4.1. Null and non-null limits

Denote by c the subspace of ℓ^{∞} containing all the convergent sequences and let c_{0} denote the subspace of sequences converging to 0 .
(a) Prove that c is a closed subspace of ℓ^{∞}.

Solution: Let $\left(x^{(n)}\right)_{n \in \mathbb{N}} \subseteq c$ be a sequence (of sequences $x^{(n)}=\left(x_{k}^{(n)}\right)_{k \in \mathbb{N}} \in c$) which converges in ℓ^{∞} to $x^{(\infty)}=\left(x_{k}^{(\infty)}\right)_{k \in \mathbb{N}} \in \ell^{\infty}$. Since we have for every $n \in \mathbb{N}$ that the evaluation functional $\ell^{\infty} \ni\left(y_{k}\right)_{k \in \mathbb{N}} \mapsto y_{n} \in \mathbb{R}$ is linear and bounded (with operator norm 1), we may infer that

$$
x_{k}^{(\infty)}=\lim _{n \rightarrow \infty} x_{k}^{(n)} \quad \text { for all } k \in \mathbb{N} .
$$

Moreover, due to $\left(x^{(n)}\right)_{n \in \mathbb{N}}$ converging to $x^{(\infty)}$ in $\left(\ell^{\infty},\|\cdot\|_{\ell \infty}\right)$ and due to $\left(x^{(n)}\right)_{n \in \mathbb{N}} \subseteq c$, there exist $N:(0, \infty) \rightarrow \mathbb{N}$ and $M: \mathbb{N} \times(0, \infty) \rightarrow \mathbb{N}$ such that

$$
\sup _{n \geq N_{\varepsilon}}\left\|x^{(n)}-x^{(\infty)}\right\|_{\ell \infty} \leq \varepsilon \quad \text { for all } \varepsilon \in(0, \infty)
$$

and

$$
\sup _{n, m \geq M_{k, \varepsilon}}\left|x_{n}^{(k)}-x_{m}^{(k)}\right| \leq \varepsilon \quad \text { for all } k \in \mathbb{N}, \varepsilon \in(0, \infty)
$$

Thus, we obtain for all $\varepsilon \in(0, \infty)$ that

$$
\sup _{n, m \geq M_{N_{\varepsilon}, \varepsilon}}\left|x_{n}^{(\infty)}-x_{m}^{(\infty)}\right| \leq \sup _{n, m \geq M_{N_{\varepsilon}, \varepsilon}}\left(\left|x_{n}^{(\infty)}-x_{n}^{\left(N_{\varepsilon}\right)}\right|+\left|x_{n}^{\left(N_{\varepsilon}\right)}-x_{m}^{\left(N_{\varepsilon}\right)}\right|+\left|x_{m}^{\left(N_{\varepsilon}\right)}-x_{m}^{(\infty)}\right|\right) \leq 3 \varepsilon,
$$

which proves that $x^{(\infty)}$ is a Cauchy sequence in $(\mathbb{R},|\cdot|)$ and therefore belongs to c. (By arguing that the linear mapping $c t \ni\left(y_{k}\right)_{k \in \mathbb{N}} \mapsto \lim _{k \rightarrow \infty} y_{k} \in \mathbb{R}$ is continuous, we could show that $\lim _{k \rightarrow \infty} x_{k}^{(\infty)}=\lim _{n \rightarrow \infty}\left[\lim _{k \rightarrow \infty} x_{k}^{(n)}\right]$, but this is not needed for proving closedness of c in ℓ^{∞}).
(b) Show that c is separable.

Solution: Since \mathbb{Q} is countable and dense in \mathbb{R}, it suffices to find a countable set with dense span (instead of a countable dense set) in c for demonstrating separability of c. With regard to the existence of a countable set with dense span, we define the sequences $e^{(1)}, e^{(2)}, e^{(3)}, \ldots, e^{(\infty)} \in c$ as follows:

$$
e_{n}^{(k)}= \begin{cases}1 & \text { for } k=\infty, \\ 1 & \text { for } k \in \mathbb{N}, n=k, \\ 0 & \text { for } k \in \mathbb{N}, n \neq k,\end{cases}
$$

that is, $e^{(\infty)}$ is the sequence constantly equal to 1 and the sequences $e^{(k)}, k \in \mathbb{N}$, vanish everywhere except for one entry (namely the $k^{t h}$ for $e^{(k)}$) where they equal 1 . Clearly, $\left\{e^{(k)} \mid k \in \mathbb{N} \cup\{\infty\}\right\} \subseteq c$. Moreover, we claim that $\operatorname{span}\left\{e^{(k)} \mid k \in \mathbb{N} \cup\{\infty\}\right\}$ lies dense in c. For this, let $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in c$ be arbitrary. Then it holds for every $n \in \mathbb{N}$ that

$$
y^{(n)}:=\left(\lim _{k \rightarrow \infty} x_{k}\right) e^{(\infty)}+\sum_{m=1}^{n}\left(x_{m}-\lim _{k \rightarrow \infty} x_{k}\right) e^{(m)} \in \operatorname{span}\left\{e^{(k)} \mid k \in \mathbb{N} \cup\{\infty\}\right\}
$$

