphi(e_k)|^{\frac{p}{p-1}}\right]^{\frac{p-1}{p}} \le C \quad \text{for all } n \in \mathbb{N}.$$

By letting $n \to \infty$, we obtain $(\varphi(e_k))_{k \in \mathbb{N}} \in \ell^{\frac{p}{p-1}}$ with $\|(\varphi(e_k))_{k \in \mathbb{N}}\|_{\ell^{\frac{p}{p-1}}} \leq C$. Since this holds for every C satisfying (1), we have $\|(\varphi(e_k))_{k \in \mathbb{N}}\|_{\ell^{\frac{p}{p-1}}} \leq \|\varphi\|_{L(\ell^p,\mathbb{R})}$. Moreover, since for every $x = (x_k)_{k \in \mathbb{N}} \in \ell^p$ it holds that

$$\limsup_{n \to \infty} \left\| x - \sum_{k=1}^n x_k e_k \right\|_{\ell^p} = 0,$$

we obtain by continuity of φ and by Hölder's inequality for every $x = (x_k)_{k \in \mathbb{N}} \in \ell^p$:

$$\varphi(x) = \lim_{n \to \infty} \varphi\left(\sum_{k=1}^n x_k e_k\right) = \lim_{n \to \infty} \sum_{k=1}^n \varphi(e_k) x_k = \sum_{k=1}^\infty \varphi(e_k) x_k.$$

In addition, Hölder's inequality implies

$$|\varphi(x)| \le \sum_{k=1}^{\infty} |\varphi(e_k)x_k| \le \left\| (\varphi(e_k))_{k \in \mathbb{N}} \right\|_{\ell^{\frac{p}{p-1}}} \|x\|_{\ell^p} \quad \text{for all } x = (x_k)_{k \in \mathbb{N}} \in \ell^p,$$

i.e., $\|\varphi\|_{L(\ell^p,\mathbb{R})} \leq \|(\varphi(e_k))_{k\in\mathbb{N}}\|_{\ell^{\frac{p}{p-1}}}$. The proof in the case p = 1 goes along the same lines.

4.3. Infinite matrices

Consider the double sequence $(a_{jk})_{j,k\in\mathbb{N}}$ with $a_{jk}\in\mathbb{R}$ for every $j,k\in\mathbb{N}$.

(a) Let $\sup_{j,k\in\mathbb{N}}|a_{jk}| < \infty$ and let for every $x = (x_k)_{k\in\mathbb{N}} \in \ell^1$ the sequence Ax be given by

$$[Ax]_j = \sum_{k \in \mathbb{N}} a_{jk} x_k \quad \text{for all } j \in \mathbb{N}.$$

Show that this defines a bounded linear map from ℓ^1 to ℓ^{∞} (i.e., $A \in L(\ell^1, \ell^{\infty})$). Moreover, prove that $||A|| = \sup_{j,k \in \mathbb{N}} |a_{jk}|$.

Solution: For all $x = (x_k)_{k \in \mathbb{N}} \in \ell^1$ and all $j \in \mathbb{N}$, it clearly holds that

$$|[Ax]_j| \le \sum_{k \in \mathbb{N}} |a_{jk}| |x_k| \le \sup_{k \in \mathbb{N}} |a_{jk}| ||x||_{\ell^1} \le \sup_{j,k \in \mathbb{N}} |a_{jk}| ||x||_{\ell^1},$$

showing that $Ax \in \ell^{\infty}$ with $||Ax||_{\ell^{\infty}} \leq \sup_{j,k\in\mathbb{N}} |a_{jk}|| \|x\||_{\ell^1}$. Hence, A maps from ℓ^1 to ℓ^{∞} . Linearity is clear. Moreover, the previous inequality yields $||A||_{L(\ell^1,\ell^{\infty})} \leq \sup_{j,k\in\mathbb{N}} |a_{jk}|$. For the proof of the converse inequality, let $(j_{\varepsilon})_{\varepsilon\in(0,\infty)}, (k_{\varepsilon})_{\varepsilon\in(0,\infty)} \subseteq \mathbb{N}$ satisfy for every $\varepsilon \in (0,\infty)$ that $|a_{j_{\varepsilon}k_{\varepsilon}}| > \sup_{j,k\in\mathbb{N}} |a_{jk}| - \varepsilon$. Setting $x^{(\varepsilon)} = (\delta_{lk_{\varepsilon}})_{l\in\mathbb{N}} \in \ell^1$ for every $\varepsilon \in (0,\infty)$, we obtain:

