
d-math
Prof. J. Teichmann

Functional Analysis I
Solution to Problem Set 6

ETH Zürich
Autumn 2021

6.1. Topological complement

Definition. Let (X, ‖·‖X) be a Banach space. A subspace U ⊆ X is called topologically
complemented if there is a subspace V ⊆ X such that the linear map I given by

I : (U × V, ‖·‖U×V )→ (X, ‖·‖X), ‖(u, v)‖U×V := ‖u‖X + ‖v‖X ,
(u, v) 7→ u+ v

is a continuous isomorphism of normed spaces with continuous inverse. In this case
V is said to be a topological complement of U .

(a) Prove that U ⊆ X is topologically complemented if and only if there exists a
continuous linear map P : X → X with P ◦ P = P and image P (X) = U .

Solution: ”⇒:” Suppose U ⊆ X is topologically complemented by V ⊆ X. Then,
I : U × V → X with (u, v) 7→ u + v is a continuous isomorphism with continuous
inverse. We define

P1 : U × V → U × V, P := I ◦ P1 ◦ I−1 : X → X.

(u, v) 7→ (u, 0)

P1 is linear, bounded since ‖P1(u, v)‖U×V = ‖u‖U ≤ ‖(u, v)‖U×V and hence continuous.
As composition of linear continuous maps, P is linear and continuous. Moreover,

P ◦ P = (I ◦ P1 ◦ I−1) ◦ (I ◦ P1 ◦ I−1) = I ◦ P1 ◦ P1 ◦ I−1 = I ◦ P1 ◦ I−1 = P,

P (X) = I(U × {0}) = U.

”⇐:” Suppose U ⊆ X allows a continuous linear map P : X → X with P ◦ P = P
and P (X) = U . Let V := ker(P ). Then

P ◦ (1− P ) = P − P = 0 ⇒ (1− P )(X) ⊆ ker(P ) = V. (1)

In fact, (1− P )(X) = V since given v ∈ V we have v = (1− P )v. Analogously,

(1− P ) ◦ P = P − P = 0 ⇒ U = P (X) ⊆ ker(1− P ). (2)

In fact, U = ker(1 − P ) since x − Px = 0 implies x = Px ∈ U for all x ∈ X. The
claim is that

I : U × V → X

(u, v) 7→ u+ v

is continuous and has a continuous inverse. Continuity of I follows directly from

‖I(u, v)‖X = ‖u+ v‖X ≤ ‖u‖X + ‖v‖X = ‖(u, v)‖U×V for all u ∈ U, v ∈ V.
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By the assumptions on P , especially (1), the map

Φ: X → U × V
x 7→

(
Px, (1− P )x

)
is well-defined and continuous. Since Pu = u for all u ∈ U by (2) and Pv = 0 for all
v ∈ V by definition of V , we have

(Φ ◦ I)(u, v) = Φ(u+ v) =
(
Pu+ Pv, u− Pu+ v − Pv

)
= (u, v).

(I ◦ Φ)(x) = I(Px, (1− P )x) = Px+ (1− P )x = x,

which implies that Φ is inverse to I. Consequently, U is topologically complemented.

(b) Show that a topologically complemented subspace must be closed.

Solution: If U ⊆ X is topologically complemented, then (a) implies existence of a
continuous map P : X → X with P = P ◦ P and P (X) = U , which – as we saw in
the proof of (a) – implies ker(1− P ) = U . Thus, U must be closed as the kernel of
the continuous map 1− P .

Alternatively one might argue that U = I(U × {0}) = (I−1)−1(U × {0}) has to be
closed in (X, ‖·‖X) as I is an isomorphism and U × {0} is closed in (U × V, ‖·‖U×V ).

Remark. If X is not isomorphic to a Hilbert space, then X has closed subspaces which
are not topologically complemented [Lindenstrauss & Tzafriri. On the complemented
subspaces problem. (1971)]. An example is c0 ⊆ `∞ but this is not easy to prove.