In addition, note that

$$
\limsup _{n \rightarrow \infty}\left\|y^{(n)}-x\right\|_{\ell \infty}=\limsup _{n \rightarrow \infty} \sup _{m>n}\left|x_{m}-\lim _{k \rightarrow \infty} x_{k}\right|=0
$$

i.e., $\left(y^{(n)}\right)_{n \in \mathbb{N}}$ converges in ℓ^{∞} to x.
(c) Construct an isomorphism between c and c_{0}.

Solution: We implicitly already used the isomorphism in the previous exercise. Define the mappings $T: c_{0} \rightarrow c$ and $S: c \rightarrow c_{0}$ by

$$
\begin{aligned}
& T x=\left(x_{1}+x_{n+1}\right)_{n \in \mathbb{N}} \text { for all } x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}, \\
& S x=\left(\lim _{n \rightarrow \infty} x_{n}, x_{1}-\lim _{n \rightarrow \infty} x_{n}, x_{2}-\lim _{n \rightarrow \infty} x_{n}, \ldots\right) \text { for all } x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c .
\end{aligned}
$$

T is welldefined as $\lim _{n \rightarrow \infty}(T x)_{n}=\lim _{n \rightarrow \infty}\left(x_{1}+x_{n+1}\right)=x_{1}$ for every $x \in c_{0}$ and S is welldefined as $\lim _{n \rightarrow \infty}\left(x_{n}-\lim _{k \rightarrow \infty} x_{k}\right)=0$ for every $x \in c . T$ and S are clearly linear. Moreover, T and S are clearly bounded (with operator norm 2). Finally, the fact that

$$
T S x=\left((S x)_{1}+(S x)_{n+1}\right)_{n \in \mathbb{N}}=\left(\lim _{k \rightarrow \infty} x_{k}+\left(x_{n}-\lim _{k \rightarrow \infty} x_{k}\right)\right)_{n \in \mathbb{N}}=x
$$

for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c$ and the fact that

$$
\begin{aligned}
S T x & =\left(\lim _{n \rightarrow \infty}(T x)_{n},(T x)_{1}-\lim _{n \rightarrow \infty}(T x)_{n},(T x)_{2}-\lim _{n \rightarrow \infty}(T x)_{n}, \ldots\right) \\
& =\left(\lim _{n \rightarrow \infty}(T x)_{n}, x_{1}+x_{2}-\lim _{n \rightarrow \infty}(T x)_{n}, x_{1}+x_{3}-\lim _{n \rightarrow \infty}(T x)_{n}, \ldots\right) \\
& =\left(x_{1}, x_{2}, x_{3}, \ldots\right)=x
\end{aligned}
$$

for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}$ show bijectivity of T and S.

4.2. Baby Riesz representation

Let $p \in[1, \infty)$. Show that φ belongs to the dual space of ℓ^{p}, (i.e., $\left.\varphi \in\left(\ell^{p}\right)^{\prime}=L\left(\ell^{p}, \mathbb{R}\right)\right)$ if and only if there exists $\left(f_{n}\right)_{n \in \mathbb{N}} \in \ell^{q}$ such that

$$
\varphi\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=\sum_{n=1}^{\infty} f_{n} x_{n} \quad \text { for all }\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{p},
$$

where $q \in[1, \infty]$ is such that $\frac{1}{p}+\frac{1}{q}=1$ (with the convention $\frac{1}{\infty}=0$).
Solution: " $\Leftarrow "$: Let $\left(f_{n}\right)_{n \in \mathbb{N}} \in \ell^{q}$. Hölder's inequality ensures for all $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$ that

$$
\sum_{k=1}^{\infty}\left|f_{k} x_{k}\right| \leq\|f\|_{\ell q}\|x\|_{\ell p} .
$$

In particular, it holds that $\sum_{k=1}^{\infty} f_{k} x_{k}$ exists for every $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$ and the mapping $\ell^{p} \ni x \mapsto \sum_{k=1}^{\infty} f_{k} x_{k} \in \mathbb{R}$ is welldefined, linear and continuous.
$" \Rightarrow "$: Consider the case $1<p<\infty$, in which case $q=\frac{p}{p-1} \in(1, \infty)$. Let $\varphi \in L\left(\ell^{p}, \mathbb{R}\right)$, that is, φ is linear and there exists $C \in[0, \infty)$ satisfying

$$
\begin{equation*}
|\varphi(x)| \leq C\|x\|_{\ell^{p}} \quad \text { for all } x \in \ell^{p} . \tag{1}
\end{equation*}
$$

