5.1. Closed subspaces

Show that the subspaces

$$U = \{ (x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n} = 0 \},$$
$$V = \{ (x_n)_{n \in \mathbb{N}} \in \ell^1 \mid \forall n \in \mathbb{N} : x_{2n-1} = nx_{2n} \}$$

are both closed in $(\ell^1, \|\cdot\|_{\ell^1})$ while the subspace $U \oplus V$ is not closed in $(\ell^1, \|\cdot\|_{\ell^1})$.

Hint. For the second claim, show $c_c \subseteq U \oplus V$. (Recall c_c from problems 3.4 or 3.6.)

Solution: Keep in mind that the convergence of a sequence $(x^{(k)})_{k\in\mathbb{N}} \subseteq \ell^1$ (with $x^{(k)} = (x_n^{(k)})_{n\in\mathbb{N}} \in \ell^1$ for every $k \in \mathbb{N}$) to $x^{(\infty)} = (x_n^{(\infty)})_{n\in\mathbb{N}} \in \ell^1$ entails convergence of the coefficient sequences, that is:

$$\left(\limsup_{k \to \infty} \|x^{(k)} - x^{(\infty)}\|_{\ell^1} = 0\right) \Rightarrow \left(\forall n \in \mathbb{N} : \limsup_{k \to \infty} |x_n^{(k)} - x_n^{(\infty)}| = 0\right).$$

This observation allows to conclude that U and V are closed. Indeed, let $(x^{(k)})_{k\in\mathbb{N}} \subseteq U$ and $(y^{(k)})_{k\in\mathbb{N}} \subseteq V$ (with $x^{(k)} = (x_n^{(k)})_{n\in\mathbb{N}}$ and $y^{(k)} = (y_n^{(k)})_{n\in\mathbb{N}}$ for every $k \in \mathbb{N}$) be converging to $x^{(\infty)} = (x_n^{(\infty)})_{n\in\mathbb{N}} \in \ell^1$ and $y^{(\infty)} = (y_n^{(\infty)})_{n\in\mathbb{N}} \in \ell^1$, respectively. By definition, $x_{2n}^{(k)} = 0$ and $y_{2n-1}^{(k)} = ny_{2n}^{(k)}$ for every $k \in \mathbb{N}$ and every $n \in \mathbb{N}$. According to the above observation,

$$x_{2n}^{(\infty)} = \lim_{k \to \infty} x_{2n}^{(k)} = 0 \text{ and}$$
$$y_{2n-1}^{(\infty)} = \lim_{k \to \infty} y_{2n-1}^{(k)} = \lim_{k \to \infty} (ny_{2n}^{(k)}) = ny_{2n}^{(\infty)}$$

for every $n \in \mathbb{N}$. Thus, $x^{(\infty)} \in U$ and $y^{(\infty)} \in V$. This ensures that U and V are closed subspaces of ℓ^1 (linearity of the spaces U and V is considered to be clear).

For proving that $U \oplus V$ is not closed, we show that c_c lies dense in ℓ^1 , that $c_c \subseteq U \oplus V$ and that $U \oplus V \subsetneq \ell^1$. With c_c lying dense in ℓ^1 , and $U \oplus V$ containing c_c , $U \oplus V$ can only be closed if $U \oplus V = \ell^1$ (which we claim it is not).

Let us start by showing that $c_c \subseteq U \oplus V$. For this, let $x = (x_m)_{m \in \mathbb{N}} \in c_c$ be arbitrary. Then, x = u + v with $u = (u_m)_{m \in \mathbb{N}}$ and $v = (v_m)_{m \in \mathbb{N}}$ given by

$$u_m = \begin{cases} x_m - nx_{m+1}, & \text{if } m = 2n - 1, \\ 0, & \text{if } m \text{ is even} \end{cases} \quad v_m = \begin{cases} nx_{m+1}, & \text{if } m = 2n - 1, \\ x_m, & \text{if } m \text{ is even.} \end{cases}$$