$$||Ax^{(\varepsilon)}||_{\ell^{\infty}} \ge |[Ax^{(\varepsilon)}]_{j_{\varepsilon}}| = |a_{j_{\varepsilon}k_{\varepsilon}}| > \sup_{j,k \in \mathbb{N}} |a_{jk}| - \varepsilon.$$

Since $||x^{(\varepsilon)}||_{\ell^1} = 1$ for every $\varepsilon \in (0, \infty)$, this implies $||A||_{L(\ell^1, \ell^\infty)} \ge \sup_{j,k \in \mathbb{N}} |a_{j,k}|$.

(b) Let $\sup_{j\in\mathbb{N}}\sum_{k\in\mathbb{N}}|a_{jk}| < \infty$ and define for $x = (x_k)_{k\in\mathbb{N}} \in \ell^{\infty}$ the sequence Ax as above. Show that this defines a bounded linear map from ℓ^{∞} to ℓ^{∞} (i.e., $A \in L(\ell^{\infty})$)). Moreover, prove that $||A|| = \sup_{i\in\mathbb{N}}\sum_{k\in\mathbb{N}}|a_{jk}|$.

Solution: For all $x = (x_k)_{k \in \mathbb{N}} \in \ell^{\infty}$ and all $j \in \mathbb{N}$, it clearly holds that

$$|[Ax]_j| \le \sum_{k \in \mathbb{N}} |a_{jk}| |x_k| \le \sum_{k \in \mathbb{N}} |a_{jk}| ||x||_{\ell^{\infty}} \le \sup_{j \in \mathbb{N}} \sum_{k \in \mathbb{N}} |a_{jk}| ||x||_{\ell^{\infty}},$$

showing that $Ax \in \ell^{\infty}$ with $||Ax||_{\ell^{\infty}} \leq \sup_{j \in \mathbb{N}} \sum_{k \in \mathbb{N}} |a_{jk}| ||x||_{\ell^{\infty}}$. Hence, A maps from ℓ^{∞} to ℓ^{∞} . Linearity is clear. Moreover, the previous inequality yields $||A||_{L(\ell^{\infty},\ell^{\infty})} \leq \sup_{j} \sum_{k \in \mathbb{N}} |a_{jk}|$. For the proof of the converse inequality, let $(j_{\varepsilon})_{\varepsilon \in (0,\infty)} \subseteq \mathbb{N}$ satisfy for every $\varepsilon \in (0,\infty)$ that $\sum_{k \in \mathbb{N}} |a_{j\varepsilon k}| > \sup_{j \in \mathbb{N}} \sum_{k \in \mathbb{N}} |a_{jk}| - \varepsilon$. Setting $x^{(\varepsilon)} = (\operatorname{sgn}(a_{j\varepsilon k}))_{k \in \mathbb{N}} \in \ell^{\infty}$ for every $\varepsilon \in (0,\infty)$, we obtain:

$$||Ax^{(\varepsilon)}||_{\ell^{\infty}} \ge |[Ax^{(\varepsilon)}]_{j_{\varepsilon}}| = \sum_{k \in \mathbb{N}} |a_{j_{\varepsilon}k}| > \sup_{j \in \mathbb{N}} \sum_{k \in \mathbb{N}} |a_{jk}| - \varepsilon.$$

Since $||x^{(\varepsilon)}||_{\ell^{\infty}} \leq 1$ for every $\varepsilon \in (0,\infty)$, this implies $||A||_{L(\ell^{\infty},\ell^{\infty})} \geq \sup_{j\in\mathbb{N}} \sum_{k\in\mathbb{N}} |a_{j,k}|$.