For every $n \in \mathbb{N}$, let $e_{n}:=\left(\delta_{n k}\right)_{k \in \mathbb{N}} \in \ell^{p}$. Since $\left\|e_{n}\right\|_{\ell^{p}}=1$ for every $n \in \mathbb{N}$, we obtain by the above inequality that $\left(\varphi\left(e_{n}\right)\right)_{n \in \mathbb{N}} \subseteq \ell^{\infty}$ with $\left\|\left(\varphi\left(e_{n}\right)\right)_{n \in \mathbb{N}}\right\|_{\ell_{\infty}} \leq C$. Moreover, it clearly holds for all $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$ and all $n \in \mathbb{N}$ that

$$
\varphi\left(\sum_{k=1}^{n} x_{k} e_{k}\right)=\sum_{k=1}^{n} \varphi\left(e_{k}\right) x_{k} .
$$

Moreover, by (1), we have for all $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$ and all $n \in \mathbb{N}$ that

$$
\left|\sum_{k=1}^{n} \varphi\left(e_{k}\right) x_{k}\right| \leq C\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}} \leq C\|x\|_{\ell p} .
$$

Hence, we obtain for every $n \in \mathbb{N}$, by choosing $x^{(n)}=\left(x_{k}^{(n)}\right)_{k \in \mathbb{N}} \in \ell^{p}$ such that

$$
x_{k}^{(n)}= \begin{cases}\varphi\left(e_{k}\right)\left|\varphi\left(e_{k}\right)\right|^{\frac{1}{p-1}-1} & \text { if } k \leq n \text { and } \varphi\left(e_{k}\right) \neq 0, \\ 0 & \text { if } k>n \text { or } \varphi\left(e_{k}\right)=0,\end{cases}
$$

that

$$
\sum_{k=1}^{n}\left|\varphi\left(e_{k}\right)\right|^{\frac{p}{p-1}}=\varphi\left(x^{(n)}\right) \leq C\left(\sum_{k=1}^{n} \left\lvert\, \varphi\left(e_{k}\right)^{\frac{p}{p-1}}\right.\right)^{\frac{1}{p}}
$$

This implies that

$$
\left[\sum_{k=1}^{n}\left|\varphi\left(e_{k}\right)\right|^{\frac{p}{p-1}}\right]^{\frac{p-1}{p}} \leq C \quad \text { for all } n \in \mathbb{N} .
$$

By letting $n \rightarrow \infty$, we obtain $\left(\varphi\left(e_{k}\right)\right)_{k \in \mathbb{N}} \in \ell^{\frac{p}{p-1}}$ with $\left\|\left(\varphi\left(e_{k}\right)\right)_{k \in \mathbb{N}}\right\|_{\ell^{\frac{p}{p-1}}} \leq C$. Since this holds for every C satisfying (1), we have $\left\|\left(\varphi\left(e_{k}\right)\right)_{k \in \mathbb{N}}\right\|_{\ell^{\frac{p}{p-1}}} \leq\|\varphi\|_{L\left(\ell^{p}, \mathbb{R}\right)}$. Moreover, since for every $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$ it holds that

$$
\limsup _{n \rightarrow \infty}\left\|x-\sum_{k=1}^{n} x_{k} e_{k}\right\|_{\ell^{p}}=0
$$

we obtain by continuity of φ and by Hölder's inequality for every $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{p}$:

$$
\varphi(x)=\lim _{n \rightarrow \infty} \varphi\left(\sum_{k=1}^{n} x_{k} e_{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \varphi\left(e_{k}\right) x_{k}=\sum_{k=1}^{\infty} \varphi\left(e_{k}\right) x_{k} .
$$

In addition, Hölder's inequality implies

$$
|\varphi(x)| \leq \sum_{k=1}^{\infty}\left|\varphi\left(e_{k}\right) x_{k}\right| \leq\left\|\left(\varphi\left(e_{k}\right)\right)_{k \in \mathbb{N}}\right\|_{\ell^{p-1}}\|x\|_{\ell^{p}} \quad \text { for all } x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{p},
$$

i.e., $\|\varphi\|_{L\left(\ell^{p}, \mathbb{R}\right)} \leq\left\|\left(\varphi\left(e_{k}\right)\right)_{k \in \mathbb{N}}\right\|_{\ell \frac{p}{p-1}}$. The proof in the case $p=1$ goes along the same lines.