6.2. Heavily diverging Fourier series

Let X = {f ∈ C([0, 2π],R) : f(0) = f(2π)}. For m ∈ N0 and f ∈ X we denote the
mth partial sum of the Fourier series by Smf , that is,

(Smf)(t) =
m∑

k=−m

[ 1
2π

∫ 2π

0
f(s)e−iks ds

]
eikt.

This exercise’s goal is to prove the existence of a continuous 2π-periodic function
whose Fourier series does not converge at uncountably many points. To this end, let
{tk : k ∈ N} ⊆ [0, 2π] be dense.

(a) Prove that there exists f0 ∈ X such that supm∈N|(Smf0)(tn)| =∞ for all n ∈ N.

Solution: By problem 5.4 (Diverging Fourier series) – more precisely, by the proposed
solution to problem 5.4 – we have for every n ∈ N that

sup
m∈N0

‖X 3 f 7→ (Smf)(tn) ∈ R‖L(X,R) =∞.
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In other words, for every n ∈ N, the set Gn ⊆ L(X,R) given by

Gn = {X 3 f 7→ (Smf)(tn) ∈ R | m ∈ N0}

is an unbounded set of continuous linear operators from X to R. By problem 2.4
(Singularity condensation), we know that there exists f0 ∈ X such that

sup
m∈N0

|(Smf0)(tn)| =∞ for every n ∈ N.

(b) Show for every k ∈ N that {s ∈ [0, 2π] : |(Smf0)(s)| ≤ k for all m ∈ N0} is closed
and meagre.

Solution: Since Smf0 ∈ X for every m ∈ N0, we have for every k ∈ N that

Dk :={s ∈ [0, 2π] : |(Smf0)(s)| ≤ k for all m ∈ N0}
=

⋂
m∈N0

{s ∈ [0, 2π] : |(Smf0)(s)| ≤ k}

is closed as intersection of closed sets. Moreover, since

{tn : n ∈ N} ⊆ [0, 2π] \Dk for every k ∈ N,

the sets Dk, k ∈ N, are nowhere dense (and therefore meagre).

(c) Conclude that there is an uncountable subset of [0, 2π] on which the Fourier
series of f0 does not converge.

Solution: By (b), the set{
s ∈ [0, 2π] : sup

m∈N0

|(Smf0)(s)| <∞
}

=
⋃
k∈N
{s ∈ [0, 2π] : |(Smf0)(s)| ≤ k for all m ∈ N0}

is meagre. Hence, the set

A = [0, 2π] \
{
s ∈ [0, 2π] : sup

m∈N0

|(Smf0)(s)| <∞
}

cannot be meagre as, in that case, [0, 2π] would have to be meagre, which is certainly
not true according to Baire’s theorem. Furthermore, since A is not meagre, A needs
to be uncountable. The fact that {s ∈ [0, 2π] : (Smf0)(s) does not converge as m→
∞} ⊆ A completes the proof.
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6.3. The Fundamental Principles Fail for Non-Complete Spaces

Consider the vector space cc of real sequences x = (xn)n∈N with only finitely many
non-zero terms (cf. problems 3.4 and 3.6 as well as problem 5.1). Let ‖x‖`1 = ∑∞

n=1|xn|
and ‖x‖`∞ = supn∈N|xn| be the `1 and `∞ norms, respectively.

(a) The family of linear functionals ϕm : cc → R given by ϕm(x) = mxm, m ∈ N, is
pointwise bounded, but not uniformly bounded (in either norm on cc).

Solution: For every x = (xk)k∈N ∈ cc it holds that

sup
m∈N
|ϕm(x)| = sup

m∈N
|mxm| = sup

m∈N,xm 6=0
|mxm|

≤ max{m ∈ N : xm 6= 0}‖x‖`∞

≤ max{m ∈ N : xm 6= 0}‖x‖`1 .

