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6.1. Topological complement

Definition. Let (X, ||-||x) be a Banach space. A subspace U C X is called topologically
complemented if there is a subspace V' C X such that the linear map I given by

LU XV [Hloxv) = (X [Fx), [(w, ) loxv = flullx + [v]lx,
(u,v) —u—+v

is a continuous isomorphism of normed spaces with continuous inverse. In this case
V' is said to be a topological complement of U.

(a) Prove that U C X is topologically complemented if and only if there exists a
continuous linear map P: X — X with Po P = P and image P(X) = U.

Solution: "=-:" Suppose U C X is topologically complemented by V' C X. Then,
I:UxV — X with (u,v) — u+ v is a continuous isomorphism with continuous
inverse. We define

P:UxV —=UxYV, P:=JoP ol ' X —X.
(u,v) = (u,0)

P is linear, bounded since || Py (u, v)||uxy = ||ullv < ||(w, v)||rxy and hence continuous.
As composition of linear continuous maps, P is linear and continuous. Moreover,

POP:(IOPIOI_I)O(IO‘Plo]_l):]OP10P10]_IZIOP1OI_1:P7
P(X)=1I1(U x{0})=U.

"«.” Suppose U C X allows a continuous linear map P: X — X with Po P =P
and P(X)="U. Let V :=ker(P). Then

Po(l1-P)=P—-P=0 = (1 = P)(X) Cker(P)=V. (1)
In fact, (1 — P)(X) =V since given v € V we have v = (1 — P)v. Analogously,
(1—-P)oP=P—-P=0 = U = P(X) C ker(1 — P). (2)

In fact, U = ker(1 — P) since  — Px = 0 implies ¢ = Pz € U for all x € X. The
claim is that

[:UxV =X
(u,v) —u+v

is continuous and has a continuous inverse. Continuity of I follows directly from

1w, )l x = [lu+vllx < flullx + [[vllx = l[(w, 0)[uxv forall ue UveV.
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By the assumptions on P, especially (1), the map
O X =>UxV
T (Px, (1-— P)x)

is well-defined and continuous. Since Pu = u for all w € U by (2) and Pv = 0 for all
v € V by definition of V', we have

(Pol)(u,v) =P(utv) = (Pu+Pv,u — Pu+v— Pv) = (u,v).
(I o ®)(x) =I(Pz,(1—P)x)=Pr+ (1l - Pz ==z,
which implies that & is inverse to I. Consequently, U is topologically complemented.
(b) Show that a topologically complemented subspace must be closed.

Solution: If U C X is topologically complemented, then (a) implies existence of a
continuous map P: X — X with P = Po P and P(X) = U, which — as we saw in
the proof of (a) — implies ker(1 — P) = U. Thus, U must be closed as the kernel of
the continuous map 1 — P.

Alternatively one might argue that U = (U x {0}) = (I7")~}(U x {0}) has to be
closed in (X, ||-|]|x) as I is an isomorphism and U x {0} is closed in (U X V,||-[|uxv)-

Remark. If X is not isomorphic to a Hilbert space, then X has closed subspaces which
are not topologically complemented [Lindenstrauss & Tzafriri. On the complemented
subspaces problem. (1971)]. An example is ¢y C ¢°° but this is not easy to prove.

6.2. Heavily diverging Fourier series

Let X = {f € C([0,27],R): f(0) = f(2m)}. For m € Ny and f € X we denote the
m*" partial sum of the Fourier series by S, f, that is,

(S f) () = f: [;ﬂ /O27r F(s)e™ihs ds} pikt

k=—m

This exercise’s goal is to prove the existence of a continuous 27-periodic function
whose Fourier series does not converge at uncountably many points. To this end, let

{tx.: k € N} C [0, 27| be dense.
(a) Prove that there exists fy € X such that sup,,cn|(Smfo)(t,)| = oo for all n € N.

