6.1. Topological complement

Definition. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space. A subspace $U \subseteq X$ is called topologically complemented if there is a subspace $V \subseteq X$ such that the linear map I given by

$$
\begin{aligned}
I:\left(U \times V,\|\cdot\|_{U \times V}\right) & \rightarrow\left(X,\|\cdot\|_{X}\right), \quad\|(u, v)\|_{U \times V}:=\|u\|_{X}+\|v\|_{X}, \\
(u, v) & \mapsto u+v
\end{aligned}
$$

is a continuous isomorphism of normed spaces with continuous inverse. In this case V is said to be a topological complement of U.
(a) Prove that $U \subseteq X$ is topologically complemented if and only if there exists a continuous linear map $P: X \rightarrow X$ with $P \circ P=P$ and image $P(X)=U$.

Solution: " $\Rightarrow: "$ Suppose $U \subseteq X$ is topologically complemented by $V \subseteq X$. Then, $I: U \times V \rightarrow X$ with $(u, v) \mapsto u+v$ is a continuous isomorphism with continuous inverse. We define

$$
\begin{aligned}
P_{1}: U \times V & \rightarrow U \times V, \\
(u, v) & \mapsto(u, 0)
\end{aligned} \quad P:=I \circ P_{1} \circ I^{-1}: X \rightarrow X .
$$

P_{1} is linear, bounded since $\left\|P_{1}(u, v)\right\|_{U \times V}=\|u\|_{U} \leq\|(u, v)\|_{U \times V}$ and hence continuous. As composition of linear continuous maps, P is linear and continuous. Moreover,

$$
\begin{aligned}
& P \circ P=\left(I \circ P_{1} \circ I^{-1}\right) \circ\left(I \circ P_{1} \circ I^{-1}\right)=I \circ P_{1} \circ P_{1} \circ I^{-1}=I \circ P_{1} \circ I^{-1}=P \\
& P(X)=I(U \times\{0\})=U .
\end{aligned}
$$

$" \Leftarrow: "$ Suppose $U \subseteq X$ allows a continuous linear map $P: X \rightarrow X$ with $P \circ P=P$ and $P(X)=U$. Let $V:=\operatorname{ker}(P)$. Then

$$
\begin{equation*}
P \circ(1-P)=P-P=0 \quad \Rightarrow(1-P)(X) \subseteq \operatorname{ker}(P)=V \tag{1}
\end{equation*}
$$

In fact, $(1-P)(X)=V$ since given $v \in V$ we have $v=(1-P) v$. Analogously,

$$
\begin{equation*}
(1-P) \circ P=P-P=0 \quad \Rightarrow U=P(X) \subseteq \operatorname{ker}(1-P) \tag{2}
\end{equation*}
$$

In fact, $U=\operatorname{ker}(1-P)$ since $x-P x=0$ implies $x=P x \in U$ for all $x \in X$. The claim is that

$$
\begin{aligned}
I: U \times V & \rightarrow X \\
(u, v) & \mapsto u+v
\end{aligned}
$$

is continuous and has a continuous inverse. Continuity of I follows directly from

$$
\|I(u, v)\|_{X}=\|u+v\|_{X} \leq\|u\|_{X}+\|v\|_{X}=\|(u, v)\|_{U \times V} \quad \text { for all } u \in U, v \in V \text {. }
$$

By the assumptions on P, especially (1), the map

$$
\begin{aligned}
\Phi: X & \rightarrow U \times V \\
x & \mapsto(P x,(1-P) x)
\end{aligned}
$$

is well-defined and continuous. Since $P u=u$ for all $u \in U$ by (2) and $P v=0$ for all $v \in V$ by definition of V, we have

$$
\begin{aligned}
(\Phi \circ I)(u, v) & =\Phi(u+v)=(P u+P v, u-P u+v-P v)=(u, v) . \\
(I \circ \Phi)(x) & =I(P x,(1-P) x)=P x+(1-P) x=x
\end{aligned}
$$

which implies that Φ is inverse to I. Consequently, U is topologically complemented.
(b) Show that a topologically complemented subspace must be closed.

Solution: If $U \subseteq X$ is topologically complemented, then (a) implies existence of a continuous map $P: X \rightarrow X$ with $P=P \circ P$ and $P(X)=U$, which - as we saw in the proof of (a) - implies $\operatorname{ker}(1-P)=U$. Thus, U must be closed as the kernel of the continuous map $1-P$.