Hence, {ϕm : m ∈ N} ⊆ L((cc, ‖·‖`1),R) is pointwise bounded and {ϕm : m ∈ N} ⊆
L((cc, ‖·‖`∞),R) is pointwise bounded. But due to

ϕm((δkm)k∈N) = m and ‖(δkm)k∈N‖`1 = 1 = ‖(δkm)k∈N‖`∞ for all m ∈ N,

we get that {ϕm : m ∈ N} is neither bounded in L((cc, ‖·‖`1),R) nor in L((cc, ‖·‖`∞),R).

(b) The identity operator (cc, ‖·‖`1)→ (cc, ‖·‖`∞) is continuous, but not open.

Solution: The inequality

‖x‖`∞ ≤ ‖x‖`1 for all x ∈ cc

implies that the map I : (cc, ‖·‖`1)→ (cc, ‖·‖`∞), given by I(x) = x for every x ∈ cc,
is continuous. Now define for every m ∈ N the sequence x(m) = (x(m)

k )k∈N ∈ cc by

x
(m)
k =


1
m

k ≤ m

0 k > m.

Note that

‖x(m)‖`1 = 1 and ‖x(m)‖`∞ = 1
m

for all m ∈ N.

The injectivity of I implies that there is no open ball around 0 in (cc, ‖·‖`∞) which
is contained in the image of the open ball of radius 1 around 0 in (cc, ‖·‖`1) under I.
This proves that I cannot be open.
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(c) The identity operator (cc, ‖·‖`∞)→ (cc, ‖·‖`1) has closed graph, but is not contin-
uous.

Solution: Let J : (cc, ‖·‖`∞) → (cc, ‖·‖`1) be given by J(x) = x for every x ∈ cc.
Using the notation from (b), we have that J = I−1. The example given in (b)
shows that J is not continuous. Let (x(n))n∈N ⊆ cc be such that x(n) → x(∞) ∈ cc in
(cc, ‖·‖`∞) as n→∞ and J(x(n))→ y(∞) in (cc, ‖·‖`1) as n→∞. This implies for all
k ∈ N that

y
(∞)
k = lim

n→∞
J(x(n))k = lim

n→∞
x

(n)
k = x

(∞)
k ,

which implies y(∞) = x(∞) = J(x(∞)). Hence, J has closed graph.

6.4. Zabreiko’s Lemma

Let (X, ‖·‖) be a K-Banach space (with K ∈ {R,C}), let p : X → [0,∞) be a semi-
norm (that is, for all x, y ∈ X, λ ∈ K it holds that p(x + y) ≤ p(x) + p(y) and
p(λx) = |λ|p(x)), and assume that

p

( ∞∑
k=1

xk

)
≤
∞∑
k=1

p(xk) for all (xk)k∈N ⊆ X for which
∞∑
k=1

xk converges.

(a) Demonstrate that there exists M ∈ [0,∞) such that

p(x) ≤M‖x‖ for all x ∈ X.

This is Zabreiko’s lemma. Hint: Mimick the proof of the open mapping theorem.

Solution: First, observe that X = ⋃
n∈N {x ∈ X : p(x) ≤ n}. Since X is complete,

Baire’s theorem implies that there exist N ∈ N, ξ ∈ X, ε ∈ (0,∞) such that

{y ∈ X : ‖y − ξ‖ < ε} ⊆ {x ∈ X : p(x) ≤ N}.

Due to the fact that p(x) = p(−x) for every x ∈ X, we also have that −ξ + z ∈
{x ∈ X : p(x) ≤ N} for every z ∈ X with ‖z‖ < ε. Thus, we have for all z ∈ X with
‖z‖ < ε that there exist (xn)n∈N, (yn)n∈N ⊆ X with p(xn) ≤ N and p(yn) ≤ N for all
n ∈ N satisfying that

ξ + z = lim
n→∞

xn and − ξ + z = lim
n→∞

yn.