4.3. Infinite matrices

Consider the double sequence $\left(a_{j k}\right)_{j, k \in \mathbb{N}}$ with $a_{j k} \in \mathbb{R}$ for every $j, k \in \mathbb{N}$.
(a) Let $\sup _{j, k \in \mathbb{N}}\left|a_{j k}\right|<\infty$ and let for every $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{1}$ the sequence $A x$ be given by

$$
[A x]_{j}=\sum_{k \in \mathbb{N}} a_{j k} x_{k} \quad \text { for all } j \in \mathbb{N} .
$$

Show that this defines a bounded linear map from ℓ^{1} to ℓ^{∞} (i.e., $A \in L\left(\ell^{1}, \ell^{\infty}\right)$). Moreover, prove that $\|A\|=\sup _{j, k \in \mathbb{N}}\left|a_{j k}\right|$.
Solution: For all $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{1}$ and all $j \in \mathbb{N}$, it clearly holds that

$$
\left|[A x]_{j}\right| \leq \sum_{k \in \mathbb{N}}\left|a_{j k}\right|\left|x_{k}\right| \leq \sup _{k \in \mathbb{N}}\left|a_{j k}\right|\|x\|_{\ell^{1}} \leq \sup _{j, k \in \mathbb{N}}\left|a_{j k}\right|\|x\|_{\ell^{1}},
$$

showing that $A x \in \ell^{\infty}$ with $\|A x\|_{\ell^{\infty}} \leq \sup _{j, k \in \mathbb{N}}\left|a_{j k}\right|\|x\|_{\ell^{1}}$. Hence, A maps from ℓ^{1} to ℓ^{∞}. Linearity is clear. Moreover, the previous inequality yields $\|A\|_{L\left(\ell^{1}, \ell^{\infty}\right)} \leq$ $\sup _{j, k \in \mathbb{N}}\left|a_{j k}\right|$. For the proof of the converse inequality, let $\left(j_{\varepsilon}\right)_{\varepsilon \in(0, \infty)},\left(k_{\varepsilon}\right)_{\varepsilon \in(0, \infty)} \subseteq \overline{\mathbb{N}}$ satisfy for every $\varepsilon \in(0, \infty)$ that $\left|a_{j_{\varepsilon} k_{\varepsilon}}\right|>\sup _{j, k \in \mathbb{N}}\left|a_{j k}\right|-\varepsilon$. Setting $x^{(\varepsilon)}=\left(\delta_{l k_{\varepsilon}}\right)_{l \in \mathbb{N}} \in \ell^{1}$ for every $\varepsilon \in(0, \infty)$, we obtain:

$$
\left\|A x^{(\varepsilon)}\right\|_{\ell \infty} \geq\left|\left[A x^{(\varepsilon)}\right]_{j_{\varepsilon}}\right|=\left|a_{j_{\varepsilon} k_{\varepsilon}}\right|>\sup _{j, k \in \mathbb{N}}\left|a_{j k}\right|-\varepsilon .
$$

Since $\left\|x^{(\varepsilon)}\right\|_{\ell^{1}}=1$ for every $\varepsilon \in(0, \infty)$, this implies $\|A\|_{L\left(\ell^{1}, \ell^{\infty}\right)} \geq \sup _{j, k \in \mathbb{N}}\left|a_{j, k}\right|$.
(b) Let $\sup _{j \in \mathbb{N}} \sum_{k \in \mathbb{N}}\left|a_{j k}\right|<\infty$ and define for $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{\infty}$ the sequence $A x$ as above. Show that this defines a bounded linear map from ℓ^{∞} to ℓ^{∞} (i.e., $\left.A \in L\left(\ell^{\infty}\right)\right)$). Moreover, prove that $\|A\|=\sup _{j \in \mathbb{N}} \sum_{k \in \mathbb{N}}\left|a_{j k}\right|$.
Solution: For all $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{\infty}$ and all $j \in \mathbb{N}$, it clearly holds that

$$
\left|[A x]_{j}\right| \leq \sum_{k \in \mathbb{N}}\left|a_{j k}\right|\left|x_{k}\right| \leq \sum_{k \in \mathbb{N}}\left|a_{j k}\right|\|x\|_{\ell \infty} \leq \sup _{j \in \mathbb{N}} \sum_{k \in \mathbb{N}}\left|a_{j k}\right|\|x\|_{\ell \infty},
$$

showing that $A x \in \ell^{\infty}$ with $\|A x\|_{\ell \infty} \leq \sup _{j \in \mathbb{N}} \sum_{k \in \mathbb{N}}\left|a_{j k}\right|\|x\|_{\ell \infty}$. Hence, A maps from ℓ^{∞} to ℓ^{∞}. Linearity is clear. Moreover, the previous inequality yields $\|A\|_{L\left(\ell^{\infty}, \ell^{\infty}\right)} \leq$ $\sup _{j} \sum_{k \in \mathbb{N}}\left|a_{j k}\right|$. For the proof of the converse inequality, let $\left(j_{\varepsilon}\right)_{\varepsilon \in(0, \infty)} \subseteq \mathbb{N}$ satisfy for every $\varepsilon \in(0, \infty)$ that $\sum_{k \in \mathbb{N}}\left|a_{j_{\varepsilon} k}\right|>\sup _{j \in \mathbb{N}} \sum_{k \in \mathbb{N}}\left|a_{j k}\right|-\varepsilon$. Setting $x^{(\varepsilon)}=$ $\left(\operatorname{sgn}\left(a_{j_{\varepsilon} k}\right)\right)_{k \in \mathbb{N}} \in \ell^{\infty}$ for every $\varepsilon \in(0, \infty)$, we obtain:

$$
\left\|A x^{(\varepsilon)}\right\|_{\ell \infty} \geq\left|\left[A x^{(\varepsilon)}\right]_{j_{\varepsilon}}\right|=\sum_{k \in \mathbb{N}}\left|a_{j_{\varepsilon} k}\right|>\sup _{j \in \mathbb{N}} \sum_{k \in \mathbb{N}}\left|a_{j k}\right|-\varepsilon .
$$

Since $\left\|x^{(\varepsilon)}\right\|_{\ell \infty} \leq 1$ for every $\varepsilon \in(0, \infty)$, this implies $\|A\|_{L\left(\ell^{\infty}, \ell^{\infty}\right)} \geq \sup _{j \in \mathbb{N}} \sum_{k \in \mathbb{N}}\left|a_{j, k}\right|$.

4.4. The Fourier coefficients of functions in $L^{1}([0,2 \pi])$

For $f \in L^{1}([0,2 \pi], \mathbb{C})$, we define the $k^{\text {th }}$ Fourier coefficient to be

$$
\hat{f}(k)=\int_{0}^{2 \pi} f(t) e^{-i k t} d t
$$

and let $\mathcal{F}(f)=(\hat{f}(k))_{k \in \mathbb{Z}}$.
(a) Show that $\mathcal{F}: L^{1}([0,2 \pi], \mathbb{C}) \rightarrow \ell^{\infty}(\mathbb{Z}, \mathbb{C})$ defines a bounded linear operator.

Solution: For every $f \in L^{1}([0,2 \pi], \mathbb{C})$ and every $k \in \mathbb{Z}$, we have that

$$
\left|\int_{0}^{2 \pi} f(t) e^{-i k t} d t\right| \leq \int_{0}^{2 \pi}\left|f(t) e^{-i k t}\right| d t=\|f\|_{L^{1}([0,2 \pi], \mathbb{C})}
$$

which implies that \mathcal{F} is well-defined and bounded (with operator norm bounded by 1). Linearity is immediate from the linearity of the integral.
(b) Prove the Riemann-Lebesgue lemma, that is, $\lim \sup _{|k| \rightarrow \infty}|\hat{f}(k)|=0$ for all $f \in L^{1}([0,2 \pi], \mathbb{C})$.

Solution: First, consider $f \in C([0,2 \pi], \mathbb{C})$. Being uniformly continuous, there exists $\delta:(0, \infty) \rightarrow(0, \infty)$ satisfying for all $\varepsilon \in(0, \infty)$ that

$$
(x, y \in[0,2 \pi] \text { and }|x-y|<\delta(\varepsilon)) \Rightarrow|f(x)-f(y)| \leq \varepsilon
$$

Hence, for every $\varepsilon \in(0, \infty)$ and all $k \in \mathbb{N}$, we have that

$$
\left|\int_{0}^{2 \pi} f(t) e^{-i k t} d t-\sum_{m=0}^{\left\lfloor\frac{2 \pi}{\delta(\varepsilon)}\right\rfloor} f(m \delta(\varepsilon)) \int_{m \delta(\varepsilon)}^{\min \{(m+1) \delta(\varepsilon), 2 \pi\}} e^{-i k t} d t\right| \leq 2 \pi \varepsilon .
$$

Moreover, for every $\varepsilon \in(0, \infty)$, it holds
$\limsup _{k \rightarrow \infty}\left|\sum_{m=0}^{\left\lfloor\frac{2 \pi}{\delta(\varepsilon)}\right\rfloor} f(m \delta(\varepsilon)) \int_{m \delta(\varepsilon)}^{\min \{(m+1) \delta(\varepsilon), 2 \pi\}} e^{-i k t} d t\right| \leq \limsup _{k \rightarrow \infty} \frac{2}{k}\|f\|_{\text {sup }}\left(\left\lfloor\frac{2 \pi}{\delta(\varepsilon)}\right\rfloor+1\right)=0$.
Combining the above two inequalities implies that

$$
\limsup _{k \rightarrow \infty}\left|\int_{0}^{2 \pi} f(t) e^{-i k t} d t\right| \leq 2 \pi \varepsilon \quad \text { for all } \varepsilon \in(0, \infty)
$$