4.4. The Fourier coefficients of functions in $L^1([0, 2\pi])$

For $f \in L^1([0, 2\pi], \mathbb{C})$, we define the k^{th} Fourier coefficient to be

$$\hat{f}(k) = \int_0^{2\pi} f(t)e^{-ikt} dt$$

and let $\mathcal{F}(f) = (\hat{f}(k))_{k \in \mathbb{Z}}$.

(a) Show that $\mathcal{F}: L^1([0, 2\pi], \mathbb{C}) \to \ell^\infty(\mathbb{Z}, \mathbb{C})$ defines a bounded linear operator.

Solution: For every $f \in L^1([0, 2\pi], \mathbb{C})$ and every $k \in \mathbb{Z}$, we have that

$$\left| \int_{0}^{2\pi} f(t) e^{-ikt} \, dt \right| \leq \int_{0}^{2\pi} |f(t)e^{-ikt}| \, dt = \|f\|_{L^{1}([0,2\pi],\mathbb{C})},$$

which implies that \mathcal{F} is well-defined and bounded (with operator norm bounded by 1). Linearity is immediate from the linearity of the integral.

(b) Prove the Riemann–Lebesgue lemma, that is, $\limsup_{|k|\to\infty} |\hat{f}(k)| = 0$ for all $f \in L^1([0, 2\pi], \mathbb{C})$.

Solution: First, consider $f \in C([0, 2\pi], \mathbb{C})$. Being uniformly continuous, there exists $\delta: (0, \infty) \to (0, \infty)$ satisfying for all $\varepsilon \in (0, \infty)$ that

$$(x, y \in [0, 2\pi] \text{ and } |x - y| < \delta(\varepsilon)) \Rightarrow |f(x) - f(y)| \le \varepsilon.$$

last update: 23 October 2021

5/9

Hence, for every $\varepsilon \in (0, \infty)$ and all $k \in \mathbb{N}$, we have that

$$\left| \int_{0}^{2\pi} f(t) e^{-ikt} dt - \sum_{m=0}^{\lfloor \frac{2\pi}{\delta(\varepsilon)} \rfloor} f(m\delta(\varepsilon)) \int_{m\delta(\varepsilon)}^{\min\{(m+1)\delta(\varepsilon), 2\pi\}} e^{-ikt} dt \right| \le 2\pi\varepsilon.$$

Moreover, for every $\varepsilon \in (0, \infty)$, it holds

$$\limsup_{k \to \infty} \left| \sum_{m=0}^{\lfloor \frac{2\pi}{\delta(\varepsilon)} \rfloor} f(m\delta(\varepsilon)) \int_{m\delta(\varepsilon)}^{\min\{(m+1)\delta(\varepsilon), 2\pi\}} e^{-ikt} \, dt \right| \le \limsup_{k \to \infty} \frac{2}{k} \|f\|_{\sup} \left(\left\lfloor \frac{2\pi}{\delta(\varepsilon)} \right\rfloor + 1 \right) = 0$$

Combining the above two inequalities implies that

$$\limsup_{k \to \infty} \left| \int_0^{2\pi} f(t) e^{-ikt} \, dt \right| \le 2\pi\varepsilon \quad \text{for all } \varepsilon \in (0,\infty),$$

proving the claim for $f \in C([0, 2\pi], \mathbb{C})$. Next assume $f \in L^1([0, 2\pi], \mathbb{C})$. Since $C([0, 2\pi], \mathbb{C})$ lies dense in $L^1([0, 2\pi], \mathbb{C})$, there exists $g_{\varepsilon} \in C([0, 2\pi], \mathbb{C})$ for every $\varepsilon \in (0, \infty)$ such that $||f - g_{\varepsilon}||_{L^1([0, 2\pi], \mathbb{C})} \leq \varepsilon$. Hence, we have for every $\varepsilon \in (0, \infty)$ that

$$\limsup_{k \to \infty} \left| \int_0^{2\pi} e^{-ikt} f(t) \, dt \right| \le \limsup_{k \to \infty} \left| \int_0^{2\pi} e^{-ikt} g_{\varepsilon}(t) \, dt \right| + \varepsilon = \varepsilon.$$

This completes the proof.