Solution: By problem 5.4 (Diverging Fourier series) — more precisely, by the proposed
solution to problem 5.4 — we have for every n € N that

sup [|X 3 f = (S f)(tn) € Rl|Lxr) = 0.

meENy
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In other words, for every n € N, the set G,, C L(X,R) given by
Grn={X3[r (Smf)(t.) €R|m € No}

is an unbounded set of continuous linear operators from X to R. By problem 2.4
(Singularity condensation), we know that there exists fo € X such that

sup |(Smfo)(tn)| = 0o for every n € N.

meNg
(b) Show for every k € N that {s € [0,27]: |(Simfo)(s)| < k for all m € Ny} is closed
and meagre.
Solution: Since S, fy € X for every m € Ny, we have for every k£ € N that
Dy :={s € [0,27]: |(Smfo)(s)| < k for all m € Ny}
= [ {s €0, 27]: |[(Smfo)(s)] < K}

meENy

is closed as intersection of closed sets. Moreover, since
{tn: n e N} C[0,27]\ Dy for every k € N,

the sets Dy, k € N, are nowhere dense (and therefore meagre).

(c) Conclude that there is an uncountable subset of [0,27]| on which the Fourier
series of fy does not converge.

Solution: By (b), the set

{5 € [0,27]: sup [(Smfo)(s)] < oo}

meNy

= |J{s €[0,2a]: |(Smfo)(s)| < k for all m € Ny}

keN
is meagre. Hence, the set

A =10,27] \ {s € [0,2x]: sup |(Smfo)(s)| < oo}

meENg

cannot be meagre as, in that case, [0, 27] would have to be meagre, which is certainly
not true according to Baire’s theorem. Furthermore, since A is not meagre, A needs
to be uncountable. The fact that {s € [0, 27]: (S, fo)(s) does not converge as m —
oo} C A completes the proof.
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6.3. The Fundamental Principles Fail for Non-Complete Spaces

Consider the vector space ¢, of real sequences x = (2, )neny With only finitely many
non-zero terms (cf. problems 3.4 and 3.6 as well as problem 5.1). Let ||| = 302 |2
and ||z]|¢= = sup,cy|®n| be the £' and (> norms, respectively.

(a) The family of linear functionals ¢,,: ¢. — R given by ¢,,(x) = mz,,, m € N, is
pointwise bounded, but not uniformly bounded (in either norm on c,).

Solution: For every z = (x)ren € c. it holds that

sup |@m ()| = sup [mx,,| =  sup  |maxy,|
meN meN meN,z,#0

< max{m € N: z,,, # 0}||x||¢

< max{m € N: z,,, # 0}||x||o.

Hence, {¢m: m € N} C L((ce, ||-][),R) is pointwise bounded and {¢,,: m € N} C
L((cey ||-|le== ), R) is pointwise bounded. But due to

Pm(Okm)rken) =m and [|(dkm)kenller = 1 = [|(dkm )renlle=  for all m € N,
we get that {¢,,: m € N} is neither bounded in L((c., ||-|[s), R) nor in L((c., ||-|le=), R).
(b) The identity operator (ce, ||-|ler) = (ce, ||||e=) is continuous, but not open.
Solution: The inequality

|z]|lee < ||x]|r  for all z € c.

or every r € C,

implies that the map I: (c., ||||a) — (ce, ||-]|e=), given by I( ) =
= ( )kEN € Cc by

is continuous. Now define for every m € N the sequence z(™

(m) — E<m
xk‘ = m
0 k>m.

Note that
(m) (m) 1
|le"™|p =1 and |[[2'™|pe = — for allm € N.
m

The injectivity of I implies that there is no open ball around 0 in (c,, ||-||l¢=) which
is contained in the image of the open ball of radius 1 around 0 in (¢, ||-||s) under I.
This proves that I cannot be open.
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(c) The identity operator (c., |||[e=) — (¢, ||-||) has closed graph, but is not contin-
uous.

Solution: Let J: (¢, ||"|lex) = (co, ||||2) be given by J(z) = z for every z € c..
Using the notation from (b), we have that J = I~'. The example given in (b)
shows that J is not continuous. Let (x("))neN C ¢. be such that 2" — z(*) € ¢, in
(Ce, ||I||e=) as n — oo and J(z™) — ¢ in (¢, ||-||n) as n — oo. This implies for all
k € N that

which implies ¢y = z(>) = J(2(>)). Hence, J has closed graph.