The assumption $x \in c_c$ implies $u, v \in c_c \subseteq \ell^1$. Then, $u \in U$ holds by construction and $v \in V$ follows from $v_{2n-1} = nx_{2n-1+1} = nx_{2n} = nv_{2n}$ for every $n \in \mathbb{N}$.

last update: 31 October 2021

1/9

Next we show that c_c lies dense in $(\ell^1, \|\cdot\|_{\ell^1})$. For this, let $x = (x_n)_{n \in \mathbb{N}} \in \ell^1$ be arbitrary. Define $(x^{(k)})_{k \in \mathbb{N}} \subseteq c_c$ (with $x^{(k)} = (x_n^{(k)})_{n \in \mathbb{N}}$ for every $k \in \mathbb{N}$) by setting

$$x_n^{(k)} = \begin{cases} x_n & \text{ for } n < k, \\ 0 & \text{ for } n \ge k \end{cases}$$

for every $k \in \mathbb{N}$. Then,

$$\limsup_{k \to \infty} \|x^{(k)} - x\|_{\ell^1} = \limsup_{k \to \infty} \left[\sum_{n=k}^{\infty} |x_n|\right] = 0.$$

Finally, we show that $U \oplus V \neq \ell^1$ by counterexample. For this, let $x = (x_m)_{m \in \mathbb{N}}$ be defined as follows:

$$x_m = \begin{cases} 0, & \text{if } m \text{ is odd,} \\ \frac{1}{n^2}, & \text{if } m = 2n. \end{cases}$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$ we have $x \in \ell^1$. Suppose x = u + v for $u \in U$ and $v \in V$. Then, $u_{2n} = 0$ implies $v_{2n} = x_{2n} = \frac{1}{n^2}$ for every $n \in \mathbb{N}$. By definition of V, we have $v_{2n-1} = nv_{2n} = \frac{1}{n}$ for every $n \in \mathbb{N}$. However, $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$ implies $v \notin \ell^1$ which contradicts the definition of V.

This completes the proof that $U \oplus V$ is not closed.

5.2. Vanishing boundary values

Let $X = C([0,1],\mathbb{R})$ and $U = C_0([0,1],\mathbb{R}) := \{f \in C([0,1],\mathbb{R}) \mid f(0) = 0 = f(1)\}.$

(a) Show that U is a closed subspace of X endowed with the norm $\|\cdot\|_X = \|\cdot\|_{C([0,1],\mathbb{R})}$.

Solution: Let $(f_n)_{n \in \mathbb{N}}$ be a sequence in U which converges to f in $(X, \|\cdot\|_X)$. Then, since $f_n(0) = 0 = f_n(1)$, we can conclude f(0) = 0 = f(1), i. e., $f \in U$ by passing to the limit $n \to \infty$ in the following inequalities:

$$|f(0)| = |f_n(0) - f(0)| \le \sup_{x \in [0,1]} |f_n(x) - f(x)| = ||f_n - f||_X,$$

$$|f(1)| = |f_n(1) - f(1)| \le \sup_{x \in [0,1]} |f_n(x) - f(x)| = ||f_n - f||_X.$$

Remark: What was checked here amounts to verifying that evaluation functionals belong to the dual space of X.

Figure 1: The functions $u_1, u_2 \in X$ and some $f \in [u_1]$.

(b) Compute the dimension of the quotient space X/U and find a basis for X/U.

Solution: Let $u_1, u_2 \in X$ be given by $u_1(t) = 1 - t$ and $u_2(t) = t$. We claim that the equivalence classes $[u_1], [u_2] \in X/U$ form a basis for X/U (and thus, X/U turns out to be a 2-dimensional vector space).