(c) Let $c_0(\mathbb{Z}, \mathbb{C}) \subseteq \ell^{\infty}(\mathbb{Z}, \mathbb{C})$ be the closed subspace of sequences converging to zero. Prove that $\mathcal{F} \colon L^1([0, 2\pi], \mathbb{C}) \to c_0(\mathbb{Z}, \mathbb{C})$ has dense range but is not onto.

Solution: For every $k \in \mathbb{Z}$, $e_k := (\delta_{kn})_{n \in \mathbb{Z}} \in c_0(\mathbb{Z}, \mathbb{C})$ lies in $\mathcal{F}(L^1([0, 2\pi], \mathbb{C}))$ as $e_k = \mathcal{F}([0, 2\pi] \ni t \mapsto e^{ikt} \in \mathbb{C})$. Since span $\{e_k : k \in \mathbb{Z}\}$ is dense in $c_0(\mathbb{Z}, \mathbb{C})$ and \mathcal{F} is linear, we can conclude that \mathcal{F} has dense range. If \mathcal{F} was surjective, then the mapping would have to be continuously invertible by the open mapping theorem (note that \mathcal{F} is injective – for example, because $\hat{f}(k) = 0$ for all $k \in \mathbb{Z}$ implies that $\int_0^{2\pi} f(t)p(t) dt = 0$ for every trigonometric polynomial p and, by density then also for every continuous 2π -periodic function p, leaving f = 0 as the only possibility by the fundamental principle of the calculus of variations). In order to see that this is not the case, consider the functions $(f_n)_{n \in \mathbb{N}} \subseteq L^1([0, 2\pi], \mathbb{C})$, given by

$$f_n(t) = \sum_{k=-n}^n e^{ikt} \quad \text{for all } t \in [0, 2\pi].$$

Note that for all $n \in \mathbb{N}$, $t \in [0, 2\pi]$, we have that

$$f_n(t) = \frac{\sin((n+\frac{1}{2})t)}{\sin(\frac{t}{2})}.$$

Thus, we obtain for every $n \in \mathbb{N}$:

$$\begin{split} \|f_n\|_{L^1([0,2\pi],\mathbb{C})} &= \int_0^{2\pi} \frac{|\sin((n+\frac{1}{2})t)|}{|\sin(\frac{t}{2})|} \, dt \ge \int_0^{2\pi} (2n+1) \frac{|\sin((n+\frac{1}{2})t)|}{(n+\frac{1}{2})t} \, dt \\ &= 2 \int_0^{(2n+1)\pi} \frac{|\sin(t)|}{t} \, dt. \end{split}$$

As the latter integral diverges as $n \to \infty$ (it can, for example, be bounded below by a non-zero constant factor times partial sums of a harmonic series), while $\|\mathcal{F}(f_n)\|_{\ell^{\infty}} = 1$ for every $n \in \mathbb{N}$, \mathcal{F} cannot be continuously invertible.

4.5. Distance to closed subspaces

Let $(X, \|\cdot\|)$ be a normed \mathbb{R} -vector space and let $\varphi \in L(X, \mathbb{R})$ be an element of the dual space of X.

(a) Prove for every $x \in X$ that

$$|\varphi(x)| = \|\varphi\|_{L(X,\mathbb{R})} \operatorname{dist}(x, \operatorname{ker}(\varphi)),$$

where $\operatorname{dist}(x, A) = \inf_{v \in A} ||x - v||$ for $x \in X$ and $\emptyset \neq A \subseteq X$ denotes the distance of the point x to the set A.