Consequently, for z = 1
2((ξ + z) + (−ξ + z)) = limn→∞

1
2(xn + yn) we have because of

p
(
xn + yn

2

)
= 1

2p(xn + yn) ≤ 1
2p(xn) + 1

2p(yn) ≤ N
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that z ∈ {x ∈ X : p(x) ≤ N}. It remains to show that z ∈ {x ∈ X : p(x) ≤ N} for
every z ∈ X with ‖z‖ < ε. For this, let z ∈ X with ‖z‖ < ε and choose δ ∈ (‖z‖, ε).
Moreover, choose α ∈ (0, 1) such that (1 − α)ε > δ. Note that, still, ‖ε z

δ
‖ < ε and

therefore, there exists x0 ∈ X with p(x0) ≤ N satisfying∥∥∥∥εzδ − x0

∥∥∥∥ < αε.

This, in turn, implies that ‖ 1
α

(ε z
δ
− x0)‖ < ε and, again, there exists x1 ∈ X with

p(x1) ≤ N satisfying∥∥∥∥∥ε
z
δ
− x0

α
− x1

∥∥∥∥∥ < αε.

Inductively, we obtain (xn)n∈N0 ⊆ X satisfying for all n ∈ N0 that p(xn) ≤ N and∥∥∥∥∥εzδ −
n∑
k=0

αkxk

∥∥∥∥∥ < αn+1ε.

This implies that∑∞k=0 α
kxk exists and equals ε z

δ
. The assumptions on p now ascertain

p(z) = δ

ε
p
(
ε
z

δ

)
≤ δ

ε

∞∑
k=0

p(αkxk) = δ

ε

∞∑
k=0

αkp(xk) ≤
δ

ε

∞∑
k=0

αkN = δ

ε

N

1− α ≤ N.

Hence, we obtain for every z ∈ X with ‖z‖ < ε that p(x) ≤ N . This implies for every
z ∈ X that p(x) ≤ N

ε
‖x‖.

6.5. Proving everything by Zabreiko’s lemma

Recall Zabreiko’s lemma from problem 6.4. In this problem we will infer more or less
all the fundamental principles from Zabreiko’s lemma. Let K ∈ {R,C}.

(a) (Uniform boundedness principle.) For a K-Banach space (X, ‖·‖X), a normed
K-vector space (Y, ‖·‖Y ) and a collection of continuous linear mappings F ⊆ L(X, Y ),
prove (by applying Zabreiko’s lemma) that(

sup
T∈F
‖Tx‖Y <∞ for every x ∈ X

)
⇒ sup

T∈F
‖T‖L(X,Y ) <∞.

Solution: The assumption that supT∈F‖Tx‖Y < ∞ for every x ∈ X ensures that
the function

p :
{
X → [0,∞),
x 7→ supT∈F‖Tx‖Y
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is indeed well-defined. Moreover, by linearity and by the triangle inequality it holds
clearly for all λ ∈ K, x, y ∈ X that

p(λx) = sup
T∈F
‖T (λx)‖Y = sup

T∈F
‖λTx‖Y = |λ| sup

T∈F
‖Tx‖Y = |λ|p(x)

and

p(x+ y) = sup
T∈F
‖T (x+ y)‖Y = sup

T∈F
‖Tx+ Ty‖Y ≤ sup

T∈F
(‖Tx‖Y + ‖Ty‖Y )

≤ sup
T∈F
‖Tx‖Y + sup

T∈F
‖Ty‖Y = p(x) + p(y),

that is, p is a semi-norm. Finally, let (xn)n∈N ⊆ X be a sequence such that ∑∞n=1 xn
converges. Since every T ∈ F is continuous, we have that∥∥∥∥∥T

( ∞∑
n=1

xn

)∥∥∥∥∥
Y

=
∥∥∥∥∥
∞∑
n=1

Txn

∥∥∥∥∥
Y

= lim
N→∞

∥∥∥∥∥
N∑
n=1

Txn

∥∥∥∥∥
Y

≤ lim sup
N→∞

N∑
n=1
‖Txn‖Y

≤ lim sup
N→∞

N∑
n=1

p(xn) =
∞∑
n=1

p(xn) for all T ∈ F .