Alternatively one might argue that $U=I(U \times\{0\})=\left(I^{-1}\right)^{-1}(U \times\{0\})$ has to be closed in $\left(X,\|\cdot\|_{X}\right)$ as I is an isomorphism and $U \times\{0\}$ is closed in $\left(U \times V,\|\cdot\|_{U \times V}\right)$.

Remark. If X is not isomorphic to a Hilbert space, then X has closed subspaces which are not topologically complemented [Lindenstrauss \& Tzafriri. On the complemented subspaces problem. (1971)]. An example is $c_{0} \subseteq \ell^{\infty}$ but this is not easy to prove.

6.2. Heavily diverging Fourier series

Let $X=\{f \in C([0,2 \pi], \mathbb{R}): f(0)=f(2 \pi)\}$. For $m \in \mathbb{N}_{0}$ and $f \in X$ we denote the $m^{t h}$ partial sum of the Fourier series by $S_{m} f$, that is,

$$
\left(S_{m} f\right)(t)=\sum_{k=-m}^{m}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} f(s) e^{-i k s} d s\right] e^{i k t}
$$

This exercise's goal is to prove the existence of a continuous 2π-periodic function whose Fourier series does not converge at uncountably many points. To this end, let $\left\{t_{k}: k \in \mathbb{N}\right\} \subseteq[0,2 \pi]$ be dense.
(a) Prove that there exists $f_{0} \in X$ such that $\sup _{m \in \mathbb{N}}\left|\left(S_{m} f_{0}\right)\left(t_{n}\right)\right|=\infty$ for all $n \in \mathbb{N}$.

Solution: By problem 5.4 (Diverging Fourier series) - more precisely, by the proposed solution to problem 5.4 - we have for every $n \in \mathbb{N}$ that

$$
\sup _{m \in \mathbb{N}_{0}}\left\|X \ni f \mapsto\left(S_{m} f\right)\left(t_{n}\right) \in \mathbb{R}\right\|_{L(X, \mathbb{R})}=\infty
$$

In other words, for every $n \in \mathbb{N}$, the set $G_{n} \subseteq L(X, \mathbb{R})$ given by

$$
G_{n}=\left\{X \ni f \mapsto\left(S_{m} f\right)\left(t_{n}\right) \in \mathbb{R} \mid m \in \mathbb{N}_{0}\right\}
$$

is an unbounded set of continuous linear operators from X to \mathbb{R}. By problem 2.4 (Singularity condensation), we know that there exists $f_{0} \in X$ such that

$$
\sup _{m \in \mathbb{N}_{0}}\left|\left(S_{m} f_{0}\right)\left(t_{n}\right)\right|=\infty \quad \text { for every } n \in \mathbb{N}
$$

(b) Show for every $k \in \mathbb{N}$ that $\left\{s \in[0,2 \pi]:\left|\left(S_{m} f_{0}\right)(s)\right| \leq k\right.$ for all $\left.m \in \mathbb{N}_{0}\right\}$ is closed and meagre.

Solution: Since $S_{m} f_{0} \in X$ for every $m \in \mathbb{N}_{0}$, we have for every $k \in \mathbb{N}$ that

$$
\begin{aligned}
D_{k} & :=\left\{s \in[0,2 \pi]:\left|\left(S_{m} f_{0}\right)(s)\right| \leq k \text { for all } m \in \mathbb{N}_{0}\right\} \\
& =\bigcap_{m \in \mathbb{N}_{0}}\left\{s \in[0,2 \pi]:\left|\left(S_{m} f_{0}\right)(s)\right| \leq k\right\}
\end{aligned}
$$

is closed as intersection of closed sets. Moreover, since

$$
\left\{t_{n}: n \in \mathbb{N}\right\} \subseteq[0,2 \pi] \backslash D_{k} \quad \text { for every } k \in \mathbb{N}
$$

the sets $D_{k}, k \in \mathbb{N}$, are nowhere dense (and therefore meagre).
(c) Conclude that there is an uncountable subset of $[0,2 \pi]$ on which the Fourier series of f_{0} does not converge.