Solution: For $\varphi = 0 \in L(X, \mathbb{R})$, the claim is clearly true. Thus, we assume w.l.o.g. that $\varphi \neq 0$. First, observe for every $x \in X$ and all $v \in \ker(\varphi)$ that

$$|\varphi(x)| = |\varphi(x-v)| \le \|\varphi\|_{L(X,\mathbb{R})} \|x-v\|.$$

Taking the infimum over $v \in \ker(\varphi)$ implies that $|\varphi(x)| \leq ||\varphi||_{L(X,\mathbb{R})} \operatorname{dist}(x, \ker(\varphi))$ for all $x \in \mathbb{R}$. For the other inequality, note that there exist $(y_{\varepsilon})_{\varepsilon \in (0,\infty)} \subseteq X$ satisfying for every $\varepsilon \in (0, ||\varphi||_{L(X,\mathbb{R})})$ that $||y_{\varepsilon}|| \leq 1$ and $|\varphi(y_{\varepsilon})| > ||\varphi||_{L(X,\mathbb{R})} - \varepsilon > 0$. Since it holds for every $\varepsilon \in (0, ||\varphi||_{L(X,\mathbb{R})})$ that

$$\varphi(x) = \frac{\varphi(x)}{\varphi(y_{\varepsilon})}\varphi(y_{\varepsilon}) = \varphi\left(\frac{\varphi(x)}{\varphi(y_{\varepsilon})}y_{\varepsilon}\right),$$

we may infer that $x - \frac{\varphi(x)}{\varphi(y_{\varepsilon})} y_{\varepsilon} \in \ker(\varphi)$ for every $\varepsilon \in (0, \|\varphi\|_{L(X,\mathbb{R})})$. Hence, we obtain for every $\varepsilon \in (0, \|\varphi\|_{L(X,\mathbb{R})})$:

$$dist(x, \ker(\varphi)) = dist\left(\frac{\varphi(x)}{\varphi(y_{\varepsilon})}y_{\varepsilon}, \ker(\varphi)\right) = \frac{|\varphi(x)|}{|\varphi(y_{\varepsilon})|}dist(y_{\varepsilon}, \ker(\varphi))$$
$$\leq \frac{|\varphi(x)|}{|\varphi(y_{\varepsilon})|}\|y_{\varepsilon}\| \leq \frac{|\varphi(x)|}{\varphi(y_{\varepsilon})} \leq \frac{|\varphi(x)|}{\|\varphi\|_{L(X,\mathbb{R})} - \varepsilon}.$$

Taking limits as $\varepsilon \to 0$ proves the missing inequality.

Consider now the \mathbb{R} -vector space of continuous functions on the real half-line vanishing at ∞ , i.e.,

$$C_0([0,\infty),\mathbb{R}) = \left\{ f \in C([0,\infty),\mathbb{R}) \mid \limsup_{t \to \infty} |f(t)| = 0 \right\},\$$

equipped with the sup norm $\|\cdot\|_{\sup}$.

(b) Show that $H = \{f \in C_0([0,\infty),\mathbb{R}) \mid \int_0^\infty e^{-s} f(s) \, ds = 0\}$ is a closed subspace of the Banach space $(C([0,\infty),\mathbb{R}), \|\cdot\|_{\sup})$.

Solution: Let $(f_n)_{n \in \mathbb{N}} \subseteq H$ be a sequence converging to $f_{\infty} \in C([0, \infty), \mathbb{R})$ with respect to the sup norm. Since, consequentially, there exist $N: (0, \infty) \to \mathbb{N}$ and $R: \mathbb{N} \times (0, \infty) \to [0, \infty)$ satisfying that

$$\sup_{n \ge N_{\varepsilon}} \|f_n - f_{\infty}\|_{\sup} \le \varepsilon \quad \text{for all } \varepsilon \in (0, \infty)$$

and

$$\sup_{t \ge R_{n,\varepsilon}} |f_n(t)| \le \varepsilon \quad \text{for all } n \in \mathbb{N}, \varepsilon \in (0,\infty),$$

we obtain that

$$\sup_{t \ge R_{N_{\varepsilon},\varepsilon}} |f_{\infty}(t)| \le \sup_{t \ge R_{N_{\varepsilon},\varepsilon}} (|f_{N_{\varepsilon}(t)}| + ||f_{\infty} - f_{N_{\varepsilon}}||_{\sup}) \le 2\varepsilon \quad \text{for all } \varepsilon \in (0,\infty),$$