To prove linear independence, let $\lambda_1, \lambda_2 \in \mathbb{R}$ such that $\lambda_1[u_1] + \lambda_2[u_2] = 0 \in X/U$ which means $\lambda_1 u_1 + \lambda_2 u_2 \in U$. This implies by definition

$$\lambda_1 = \lambda_1 u_1(0) + \lambda_2 u_2(0) = 0 = \lambda_1 u_1(1) + \lambda_2 u_2(1) = \lambda_2.$$

To show that $[u_1]$ and $[u_2]$ span X/U, let $[h] \in X/U$ with representative $h \in X$. By evaluation at t = 0 and t = 1, we conclude

$$(t \mapsto h(t) - h(0)u_1(t) - h(1)u_2(t)) \in U_1$$

This implies $[h] = h(0)[u_1] + h(1)[u_2]$ in X/U which proves the claim.

5.3. Continuity of bilinear maps

Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed spaces. We consider the space $(X \times Y, \|\cdot\|_{X \times Y})$, where $\|(x, y)\|_{X \times Y} = \|x\|_X + \|y\|_Y$ and a bilinear map $B \colon X \times Y \to Z$.

(a) Show that B is continuous if and only if

$$\exists C > 0 \quad \forall (x, y) \in X \times Y : \quad \|B(x, y)\|_Z \le C \|x\|_X \|y\|_Y.$$
^(†)

last update: 31 October 2021

3/9

Solution: " \Leftarrow ": Let $((x_k, y_k))_{k \in \mathbb{N}}$ be a sequence in $X \times Y$ converging to (x_{∞}, y_{∞}) in $(X \times Y, \|\cdot\|_{X \times Y})$. By definition, we have for all $k \in \mathbb{N}$ that

$$\|x_k - x_\infty\|_X + \|y_k - y_\infty\|_Y = \|(x_k - x_\infty, y_k - y_\infty)\|_{X \times Y} = \|(x_k, y_k) - (x_\infty, y_\infty)\|_{X \times Y},$$

which yields convergence $x_k \to x_\infty$ in X and $y_k \to y_\infty$ in Y as $k \to \infty$. Since $B: X \times Y \to Z$ is bilinear, we have for all $k \in \mathbb{N}$ that

$$||B(x_k, y_k) - B(x_{\infty}, y_{\infty})||_Z = ||B(x_k, y_k) - B(x_{\infty}, y_k) + B(x_{\infty}, y_k) - B(x_{\infty}, y_{\infty})||_Z$$

= $||B(x_k - x_{\infty}, y_k) + B(x_{\infty}, y_k - y_{\infty})||_Z$
 $\leq ||B(x_k - x_{\infty}, y_k)||_Z + ||B(x_{\infty}, y_k - y)||_Z.$

Using, on one hand, the assumption that $||B(x,y)||_Z \leq C||x||_X||y||_Y$ for all $(x,y) \in X \times Y$ and, on the other hand, the fact that convergence of $(y_k)_{k \in \mathbb{N}}$ in $(Y, \|\cdot\|_Y)$ implies that $\sup_{k \in \mathbb{N}} ||y_k||_Y < \infty$, we conclude

$$||B(x_k, y_k) - B(x_{\infty}, y_{\infty})||_Z \le C ||x_{\infty} - x_k||_X ||y_k||_Y + C ||x_{\infty}||_X ||y_{\infty} - y_k||_Y \xrightarrow{k \to \infty} 0.$$

<u>"</u> \Rightarrow ": Let *B* be continuous and assume that (†) does not hold. Hence, there exist sequences $(x_n)_{n\in\mathbb{N}}\subseteq X$ and $(y_n)_{n\in\mathbb{N}}\subseteq Y$ such that

 $||B(x_n, y_n)|| > n ||x_n||_X ||y_n||_Y \quad \text{for all } n \in \mathbb{N}.$

Note that this implies, in particular, for all $n \in \mathbb{N}$ that $x_n \neq 0$ and $y_n \neq 0$. Thus, we may define sequences $(u_n)_{n \in \mathbb{N}} \subseteq X$ and $(v_n)_{n \in \mathbb{N}} \subseteq Y$ by setting

$$u_n = \frac{x_n}{\sqrt{n} \|x_n\|_X}$$
 and $v_n = \frac{y_n}{\sqrt{n} \|y_n\|_Y}$ for all $n \in \mathbb{N}$.