proving the claim for $f \in C([0,2 \pi], \mathbb{C})$. Next assume $f \in L^{1}([0,2 \pi], \mathbb{C})$. Since $C([0,2 \pi], \mathbb{C})$ lies dense in $L^{1}([0,2 \pi], \mathbb{C})$, there exists $g_{\varepsilon} \in C([0,2 \pi], \mathbb{C})$ for every $\varepsilon \in(0, \infty)$ such that $\left\|f-g_{\varepsilon}\right\|_{L^{1}([0,2 \pi], \text { C })} \leq \varepsilon$. Hence, we have for every $\varepsilon \in(0, \infty)$ that

$$
\limsup _{k \rightarrow \infty}\left|\int_{0}^{2 \pi} e^{-i k t} f(t) d t\right| \leq \limsup _{k \rightarrow \infty}\left|\int_{0}^{2 \pi} e^{-i k t} g_{\varepsilon}(t) d t\right|+\varepsilon=\varepsilon .
$$

This completes the proof.
(c) Let $c_{0}(\mathbb{Z}, \mathbb{C}) \subseteq \ell^{\infty}(\mathbb{Z}, \mathbb{C})$ be the closed subspace of sequences converging to zero. Prove that $\mathcal{F}: L^{1}([0,2 \pi], \mathbb{C}) \rightarrow c_{0}(\mathbb{Z}, \mathbb{C})$ has dense range but is not onto.

Solution: For every $k \in \mathbb{Z}, e_{k}:=\left(\delta_{k n}\right)_{n \in \mathbb{Z}} \in c_{0}(\mathbb{Z}, \mathbb{C})$ lies in $\mathcal{F}\left(L^{1}([0,2 \pi], \mathbb{C})\right)$ as $e_{k}=\mathcal{F}\left([0,2 \pi] \ni t \mapsto e^{i k t} \in \mathbb{C}\right)$. Since $\operatorname{span}\left\{e_{k}: k \in \mathbb{Z}\right\}$ is dense in $c_{0}(\mathbb{Z}, \mathbb{C})$ and \mathcal{F} is linear, we can conclude that \mathcal{F} has dense range. If \mathcal{F} was surjective, then the mapping would have to be continuously invertible by the open mapping theorem (note that \mathcal{F} is injective - for example, because $\hat{f}(k)=0$ for all $k \in \mathbb{Z}$ implies that $\int_{0}^{2 \pi} f(t) p(t) d t=0$ for every trigonometric polynomial p and, by density then also for every continuous 2π-periodic function p, leaving $f=0$ as the only possibility by the fundamental principle of the calculus of variations). In order to see that this is not the case, consider the functions $\left(f_{n}\right)_{n \in \mathbb{N}} \subseteq L^{1}([0,2 \pi], \mathbb{C})$, given by

$$
f_{n}(t)=\sum_{k=-n}^{n} e^{i k t} \quad \text { for all } t \in[0,2 \pi] .
$$

Note that for all $n \in \mathbb{N}, t \in[0,2 \pi]$, we have that

$$
f_{n}(t)=\frac{\sin \left(\left(n+\frac{1}{2}\right) t\right)}{\sin \left(\frac{t}{2}\right)} .
$$

Thus, we obtain for every $n \in \mathbb{N}$:

$$
\begin{aligned}
\left\|f_{n}\right\|_{L^{1}([0,2 \pi], \mathbb{C})} & =\int_{0}^{2 \pi} \frac{\left|\sin \left(\left(n+\frac{1}{2}\right) t\right)\right|}{\left|\sin \left(\frac{t}{2}\right)\right|} d t \geq \int_{0}^{2 \pi}(2 n+1) \frac{\left|\sin \left(\left(n+\frac{1}{2}\right) t\right)\right|}{\left(n+\frac{1}{2}\right) t} d t \\
& =2 \int_{0}^{(2 n+1) \pi} \frac{|\sin (t)|}{t} d t
\end{aligned}
$$

As the latter integral diverges as $n \rightarrow \infty$ (it can, for example, be bounded below by a non-zero constant factor times partial sums of a harmonic series), while $\left\|\mathcal{F}\left(f_{n}\right)\right\|_{\ell \infty}=1$ for every $n \in \mathbb{N}, \mathcal{F}$ cannot be continuously invertible.

4.5. Distance to closed subspaces

Let $(X,\|\cdot\|)$ be a normed \mathbb{R}-vector space and let $\varphi \in L(X, \mathbb{R})$ be an element of the dual space of X.
(a) Prove for every $x \in X$ that

$$
|\varphi(x)|=\|\varphi\|_{L(X, \mathbb{R})} \operatorname{dist}(x, \operatorname{ker}(\varphi))
$$

where $\operatorname{dist}(x, A)=\inf _{v \in A}\|x-v\|$ for $x \in X$ and $\emptyset \neq A \subseteq X$ denotes the distance of the point x to the set A.