which demonstrates that $f_{\infty} \in C_0([0,\infty),\mathbb{R})$. Moreover, Hölder's inequality and the fact that $(f_n)_{n\in\mathbb{N}} \subseteq H$ guarantee that

$$\left| \int_0^\infty e^{-s} f_\infty(s) \, ds \right| = \limsup_{n \to \infty} \left| \int_0^\infty e^{-s} f_\infty(s) \, ds - \int_0^\infty e^{-s} f_n(s) \, ds \right|$$
$$\leq \limsup_{n \to \infty} \int_0^\infty e^{-s} |f_\infty(s) - f_n(s)| \, ds$$
$$\leq \limsup_{n \to \infty} \|f_\infty - f_n\|_{\sup} = 0.$$

Thus, $f_{\infty} \in H$ and H is closed. Linearity of H is immediate from the linearity of the integral.

(c) Demonstrate that for every $f \in C_0([0,\infty),\mathbb{R}) \setminus H$, there is no $h \in H$ which realizes the distance, i.e., which satisfies $\operatorname{dist}(f,H) = ||f - h||_{\sup}$.

Solution: Set $X = C_0([0, \infty), \mathbb{R})$. Note that $\varphi \colon X \to \mathbb{R}$, defined by

$$\varphi(f) = \int_0^\infty e^{-s} f(s) \, ds \quad \text{for all } f \in X,$$

defines a continuous linear functional on X (and $H = \ker(\varphi)$). Hence, if there existed $f \in X \setminus H$, $g \in H$ with $\operatorname{dist}(f, H) = ||f - g||_{\sup}$, then – according to (a), linearity, and the fact that $\varphi(g) = 0$ – we would have

$$\begin{aligned} |\varphi(f-g)| &= |\varphi(f)| = \|\varphi\|_{L(X,\mathbb{R})} \operatorname{dist}(f, \operatorname{ker}(\varphi)) \\ &= \|\varphi\|_{L(X,\mathbb{R})} \operatorname{dist}(f, H) = \|\varphi\|_{L(X,\mathbb{R})} \|f-g\|_{\sup}, \end{aligned}$$

in other words, $f - g \neq 0$ would be an element at which the operator norm of φ is realized. But the operator norm of φ is 1 and is not attained in X. Why is the operator norm of φ equal to 1? Note first for all $f \in X$ that

$$|\varphi(f)| \le \int_0^\infty e^{-s} |f(s)| \, ds \le \int_0^\infty e^{-s} ||f||_{\sup} \, ds = ||f||_{\sup},$$

which implies that $\|\varphi\|_{L(X,\mathbb{R})} \leq 1$. On the other hand, since for every $\alpha \in (0,\infty)$, the function $[0,\infty) \ni s \mapsto e^{-\alpha s} \in \mathbb{R}$ belongs to X and has sup norm 1, we get that

$$\begin{aligned} \|\varphi\|_{L(X,\mathbb{R})} &\geq \varphi([0,\infty) \ni s \mapsto e^{-\alpha s} \in \mathbb{R}) \\ &= \int_0^\infty e^{-(1+\alpha)s} \, ds = \frac{1}{1+\alpha} \quad \text{for all } \alpha \in (0,\infty). \end{aligned}$$

Letting $\alpha \to 0$, we obtain $\|\varphi\|_{L(X,\mathbb{R})} \ge 1$, from which we conclude $\|\varphi\|_{L(X,\mathbb{R})} = 1$. Why is the operator norm of φ not attained? For every $f \in C([0,\infty),\mathbb{R})$ with $\|f\|_{\sup} \le 1$, we have that

$$1 - \int_0^\infty e^{-s} f(s) \, ds = \int_0^\infty \underbrace{e^{-s} (1 - f(s))}_{\ge 0} \, ds = 0$$

if and only if 1 - f(s) = 0 for all $s \in [0, \infty)$, i.e., if and only f(s) = 1 for all $s \in [0, \infty)$. But the function constantly equal to 1 does not belong to X.