This implies that p(∑∞n=1 xn) ≤ ∑∞
n=1 p(xn). Now we’re in the position to apply

Zabreiko’s lemma which ensures that there exists M ∈ [0,∞) satisfying

sup
T∈F
‖Tx‖Y = p(x) ≤M‖x‖X .

This is nothing else than supT∈F‖T‖L(X,Y ) ≤M <∞, what we intended to prove.

(b) (Closed graph theorem.) For K-Banach spaces (X, ‖·‖X) and (Y, ‖·‖Y ) and a
linear map T : X → Y , prove (by applying Zabreiko’s lemma) that(

graph(T ) = {(x, Tx) | x ∈ X} ⊆ X × Y is closed
)
⇒ T ∈ L(X, Y ).

Solution: The fact that Tx ∈ Y for every x ∈ X ensures that the function

p :
{
X → [0,∞),
x 7→ ‖Tx‖Y

is well-defined. Linearity and the triangle inequality again ensure for all λ ∈ K,
x, y ∈ X that

• p(λx) = ‖T (λx)‖Y = ‖λTx‖Y = |λ|‖Tx‖Y = |λ|p(x) and

• p(x+ y) = ‖T (x+ y)‖Y = ‖Tx+ Ty‖Y ≤ ‖Tx‖Y + ‖Ty‖Y = p(x) + p(y).
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Hence p is a semi-norm. Next, let (xn)n∈N ⊆ X be a sequence satisfying that ∑∞n=1 xn
converges. In the case that ∑∞n=1‖Txn‖Y = ∞, we clearly have that p(∑∞n=1 xn) ≤∑∞
n=1 p(xn). In the case that ∑∞n=1‖Txn‖Y < ∞, the completeness of Y ensures

that ∑∞n=1 Txn converges in Y . With ∑∞
n=1 xn = limN→∞

∑N
n=1 xn converging in

X and ∑∞n=1 Txn = limN→∞
∑N
n=1 Txn = limN→∞ T (∑N

n=1 xn) converging in Y , the
closedness of graph(T ) ensures that

T

( ∞∑
n=1

xn

)
=
∞∑
n=1

Txn.

Continuity of ‖·‖Y and the triangle inequality hence ensure that

p

( ∞∑
n=1

xn

)
=
∥∥∥∥∥T
( ∞∑
n=1

xn

)∥∥∥∥∥
Y

=
∥∥∥∥∥
∞∑
n=1

Txn

∥∥∥∥∥
Y

= lim
N→∞

∥∥∥∥∥
N∑
n=1

Txn

∥∥∥∥∥
Y

≤ lim sup
N→∞

N∑
n=1
‖Txn‖Y = lim

N→∞

N∑
n=1

p(xn) =
∞∑
n=1

p(xn).

(c) (Open mapping theorem.) For K-Banach spaces (X, ‖·‖X) and (Y, ‖·‖Y ) and a
surjective continuous linear map T ∈ L(X, Y ), prove (by applying Zabreiko’s lemma)
that T is open.

Solution: Since T is surjective, the function

p :
{
Y → [0,∞),
y 7→ infx∈X,Tx=y‖x‖X

is well-defined. Linearity, surjectivity of T , and the triangle inequality again imply
for all λ ∈ K, y, z ∈ X that

p(λy) = inf
x∈X,Tx=λy

‖x‖X = inf
x∈X,Tx=y

‖λx‖X = |λ| inf
x∈X,Tx=y

‖x‖X = |λ|p(y)

and

p(y + z) = inf
x∈X,Tx=y+z

‖x‖X ≤ inf
u,v∈X,Tu=y,Tv=z

‖u+ v‖X

≤ inf
u,v∈X,Tu=y,Tv=z

(‖u‖X + ‖v‖X)

= inf
u∈X,Tu=y

‖u‖X + inf
v∈X,Tv=z

‖v‖X = p(y) + p(z).