Solution: For $\varphi=0 \in L(X, \mathbb{R})$, the claim is clearly true. Thus, we assume w.l.o.g. that $\varphi \neq 0$. First, observe for every $x \in X$ and all $v \in \operatorname{ker}(\varphi)$ that

$$
|\varphi(x)|=|\varphi(x-v)| \leq\|\varphi\|_{L(X, \mathbb{R})}\|x-v\| .
$$

Taking the infimum over $v \in \operatorname{ker}(\varphi)$ implies that $|\varphi(x)| \leq\|\varphi\|_{L(X, \mathbb{R})} \operatorname{dist}(x, \operatorname{ker}(\varphi))$ for all $x \in \mathbb{R}$. For the other inequality, note that there exist $\left(y_{\varepsilon}\right)_{\varepsilon \in(0, \infty)} \subseteq X$ satisfying for every $\varepsilon \in\left(0,\|\varphi\|_{L(X, \mathbb{R})}\right)$ that $\left\|y_{\varepsilon}\right\| \leq 1$ and $\left|\varphi\left(y_{\varepsilon}\right)\right|>\|\varphi\|_{L(X, \mathbb{R})}-\varepsilon>0$. Since it holds for every $\varepsilon \in\left(0,\|\varphi\|_{L(X, \mathbb{R})}\right)$ that

$$
\varphi(x)=\frac{\varphi(x)}{\varphi\left(y_{\varepsilon}\right)} \varphi\left(y_{\varepsilon}\right)=\varphi\left(\frac{\varphi(x)}{\varphi\left(y_{\varepsilon}\right)} y_{\varepsilon}\right)
$$

we may infer that $x-\frac{\varphi(x)}{\varphi\left(y_{\varepsilon}\right)} y_{\varepsilon} \in \operatorname{ker}(\varphi)$ for every $\varepsilon \in\left(0,\|\varphi\|_{L(X, \mathbb{R})}\right)$. Hence, we obtain for every $\varepsilon \in\left(0,\|\varphi\|_{L(X, \mathbb{R})}\right)$:

$$
\begin{aligned}
\operatorname{dist}(x, \operatorname{ker}(\varphi)) & =\operatorname{dist}\left(\frac{\varphi(x)}{\varphi\left(y_{\varepsilon}\right)} y_{\varepsilon}, \operatorname{ker}(\varphi)\right)=\frac{|\varphi(x)|}{\left|\varphi\left(y_{\varepsilon}\right)\right|} \operatorname{dist}\left(y_{\varepsilon}, \operatorname{ker}(\varphi)\right) \\
& \leq \frac{|\varphi(x)|}{\left|\varphi\left(y_{\varepsilon}\right)\right|}\left\|y_{\varepsilon}\right\| \leq \frac{|\varphi(x)|}{\varphi\left(y_{\varepsilon}\right)} \leq \frac{|\varphi(x)|}{\|\varphi\|_{L(X, \mathbb{R})}-\varepsilon} .
\end{aligned}
$$

Taking limits as $\varepsilon \rightarrow 0$ proves the missing inequality.
Consider now the \mathbb{R}-vector space of continuous functions on the real half-line vanishing at ∞, i.e.,

$$
C_{0}([0, \infty), \mathbb{R})=\{f \in C([0, \infty), \mathbb{R})|\underset{t \rightarrow \infty}{\limsup }| f(t) \mid=0\}
$$

equipped with the sup norm $\|\cdot\|_{\text {sup }}$.
(b) Show that $H=\left\{f \in C_{0}([0, \infty), \mathbb{R}) \mid \int_{0}^{\infty} e^{-s} f(s) d s=0\right\}$ is a closed subspace of the Banach space $\left(C([0, \infty), \mathbb{R}),\|\cdot\|_{\text {sup }}\right)$.
Solution: Let $\left(f_{n}\right)_{n \in \mathbb{N}} \subseteq H$ be a sequence converging to $f_{\infty} \in C([0, \infty), \mathbb{R})$ with respect to the sup norm. Since, consequentially, there exist $N:(0, \infty) \rightarrow \mathbb{N}$ and $R: \mathbb{N} \times(0, \infty) \rightarrow[0, \infty)$ satisfying that

$$
\sup _{n \geq N_{\varepsilon}}\left\|f_{n}-f_{\infty}\right\|_{\sup } \leq \varepsilon \quad \text { for all } \varepsilon \in(0, \infty)
$$

and

$$
\sup _{t \geq R_{n, \varepsilon}}\left|f_{n}(t)\right| \leq \varepsilon \quad \text { for all } n \in \mathbb{N}, \varepsilon \in(0, \infty)
$$