6.4. Zabreiko’s Lemma

Let (X,]-]|) be a K-Banach space (with K € {R,C}), let p: X — [0,00) be a semi-
norm (that is, for all z,y € X, A € K it holds that p(z +y) < p(z) + p(y) and
p(Az) = |A|p(x)), and assume that

p(Z xk> < Zp(a:k) for all (xg)keny € X for which Z T converges.
k=1 k=1 k=1

(a) Demonstrate that there exists M € [0, 00) such that
p(z) < M||z|| for all z € X.

This is Zabreiko’s lemma. Hint: Mimick the proof of the open mapping theorem.

Solution: First, observe that X = U,en{z € X: p(z) < n}. Since X is complete,
Baire’s theorem implies that there exist N € N, £ € X, € € (0,00) such that

{fyeX:|ly—¢| <e} C{reX:p(x) <N}

Due to the fact that p(z) = p(—=x) for every x € X, we also have that —¢ + z €
{z € X: p(x) < N} for every z € X with ||z|| < . Thus, we have for all z € X with
|z|| < € that there exist (2, )nen, (Yn)nen € X with p(z,) < N and p(y,) < N for all
n € N satisfying that

§+z:7}LIgoxn and —5—}—22711220%.
Consequently, for z = £((£ + 2) + (=€ + 2)) = lim, 0 3 (T + yn) we have because of

Tn + Yn
p - =

5 ) = 1p(ﬂfn +Yn) < 1p(xn) + 1p(yn) <N

2 -2 2
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that z € {z € X: p(x) < N}. It remains to show that z € {x € X: p(z) < N} for
every z € X with ||z|| < e. For this, let z € X with ||z]| < € and choose § € (||z|], ).
Moreover, choose a € (0,1) such that (1 —a)e > d. Note that, still, ||| < e and
therefore, there exists xy € X with p(zg) < N satisfying

: <
£~ —z ae.
5 0
This, in turn, implies that ||2(e2 — z)|| < € and, again, there exists z; € X with

p(xl) < N satisfying

z
85 — X9

— 1| < ae.

o
Inductively, we obtain (z,)nen, C X satisfying for all n € Ny that p(z,,) < N and

Z n
55 — Z aFxy,
k=0

an+15,

This implies that 322, oz, exists and equals 5. The assumptions on p now ascertain

o N

p(z)=5< ) Zpa% Zap90k< ZoékN—* <

11—«

< N.

Hence, we obtain for every z € X with ||z]] < e that p(x) < N. This implies for every
z € X that p(z) < Z|z|.

6.5. Proving everything by Zabreiko’s lemma

Recall Zabreiko’s lemma from problem 6.4. In this problem we will infer more or less
all the fundamental principles from Zabreiko’s lemma. Let K € {R, C}.

(a) (Uniform boundedness principle.) For a K-Banach space (X, |-||x), a normed
K-vector space (Y, ||-]ly) and a collection of continuous linear mappings F C L(X,Y),
prove (by applying Zabreiko’s lemma) that

(sup||T:1:||y < oo forevery x € X> = sup||T||ix,y) < 00.
TeF TeF

Solution: The assumption that suppcz||Tz|ly < oo for every z € X ensures that
the function

b [ X = D000
e o s Telly

6/12 last update: 6 November 2021



D-MATH Functional Analysis | ETH Ziirich
Prof. J. Teichmann Solution to Problem Set 6 Autumn 2021

is indeed well-defined. Moreover, by linearity and by the triangle inequality it holds
clearly for all A € K, z,y € X that

p(Ax) = sup||T(A\z)||y = sup||ATz|y = |A[ sup||Tz|[y = [Ap(z)
TeF TeF TeF
and
p(r +y) =sup|T(z +y)|ly = sup||Tz + Tylly < sup([|Tz|y + | Tyly)
TEF TEF TEF

< sup||Tz|ly + sup||Tylly = p(x) +p(y),
TeF TeF

that is, p is a semi-norm. Finally, let (x,),eny € X be a sequence such that > 00 | =,
converges. Since every 1" € F is continuous, we have that

HT<§_:19“> = |2 T = dim )2 Tow) < Hmsup ) [ Twally
n= Y n=1 Y n—=1 v =1
N 00
<limsup Y _ p(z,) = Y _ p(z,) forallT € F.
N—oo -1 o

This implies that p(302, z,) < >, p(z,). Now we'’re in the position to apply
Zabreiko’s lemma which ensures that there exists M € [0, 00) satisfying

sup [[Tzlly = p(x) < Mz[|x.
TeF

This is nothing else than suppc7||T||Lx,y) < M < oo, what we intended to prove.