By linearity, we have for all $n \in \mathbb{N}$ that $||B(u_n, v_n)||_Z > 1$. In view of the fact that $||(u_n, v_n)||_{X \times Y} = ||u_n||_X + ||v_n||_Y = \frac{2}{\sqrt{n}} \to 0$ as $n \to \infty$, this represents a contradiction to the continuity of the mapping B.

(b) Assume that $(X, \|\cdot\|_X)$ is complete. Assume further that the maps

$$\begin{array}{ll} X \to Z & Y \to Z \\ x \mapsto B(x, y') & y \mapsto B(x', y) \end{array}$$

are continuous for every $x' \in X$ and $y' \in Y$. Prove that then, (\dagger) holds.

Solution: Let $B_1^Y \subseteq Y$ be the unit ball around the origin in $(Y, \|\cdot\|_Y)$. For every $x \in X$ we have by assumption

$$\sup_{y'\in B_1^Y} \|B(x,y')\|_Z \le \sup_{y'\in B_1^Y} \|y'\|_Y \|B(x,\cdot)\|_{L(Y,Z)} \le \|B(x,\cdot)\|_{L(Y,Z)} < \infty,$$

which means that the maps $(B(\cdot, y'))_{y' \in B_1^Y} \subseteq L(X, Z)$ are pointwise bounded. Since X is assumed to be complete, the uniform boundedness principle (Theorem of Banach–Steinhaus) implies that $(B(\cdot, y'))_{y' \in B_1^Y} \subseteq L(X, Z)$ is bounded, i. e.

$$C := \sup_{y' \in B_1^Y} \|B(\cdot, y')\|_{L(X,Z)} < \infty.$$

From this we conclude for all $x \in X$, $y \in Y$ that

$$\begin{split} \|B(x,y)\|_{Z} &= \|y\|_{Y} \left\| B\left(x, \frac{y}{\|y\|_{Y}}\right) \right\|_{Z} \\ &\leq \|y\|_{Y} \|x\|_{X} \left\| B\left(\cdot, \frac{y}{\|y\|_{Y}}\right) \right\|_{L(X,Z)} \leq C \|x\|_{X} \|y\|_{Y}. \end{split}$$

5.4. Diverging Fourier series

Prove for every $t \in [0, 2\pi]$ that there exists a continuous 2π -periodic function whose Fourier series does not converge at t.

Solution: Let $X = \{f \in C([0, 2\pi], \mathbb{R}) \mid f(0) = f(2\pi)\}$, equipped with the usual sup norm. For every $m \in \mathbb{N}$ let $s_m \colon X \to \mathbb{R}$ be given by

$$s_m(f) = \frac{1}{2\pi} \sum_{k=-m}^m \int_0^{2\pi} f(t) e^{-ikt} dt$$
 for every $f \in X$,

that is, $s_m(f)$ is the value of the m^{th} partial Fourier sum of f at 0. Note that, for every $m \in \mathbb{N}$, it holds that s_m is a bounded linear mapping from X to \mathbb{R} . Moreover, it holds for all $m \in \mathbb{N}$, $t \in (0, 2\pi)$ that

$$\sum_{k=-m}^{m} e^{ikt} = \frac{e^{i(m+1)t} - e^{-imt}}{e^{it} - 1} = \frac{\sin((m + \frac{1}{2})t)}{\sin(\frac{t}{2})}.$$

Thus, we have for all $m \in \mathbb{N}, f \in X$ that

$$s_m(f) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\sin((m + \frac{1}{2})t)}{\sin(\frac{t}{2})} f(t) dt.$$