Solution: By (b), the set

$$
\begin{aligned}
& \left\{s \in[0,2 \pi]: \sup _{m \in \mathbb{N}_{0}}\left|\left(S_{m} f_{0}\right)(s)\right|<\infty\right\} \\
& =\bigcup_{k \in \mathbb{N}}\left\{s \in[0,2 \pi]:\left|\left(S_{m} f_{0}\right)(s)\right| \leq k \text { for all } m \in \mathbb{N}_{0}\right\}
\end{aligned}
$$

is meagre. Hence, the set

$$
A=[0,2 \pi] \backslash\left\{s \in[0,2 \pi]: \sup _{m \in \mathbb{N}_{0}}\left|\left(S_{m} f_{0}\right)(s)\right|<\infty\right\}
$$

cannot be meagre as, in that case, $[0,2 \pi]$ would have to be meagre, which is certainly not true according to Baire's theorem. Furthermore, since A is not meagre, A needs to be uncountable. The fact that $\left\{s \in[0,2 \pi]:\left(S_{m} f_{0}\right)(s)\right.$ does not converge as $m \rightarrow$ $\infty\} \subseteq A$ completes the proof.

6.3. The Fundamental Principles Fail for Non-Complete Spaces

Consider the vector space c_{c} of real sequences $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ with only finitely many non-zero terms (cf. problems 3.4 and 3.6 as well as problem 5.1). Let $\|x\|_{\ell^{1}}=\sum_{n=1}^{\infty}\left|x_{n}\right|$ and $\|x\|_{\ell \infty}=\sup _{n \in \mathbb{N}}\left|x_{n}\right|$ be the ℓ^{1} and ℓ^{∞} norms, respectively.
(a) The family of linear functionals $\varphi_{m}: c_{c} \rightarrow \mathbb{R}$ given by $\varphi_{m}(x)=m x_{m}, m \in \mathbb{N}$, is pointwise bounded, but not uniformly bounded (in either norm on c_{c}).

Solution: For every $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in c_{c}$ it holds that

$$
\begin{aligned}
\sup _{m \in \mathbb{N}}\left|\varphi_{m}(x)\right| & =\sup _{m \in \mathbb{N}}\left|m x_{m}\right|=\sup _{m \in \mathbb{N}, x_{m} \neq 0}\left|m x_{m}\right| \\
& \leq \max \left\{m \in \mathbb{N}: x_{m} \neq 0\right\}\|x\|_{\ell^{\infty}} \\
& \leq \max \left\{m \in \mathbb{N}: x_{m} \neq 0\right\}\|x\|_{\ell^{1}} .
\end{aligned}
$$

Hence, $\left\{\varphi_{m}: m \in \mathbb{N}\right\} \subseteq L\left(\left(c_{c},\|\cdot\|_{\ell^{1}}\right), \mathbb{R}\right)$ is pointwise bounded and $\left\{\varphi_{m}: m \in \mathbb{N}\right\} \subseteq$ $L\left(\left(c_{c},\|\cdot\|_{e^{\infty}}\right), \mathbb{R}\right)$ is pointwise bounded. But due to

$$
\varphi_{m}\left(\left(\delta_{k m}\right)_{k \in \mathbb{N}}\right)=m \quad \text { and } \quad\left\|\left(\delta_{k m}\right)_{k \in \mathbb{N}}\right\|_{\ell^{1}}=1=\left\|\left(\delta_{k m}\right)_{k \in \mathbb{N}}\right\|_{\ell^{\infty}} \quad \text { for all } m \in \mathbb{N} \text {, }
$$

we get that $\left\{\varphi_{m}: m \in \mathbb{N}\right\}$ is neither bounded in $L\left(\left(c_{c},\|\cdot\|_{\ell^{1}}\right), \mathbb{R}\right)$ nor in $L\left(\left(c_{c},\|\cdot\|_{\ell^{\infty}}\right), \mathbb{R}\right)$.
(b) The identity operator $\left(c_{c},\|\cdot\|_{\ell^{1}}\right) \rightarrow\left(c_{c},\|\cdot\|_{\ell^{\infty}}\right)$ is continuous, but not open.