(b) (Closed graph theorem.) For K-Banach spaces (X, |-||x) and (Y,]]]y) and a
linear map T': X — Y, prove (by applying Zabreiko’s lemma) that

<graph(T) ={(z,Tz) |z € X} CX xYis Closed) =TeL(X,)Y).

Solution: The fact that Tz € Y for every x € X ensures that the function

_ X — [0,00),
L IR [ [

is well-defined. Linearity and the triangle inequality again ensure for all A € K,
x,y € X that

« p(Az) = [[T(A2)[ly = [[ATz|ly = [M[[Tz|ly = [Ap(x) and
« pla+y) =T +y)lly =Tz +Tylly <[[Tzlly +Tylly = p(z) + p(y)-
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Hence p is a semi-norm. Next, let (z,)n,en € X be a sequence satisfying that > °° | =,
converges. In the case that Y0, [|Tz,|y = oo, we clearly have that p(}.7°, x,) <
Y1 P(wy). In the case that 302 [|T,|y < oo, the completeness of Y ensures
that >°>°, Tz, converges in Y. With >z, = limy_ Zf:f:l T, converging in
X and ¥, Tx,, = imy_yoo 2N T2y, = limy 0o T(XY_, 2,,) converging in Y, the
closedness of graph(7') ensures that

T<Z xn> = Z Tz,.
n=1 n=1

Continuity of ||-|[y and the triangle inequality hence ensure that

(S) el

< lim sup ZHT%HY = hm ZP Tn) = Z

N—oo -1 — —

= lim
N—>oo

Y

(c) (Open mapping theorem.) For K-Banach spaces (X, ||-||x) and (Y, ||-]|y) and a
surjective continuous linear map 7' € L(X,Y"), prove (by applying Zabreiko’s lemma)
that T' is open.

Solution: Since T is surjective, the function
Y — [0,00),
' y = infrexro—yllz]|x

is well-defined. Linearity, surjectivity of T', and the triangle inequality again imply
for all A € K, y, z € X that

pOw) = _nt flellx = it alle = IN__jnf _[lelx = Alp(y)
and
_ . < .
p(y + Z) xGX,%:f;y+z"x’|X - u,UEX,Tl‘Biy,Tv:ZHu + UHX
< inf (lullx + [lvllx)

u,weX, Tu=y,Tv=z

= i+ _jnf ol = plo) + p(2)

Thus, p is a semi-norm. Next, let (y,)neny € Y be such that >°° ; v, converges in Y.
In the case that >°0 | p(y,) = 0o, we clearly have that p(30°; y,) < 300, p(yn). In
the case that Y20°, p(yn) < 00, there exist (Tp.c)(n.e)enx(0,00) € X such that

Txne =1y, and ||zncllx <pyn)+2 " foralln e N e e (0,00).
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Hence, we obtain for every ¢ € (0,00) that

[e.9]

Z\|xn€||X<Z plyn) +27" Z n) + € < 0o, (3)

which — by completeness of X — ensures that

o0
Z Tne converges in X.

n=1
Continuity of 7" makes sure that
T(Z xnﬁ) => Tx,.=> y, foreverye € (0,00).
n=1 n=1 n=1

Combining this with (3) implies that

p(Z yn) < ZHanHX Z p(yn) +€ forall e € (0, 00).
n=1 n=1 n=1

Letting ¢ — 0 shows that the assumptions of Zabreiko’s lemma are satisfied. Thus,
there exists M € (0, 00) satisfying that

. I
et llellx = ply) < Mllylly  for every y €Y.

This allows to infer that 7" maps the open unit ball in X to an open set in Y (which,
by linearity, is enough for showing that 7" is an open map). Indeed, for every y = Tz
with x € X, ||z|][x < 1, the above inequality implies that for every z € Y with
lz—ylly < M , there exists £ € X with ||¢]|x < (1 — |lz||x) satisfying T¢ = z—y
and, therefore T(I +&) =z and ||z +¢||x < |z|lx —|— 3(1— ||zl x) < 1.