last update: 31 October 2021

Note that for every $m \in \mathbb{N}$ it holds that

$$\frac{1}{2\pi} \int_0^{2\pi} \left| \frac{\sin\left((m + \frac{1}{2})t\right)}{\sin\left(\frac{t}{2}\right)} \right| dt \ge \int_0^{2\pi} \frac{\left|\sin\left((m + \frac{1}{2})t\right)\right|}{\pi t} dt = \int_0^{(2m+1)\pi} \frac{\left|\sin(u)\right|}{\pi u} du$$
$$\ge \sum_{k=0}^m \int_{2k\pi + \frac{\pi}{6}}^{2k\pi + \frac{5\pi}{6}} \frac{\left|\sin(u)\right|}{\pi u} du$$
$$\ge \sum_{k=0}^{2m} \int_{2k\pi + \frac{\pi}{6}}^{2k\pi + \frac{5\pi}{6}} \frac{1}{2\pi u} du \ge \sum_{k=0}^{2m} \int_{2k\pi + \frac{\pi}{3}}^{2k\pi + \frac{2\pi}{3}} \frac{1}{2\pi (k+1)} du$$
$$\ge \sum_{k=0}^{2m} \frac{1}{3(k+1)}.$$

This implies for every $m \in \mathbb{N}$ that $\|s_m\|_{L(X,\mathbb{R})} \geq \sum_{k=1}^{2m+1} \frac{1}{6k}$. In particular,

 $\sup_{m\in\mathbb{N}}\|s_m\|_{L(X,\mathbb{R})}=\infty.$

The uniform boundedness principle hence implies – keep in mind that X, equipped with the sup norm, is a Banach space as X is a closed subspace of $C([0, 2\pi], \mathbb{R})$ – that there exists $f \in X$ with $\sup_{m \in \mathbb{N}} |s_m(f)| = \infty$. In other words, there exists $f \in X$ such that the partial Fourier sums do not converge at 0 and for every $t \in [0, 2\pi]$, the function $[0, 2\pi] \ni s \mapsto f(s-t) \in \mathbb{R}$ is a continuous 2π -periodic function whose partial Fourier sums do not converge at t.

5.5. Induced continuity

Let X and Y be Banach spaces, let Z be a metric space, let $T: X \to Y$ be linear, let $J: Y \to Z$ be injective and continuous, and let $J \circ T: X \to Z$ be continuous. Deduce that T is continuous.

Solution: We prove continuity of the linear map $T: X \to Y$ by showing that T has a closed graph. For this, let $(x_n)_{n \in \mathbb{N}} \subseteq X$ be a sequence such that $x_n \to x_\infty$ in X and $Tx_n \to y_\infty$ in Y. Since $J \circ T$ is continuous, we have

$$\lim_{n \to \infty} J(Tx_n) = \lim_{n \to \infty} (J \circ T)(x_n) = (J \circ T)(x_\infty) = J(Tx_\infty).$$

Moreover, since J is continuous, we have

$$\lim_{n \to \infty} J(Tx_n) = J(y_\infty).$$

As J is injective, we obtain from $J(Tx_{\infty}) = J(y_{\infty})$ that $Tx_{\infty} = y_{\infty}$. Thus, T has a closed graph. As X and Y are Banach spaces, the closed graph theorem guarantees continuity of T.

5.6. Projections on closed convex sets

Let *H* be a Hilbert space with scalar product $\langle \cdot, \cdot \rangle$ and induced norm $\|\cdot\|$, let $C \subseteq H$ be a non-empty, closed and convex set, and let $x \in H$.

(a) Prove that there exists a unique $\xi \in C$ satisfying $||x - \xi|| = \inf_{y \in C} ||x - y||$.

Solution: Since C is non-empty and the norm is bounded below, there exists a sequence $(\xi_n)_{n\in\mathbb{N}}\subseteq C$ with

$$\lim_{n \to \infty} \|x - \xi_n\| = \inf_{y \in C} \|x - y\|.$$

The parallelogramm inequality implies for all $m, n \in \mathbb{N}$ that

$$2\|\xi_n - x\|^2 + 2\|\xi_m - x\|^2 = \|\xi_n - \xi_m\|^2 + \|\xi_n + \xi_m - 2x\|^2$$
$$= \|\xi_n - \xi_m\|^2 + 4\|\frac{1}{2}(\xi_n + \xi_m) - x\|^2$$