Thus, p is a semi-norm. Next, let (yn)n∈N ⊆ Y be such that ∑∞n=1 yn converges in Y .
In the case that ∑∞n=1 p(yn) =∞, we clearly have that p(∑∞n=1 yn) ≤ ∑∞n=1 p(yn). In
the case that ∑∞n=1 p(yn) <∞, there exist (xn,ε)(n,ε)∈N×(0,∞) ⊆ X such that

Txn,ε = yn and ‖xn,ε‖X ≤ p(yn) + 2−nε for all n ∈ N, ε ∈ (0,∞).
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Hence, we obtain for every ε ∈ (0,∞) that
∞∑
n=1
‖xn,ε‖X ≤

∞∑
n=1

(p(yn) + 2−nε) =
∞∑
n=1

p(yn) + ε <∞, (3)

which – by completeness of X – ensures that
∞∑
n=1

xn,ε converges in X.

Continuity of T makes sure that

T

( ∞∑
n=1

xn,ε

)
=
∞∑
n=1

Txn,ε =
∞∑
n=1

yn for every ε ∈ (0,∞).

Combining this with (3) implies that

p

( ∞∑
n=1

yn

)
≤
∞∑
n=1
‖xn,ε‖X ≤

∞∑
n=1

p(yn) + ε for all ε ∈ (0,∞).

Letting ε→ 0 shows that the assumptions of Zabreiko’s lemma are satisfied. Thus,
there exists M ∈ (0,∞) satisfying that

inf
x∈X,Tx=y

‖x‖X = p(y) ≤M‖y‖Y for every y ∈ Y.

This allows to infer that T maps the open unit ball in X to an open set in Y (which,
by linearity, is enough for showing that T is an open map). Indeed, for every y = Tx
with x ∈ X, ‖x‖X < 1, the above inequality implies that for every z ∈ Y with
‖z−y‖Y < 1−‖x‖X

2M , there exists ξ ∈ X with ‖ξ‖X < 3
4(1−‖x‖X) satisfying Tξ = z−y

and, therefore, T (x+ ξ) = z and ‖x+ ξ‖X ≤ ‖x‖X + 3
4(1− ‖x‖X) < 1.

6.6. Riesz representation theorem for Hilbert spaces

Let K ∈ {R,C} and let (H, 〈·, ·〉) be K-Hilbert space.

(a) Prove for every ϕ ∈ L(H,K) (i.e., every ϕ in the dual space of H) that there
exists a unique v ∈ H such that

ϕ(u) = 〈u, v〉 for every u ∈ H.

Solution: Let ϕ ∈ L(H,K). We first prove the existence of an element v ∈ H s.t.
ϕ(u) = 〈u, v〉 for all u ∈ H. W.l.o.g. we assume that ϕ 6= 0 (as the case ϕ = 0 is
clear). Take u ∈ H with ϕ(u) 6= 0. We know – from problem 5.6, for example – that
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there exists a unique x ∈ ker(ϕ) satisfying u− x ⊥ ker(ϕ). As u /∈ ker(ϕ), we have
u− x 6= 0 and we may define e := u−x

‖u−x‖ . Note that, for every w ∈ H, it holds that

ϕ(w) = ϕ(w)
ϕ(e) ϕ(e) = ϕ

(
ϕ(w)
ϕ(e) e

)
,

indicating that w − ϕ(w)
ϕ(e) e ∈ ker(ϕ). As e ⊥ ker(ϕ), this implies

〈w, e〉 =
〈
ϕ(w)
ϕ(e) e, e

〉
= ϕ(w)

ϕ(e) for all w ∈ H,

which results in

ϕ(w) = ϕ(e)〈w, e〉 = 〈w,ϕ(e)e〉 for all w ∈ H.