6.6. Riesz representation theorem for Hilbert spaces
Let K € {R,C} and let (H, (-,-)) be K-Hilbert space.

(a) Prove for every ¢ € L(H,K) (i.e., every ¢ in the dual space of H) that there
exists a unique v € H such that

o(u) = (u,v) for every u € H.

Solution: Let ¢ € L(H,K). We first prove the existence of an element v € H s.t.
o(u) = (u,v) for all w € H. W.lo.g. we assume that ¢ # 0 (as the case ¢ = 0 is
clear). Take v € H with ¢(u) # 0. We know — from problem 5.6, for example — that
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there exists a unique = € ker(y) satisfying u — x L ker(p). As u ¢ ker(yp), we have
u — x # 0 and we may define e := *=%.. Note that, for every w € H, it holds that

l[u—z||

indicating that w — %6 € ker(p). As e L ker(yp), this implies

(w,e) = <S0(w)e,e> = plw) for all w € H,

which results in

e(w) = p(e){w,e) = (w,p(e)e) for all w e H.

This covers the existence part. For uniqueness, note that for all vy, vy, € H satisfying
p(w) = (w,v1) = (w,ve) forall we H,

we get immediately that

|v1—v2||? = (v1—va, v1—02) = (V1 —v, V1) — (V1 —V2, V3) = V(v1—v2) —(v1—v3) = 0.

Thus, v; = vs.

(b) Prove that the map T: H — L(H,K), defined by
(Tv)(u) = (u,v) for all u,v € H,

is antilinear, bijective and isometric.

Solution: By the Cauchy—-Schwarz inequality, the map 7" is well-defined and satisfies
|Tu||Lm gy < ||ul| for all w € H. Clearly, T' is antilinear. Moreover, from (a), we
know that 7' is bijective. Finally, as (Tu)u = ||ul* for all w € H, it holds for all
u € H that ||Tu||Lax) = ||ul|-

6.7. Reproducing kernels

Let S be a set and let H be a K-Hilbert space (with K € {R,C}) of functions on
S. A reproducing kernel for H is a function k: S x S — K satisfying for all t € .5,
f € H that ks = (S 5 s — k(s,t) € K) € H and f(t) = (f, k).
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(a) Prove that a reproducing kernel, if existent, is unique.

Solution: Let k,1: S x S — K be reproducing kernels, i.e., satisfy for all t € 9,
f € H that k[, € H and f(t) = (f, ki) = (f,l;). Consequentially, it holds for all
tesS, fe Hthat 0= (f k;— ;). Since k; — I, € H for every t € S, this implies that
0 = ||[k; — I;||* for all t € S. This ensures that k; = [; in H for every t € S.

(b) Show that a reproducing kernel exists if and only if, for every ¢ € S, the mapping
H > f— f(t) € K is continuous.

Solution: "=-:" If a reproducing kernel exists, then we have for all t € S, f € H that
lf(@)] = (f, ke) < ||f]||¢]|. That is, for every ¢t € S, the mapping H > f — f(t) e K
is continuous.

"<:” If it holds for every t € S that H > f — f(t) € K is continuous, then —
according to the Riesz representation theorem — there exist elements (h;)ies € H
satisfying for every ¢t € S that

f(t)={(f,hy) forall fe H.

That is, h: S x S — K, defined by h(s,t) = hi(s) for all s, € 5, is a reproducing
kernel.

(c) Prove that H = span{k; | t € S} if a reproducing kernel exists.

Solution: Let h € span{k; | t € S}+. This means nothing else but 0 = (h, k;) for all
t € S. The defining property of the reproducing kernel k£ now implies that h(t) =0
for all ¢ € S. Hence,

span{k, | t € S} = span{k, |t € S} = {0}* = H.

(d) Prove that the Hardy space H?*(D) (cf. problem 5.7) possesses a reproducing
kernel and determine the reproducing kernel for H*(D).

Solution: Let z; € D be arbitrary. We know from complex analysis that
f(z0) = > an(f)z.
n=0

The right hand side can — according to problem 5.7(b) — be interpreted as H?(ID)-scalar
product of f and the function k,,: D — C, defined by

ku(z) =D 72" forall z € D.
n=0
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Note that k., is well-defined on D due to |z| < 1. For the same reason, k., € H*(D).
As a matter of fact, we may rewrite k,, via

1

= —— for all z € D.
1—Z2

ks (2)
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