The convexity of C implies for all $m, n \in \mathbb{N}$ that $\frac{1}{2}(\xi_n + \xi_m) \in C$. Therefore, we obtain for all $m, n \in \mathbb{N}$:

$$\begin{aligned} \|\xi_n - \xi_m\|^2 &= 2\|\xi_n - x\|^2 + 2\|\xi_m - x\|^2 - 4\|\frac{1}{2}(\xi_n + \xi_m) - x\|^2 \\ &\leq 2\|\xi_n - x\|^2 + 2\|\xi_m - x\|^2 - 4\inf_{y \in C}\|y - x\|^2. \end{aligned}$$

As $(\xi_n)_{n \in \mathbb{N}}$ is a minimizing sequence, this yields:

$$\limsup_{k \to \infty} \left[\sup_{m,n \ge k} \|\xi_n - \xi_m\|^2 \right] \le 0.$$

Thus, $(\xi_n)_{n\in\mathbb{N}}$ is a Cauchy sequence and therefore there exists $\xi_{\infty} \in H$ such that $\xi_n \to \xi_{\infty}$ as $n \to \infty$. As C is closed, we get that $\xi_{\infty} \in C$. Moreover do we get by continuity of the norm that

$$||x - \xi_{\infty}|| = \lim_{n \to \infty} ||x - \xi_n|| = \inf_{y \in C} ||x - y||.$$

(b) Prove for all $y \in C$ the following equivalence:

$$\left(\|x-y\| = \inf_{z \in C} \|x-z\|\right) \Leftrightarrow \left(\operatorname{Re}\langle x-y, z-y\rangle \le 0 \quad \text{for all } z \in C\right).$$

Solution: " \Rightarrow ": Let $y \in C$ be such that $||x - y|| = \inf_{z \in C} ||x - z||$. Then it holds – by convexity of C – for every $z \in C$ and all $\alpha \in (0, 1)$ that $y + \alpha(z - y) = (1 - \alpha)y + \alpha z \in C$ and, therefore $||x - y - \alpha(z - y)|| \ge ||x - y||$. Squaring yields for all $\alpha \in (0, 1)$ that

$$0 \le ||x - y - \alpha(z - y)||^2 - ||x - y||^2 = \alpha^2 ||y - z||^2 - 2\alpha \operatorname{Re}\langle x - y, z - y \rangle$$

last update: 31 October 2021

7/9

This implies for all $\alpha \in (0, 1)$ and all $z \in C$ that

$$\operatorname{Re}\langle x-y, z-y\rangle \le \frac{\alpha}{2} \|y-z\|^2.$$

Letting α tend to 0 yields that $\operatorname{Re}\langle x - y, z - y \rangle \leq 0$ for all $z \in C$.

<u>"</u> \Leftarrow ": Let $y \in C$ be such that $\operatorname{Re}\langle x - y, z - y \rangle \leq 0$ for all $z \in C$. This implies for all $z \in C$ that

$$||x - z||^{2} = ||x - y + y - z||^{2} = ||x - y||^{2} + 2\operatorname{Re}\langle x - y, y - z \rangle + ||y - z||^{2}$$

$$\geq ||x - y||^{2} + ||y - z||^{2} \geq ||x - y||^{2},$$

as claimed.

5.7. Hardy space

Let $\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \}$ and set

$$\mathcal{H}^2(\mathbb{D}) = \left\{ f \colon \mathbb{D} \to \mathbb{C} \mid f \text{ holomorphic with } \sup_{0 \le r < 1} \int_0^{2\pi} |f(re^{it})|^2 \, dt < \infty \right\}.$$

(a) Derive a characterization of all the functions $f \in \mathcal{H}^2(\mathbb{D})$ in terms of the coefficients $(a_k(f))_{k \in \mathbb{N}_0} \subseteq \mathbb{C}$ of its power series expansion.