This covers the existence part. For uniqueness, note that for all v1, v2 ∈ H satisfying

ϕ(w) = 〈w, v1〉 = 〈w, v2〉 for all w ∈ H,

we get immediately that

‖v1−v2‖2 = 〈v1−v2, v1−v2〉 = 〈v1−v2, v1〉−〈v1−v2, v2〉 = ϕ(v1−v2)−ϕ(v1−v2) = 0.

Thus, v1 = v2.

(b) Prove that the map T : H → L(H,K), defined by

(Tv)(u) = 〈u, v〉 for all u, v ∈ H,

is antilinear, bijective and isometric.

Solution: By the Cauchy–Schwarz inequality, the map T is well-defined and satisfies
‖Tu‖L(H,K) ≤ ‖u‖ for all u ∈ H. Clearly, T is antilinear. Moreover, from (a), we
know that T is bijective. Finally, as (Tu)u = ‖u‖2 for all u ∈ H, it holds for all
u ∈ H that ‖Tu‖L(H,K) = ‖u‖.

6.7. Reproducing kernels

Let S be a set and let H be a K-Hilbert space (with K ∈ {R,C}) of functions on
S. A reproducing kernel for H is a function k : S × S → K satisfying for all t ∈ S,
f ∈ H that kt = (S 3 s 7→ k(s, t) ∈ K) ∈ H and f(t) = 〈f, kt〉.
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(a) Prove that a reproducing kernel, if existent, is unique.

Solution: Let k, l : S × S → K be reproducing kernels, i.e., satisfy for all t ∈ S,
f ∈ H that kt, lt ∈ H and f(t) = 〈f, kt〉 = 〈f, lt〉. Consequentially, it holds for all
t ∈ S, f ∈ H that 0 = 〈f, kt − lt〉. Since kt − lt ∈ H for every t ∈ S, this implies that
0 = ‖kt − lt‖2 for all t ∈ S. This ensures that kt = lt in H for every t ∈ S.

(b) Show that a reproducing kernel exists if and only if, for every t ∈ S, the mapping
H 3 f 7→ f(t) ∈ K is continuous.

Solution: ”⇒:” If a reproducing kernel exists, then we have for all t ∈ S, f ∈ H that
|f(t)| = 〈f, kt〉 ≤ ‖f‖‖kt‖. That is, for every t ∈ S, the mapping H 3 f 7→ f(t) ∈ K
is continuous.

”⇐:” If it holds for every t ∈ S that H 3 f 7→ f(t) ∈ K is continuous, then –
according to the Riesz representation theorem – there exist elements (ht)t∈S ⊆ H
satisfying for every t ∈ S that

f(t) = 〈f, ht〉 for all f ∈ H.

That is, h : S × S → K, defined by h(s, t) = ht(s) for all s, t ∈ S, is a reproducing
kernel.

(c) Prove that H = span{kt | t ∈ S} if a reproducing kernel exists.

Solution: Let h ∈ span{kt | t ∈ S}⊥. This means nothing else but 0 = 〈h, kt〉 for all
t ∈ S. The defining property of the reproducing kernel k now implies that h(t) = 0
for all t ∈ S. Hence,

span{kt | t ∈ S} = span{kt | t ∈ S}⊥⊥ = {0}⊥ = H.

(d) Prove that the Hardy space H2(D) (cf. problem 5.7) possesses a reproducing
kernel and determine the reproducing kernel for H2(D).

Solution: Let z0 ∈ D be arbitrary. We know from complex analysis that

f(z0) =
∞∑
n=0

an(f)zn0 .

The right hand side can – according to problem 5.7(b) – be interpreted as H2(D)-scalar
product of f and the function kz0 : D→ C, defined by

kz0(z) =
∞∑
n=0

z0
nzn for all z ∈ D.
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Note that kz0 is well-defined on D due to |z0| < 1. For the same reason, kz0 ∈ H2(D).
As a matter of fact, we may rewrite kz0 via

kz0(z) = 1
1− z0z

for all z ∈ D.
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