we obtain that

$$
\sup _{t \geq R_{N_{\varepsilon}, \varepsilon}}\left|f_{\infty}(t)\right| \leq \sup _{t \geq R_{N_{\varepsilon}, \varepsilon}}\left(\left|f_{N_{\varepsilon}(t)}\right|+\left\|f_{\infty}-f_{N_{\varepsilon}}\right\|_{\text {sup }}\right) \leq 2 \varepsilon \quad \text { for all } \varepsilon \in(0, \infty),
$$

which demonstrates that $f_{\infty} \in C_{0}([0, \infty), \mathbb{R})$. Moreover, Hölder's inequality and the fact that $\left(f_{n}\right)_{n \in \mathbb{N}} \subseteq H$ guarantee that

$$
\begin{aligned}
\left|\int_{0}^{\infty} e^{-s} f_{\infty}(s) d s\right| & =\limsup _{n \rightarrow \infty}\left|\int_{0}^{\infty} e^{-s} f_{\infty}(s) d s-\int_{0}^{\infty} e^{-s} f_{n}(s) d s\right| \\
& \leq \limsup _{n \rightarrow \infty}^{\infty} \int_{0}^{\infty} e^{-s}\left|f_{\infty}(s)-f_{n}(s)\right| d s \\
& \leq \limsup _{n \rightarrow \infty}\left\|f_{\infty}-f_{n}\right\|_{\text {sup }}=0 .
\end{aligned}
$$

Thus, $f_{\infty} \in H$ and H is closed. Linearity of H is immediate from the linearity of the integral.
(c) Demonstrate that for every $f \in C_{0}([0, \infty), \mathbb{R}) \backslash H$, there is no $h \in H$ which realizes the distance, i.e., which satisfies $\operatorname{dist}(f, H)=\|f-h\|_{\text {sup }}$.

Solution: Set $X=C_{0}([0, \infty), \mathbb{R})$. Note that $\varphi: X \rightarrow \mathbb{R}$, defined by

$$
\varphi(f)=\int_{0}^{\infty} e^{-s} f(s) d s \quad \text { for all } f \in X
$$

defines a continuous linear functional on X (and $H=\operatorname{ker}(\varphi)$). Hence, if there existed $f \in X \backslash H, g \in H$ with $\operatorname{dist}(f, H)=\|f-g\|_{\text {sup }}$, then - according to (a), linearity, and the fact that $\varphi(g)=0-$ we would have

$$
\begin{aligned}
|\varphi(f-g)| & =|\varphi(f)|=\|\varphi\|_{L(X, \mathbb{R})} \operatorname{dist}(f, \operatorname{ker}(\varphi)) \\
& =\|\varphi\|_{L(X, \mathbb{R})} \operatorname{dist}(f, H)=\|\varphi\|_{L(X, \mathbb{R})}\|f-g\|_{\text {sup }},
\end{aligned}
$$

in other words, $f-g \neq 0$ would be an element at which the operator norm of φ is realized. But the operator norm of φ is 1 and is not attained in X. Why is the operator norm of φ equal to 1 ? Note first for all $f \in X$ that

$$
|\varphi(f)| \leq \int_{0}^{\infty} e^{-s}|f(s)| d s \leq \int_{0}^{\infty} e^{-s}\|f\|_{\text {sup }} d s=\|f\|_{\text {sup }}
$$

which implies that $\|\varphi\|_{L(X, \mathbb{R})} \leq 1$. On the other hand, since for every $\alpha \in(0, \infty)$, the function $[0, \infty) \ni s \mapsto e^{-\alpha s} \in \mathbb{R}$ belongs to X and has sup norm 1, we get that

$$
\begin{aligned}
\|\varphi\|_{L(X, \mathbb{R})} & \geq \varphi\left([0, \infty) \ni s \mapsto e^{-\alpha s} \in \mathbb{R}\right) \\
& =\int_{0}^{\infty} e^{-(1+\alpha) s} d s=\frac{1}{1+\alpha} \text { for all } \alpha \in(0, \infty) .
\end{aligned}
$$

Letting $\alpha \rightarrow 0$, we obtain $\|\varphi\|_{L(X, \mathbb{R})} \geq 1$, from which we conclude $\|\varphi\|_{L(X, \mathbb{R})}=1$. Why is the operator norm of φ not attained? For every $f \in C([0, \infty), \mathbb{R})$ with $\|f\|_{\text {sup }} \leq 1$, we have that

$$
1-\int_{0}^{\infty} e^{-s} f(s) d s=\int_{0}^{\infty} \underbrace{e^{-s}(1-f(s))}_{\geq 0} d s=0
$$

if and only if $1-f(s)=0$ for all $s \in[0, \infty)$, i.e., if and only $f(s)=1$ for all $s \in[0, \infty)$. But the function constantly equal to 1 does not belong to X.