Solution: From complex analysis, we know for every $f \in \mathcal{H}^2(\mathbb{D})$ that $f(z) = \sum_{k=0}^{\infty} a_k(f) z^k$ (for all $z \in \mathbb{D}$), that the convergence radius is at least 1 and that the power series convergences locally uniformly to f. Thus, we obtain for all $r \in (0, 1)$ that

$$\int_{0}^{2\pi} |f(re^{it})|^2 dt = \int_{0}^{2\pi} \sum_{k,l=0}^{\infty} a_k(f) \overline{a_l(f)} r^{k+l} e^{it(k-l)} dt$$
$$= \sum_{k,l=0}^{\infty} 2\pi a_k(f) \overline{a_l(f)} r^{k+l} \delta_{kl} = 2\pi \sum_{k=0}^{\infty} |a_k(f)|^2 r^{2k}.$$

Hence, $f \in \mathcal{H}^2(\mathbb{D})$ if and only if $((a_k(f))_{k \in \mathbb{N}_0} \in \ell^2(\mathbb{N}_0, \mathbb{C}).$

(b) Demonstrate that, for all $f, g \in \mathcal{H}^2(\mathbb{D})$, the limit

$$\langle f,g\rangle \mathrel{\mathop:}= \lim_{r\to 1} \int_0^{2\pi} f(re^{it}) \overline{g(e^{it})} \, \frac{dt}{2\pi}$$

exists and express it in terms of the coefficients $(a_k(f))_{k\in\mathbb{N}_0}, (a_k(g))_{k\in\mathbb{N}_0}\subseteq\mathbb{C}$ of their power series expansions.

last update: 31 October 2021

Solution: By similar calculations and arguments as above, we obtain for every $r \in (0, 1)$ and all $f, g \in \mathcal{H}^2(\mathbb{D})$ that

$$\int_{0}^{2\pi} f(re^{it})\overline{g(re^{it})} dt = \int_{0}^{2\pi} \sum_{k,l=0}^{\infty} a_k(f)\overline{a_l(g)}r^{k+l}e^{i(k-l)t} dt$$
$$= \sum_{k,l=0}^{\infty} 2\pi r^{k+l}a_k(f)\overline{a_l(g)}\delta_{kl} = \sum_{k=0}^{\infty} 2\pi r^{k+l}a_k(f)\overline{a_l(g)}$$

Since $(a_k(f))_{k \in \mathbb{N}_0}, (a_k(g))_{k \in \mathbb{N}_0} \in \ell^2(\mathbb{N}_0, \mathbb{C})$ by (a), we obtain – based on Cauchy– Schwarz and dominated convergence – for all $f, g \in \mathcal{H}^2(\mathbb{D})$ that

$$\langle f,g\rangle = \sum_{k=0}^{\infty} a_k(f)\overline{a_l(g)}.$$

(c) Prove that $(\mathcal{H}^2(\mathbb{D}), \langle \cdot, \cdot \rangle)$ is a Hilbert space with $(\mathbb{D} \ni z \mapsto z^n \in \mathbb{C})_{n \in \mathbb{N}_0} \subseteq \mathcal{H}^2(\mathbb{D})$ being an orthonormal basis.

Solution: Exercises (a) and (b) above show that $(\mathcal{H}^2(\mathbb{D}), \langle \cdot, \cdot \rangle)$ is isomorphic to $\ell^2(\mathbb{N}_0, \mathbb{C})$ via the isomorphism

$$\mathcal{H}^2(\mathbb{D}) \ni f \mapsto (a_k(f))_{k \in \mathbb{N}_0} \in \ell^2(\mathbb{N}_0, \mathbb{C}).$$

Since $(e_n)_{n \in \mathbb{N}_0} \subseteq \ell^2(\mathbb{N}_0, \mathbb{C})$ with $e_n = (\delta_{nk})_{k \in \mathbb{N}_0}$ is an orthonormal basis of $\ell^2(\mathbb{N}_0, \mathbb{C})$ and since, for every $n \in \mathbb{N}_0$, e_n corresponds to $\mathbb{D} \ni z \mapsto z^n \in \mathbb{C}$, we can conclude that $(\mathbb{D} \ni z \mapsto z^n \in \mathbb{C})_{n \in \mathbb{N}_0}$ is an orthonormal basis of $\mathcal{H}^2(\mathbb{D})$.