Solution: The inequality

$$
\|x\|_{\ell^{\infty}} \leq\|x\|_{\ell^{1}} \quad \text { for all } x \in c_{c}
$$

implies that the map $I:\left(c_{c},\|\cdot\|_{\ell^{1}}\right) \rightarrow\left(c_{c},\|\cdot\|_{\ell^{\infty}}\right)$, given by $I(x)=x$ for every $x \in c_{c}$, is continuous. Now define for every $m \in \mathbb{N}$ the sequence $x^{(m)}=\left(x_{k}^{(m)}\right)_{k \in \mathbb{N}} \in c_{c}$ by

$$
x_{k}^{(m)}= \begin{cases}\frac{1}{m} & k \leq m \\ 0 & k>m .\end{cases}
$$

Note that

$$
\left\|x^{(m)}\right\|_{\ell^{1}}=1 \quad \text { and } \quad\left\|x^{(m)}\right\|_{\ell \infty}=\frac{1}{m} \quad \text { for all } m \in \mathbb{N} .
$$

The injectivity of I implies that there is no open ball around 0 in $\left(c_{c},\|\cdot\|_{\ell \infty}\right)$ which is contained in the image of the open ball of radius 1 around 0 in $\left(c_{c},\|\cdot\|_{\ell^{1}}\right)$ under I. This proves that I cannot be open.
(c) The identity operator $\left(c_{c},\|\cdot\|_{\ell^{\infty}}\right) \rightarrow\left(c_{c},\|\cdot\|_{\ell^{1}}\right)$ has closed graph, but is not continuous.

Solution: Let $J:\left(c_{c},\|\cdot\|_{\ell^{\infty}}\right) \rightarrow\left(c_{c},\|\cdot\|_{\ell^{1}}\right)$ be given by $J(x)=x$ for every $x \in c_{c}$. Using the notation from (b), we have that $J=I^{-1}$. The example given in (b) shows that J is not continuous. Let $\left(x^{(n)}\right)_{n \in \mathbb{N}} \subseteq c_{c}$ be such that $x^{(n)} \rightarrow x^{(\infty)} \in c_{c}$ in $\left(c_{c},\|\cdot\|_{\ell \infty}\right)$ as $n \rightarrow \infty$ and $J\left(x^{(n)}\right) \rightarrow y^{(\infty)}$ in $\left(c_{c},\|\cdot\|_{\ell^{1}}\right)$ as $n \rightarrow \infty$. This implies for all $k \in \mathbb{N}$ that

$$
y_{k}^{(\infty)}=\lim _{n \rightarrow \infty} J\left(x^{(n)}\right)_{k}=\lim _{n \rightarrow \infty} x_{k}^{(n)}=x_{k}^{(\infty)},
$$

which implies $y^{(\infty)}=x^{(\infty)}=J\left(x^{(\infty)}\right)$. Hence, J has closed graph.

6.4. Zabreiko's Lemma

Let $(X,\|\cdot\|)$ be a \mathbb{K}-Banach space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), let $p: X \rightarrow[0, \infty)$ be a seminorm (that is, for all $x, y \in X, \lambda \in \mathbb{K}$ it holds that $p(x+y) \leq p(x)+p(y)$ and $p(\lambda x)=|\lambda| p(x))$, and assume that

$$
p\left(\sum_{k=1}^{\infty} x_{k}\right) \leq \sum_{k=1}^{\infty} p\left(x_{k}\right) \quad \text { for all }\left(x_{k}\right)_{k \in \mathbb{N}} \subseteq X \text { for which } \sum_{k=1}^{\infty} x_{k} \text { converges. }
$$

(a) Demonstrate that there exists $M \in[0, \infty)$ such that

$$
p(x) \leq M\|x\| \quad \text { for all } x \in X
$$

This is Zabreiko's lemma. Hint: Mimick the proof of the open mapping theorem.
Solution: First, observe that $X=\bigcup_{n \in \mathbb{N}} \overline{\{x \in X: p(x) \leq n\}}$. Since X is complete, Baire's theorem implies that there exist $N \in \mathbb{N}, \xi \in X, \varepsilon \in(0, \infty)$ such that

$$
\{y \in X:\|y-\xi\|<\varepsilon\} \subseteq \overline{\{x \in X: p(x) \leq N\}}
$$

Due to the fact that $p(x)=p(-x)$ for every $x \in X$, we also have that $-\xi+z \in$ $\overline{\{x \in X: p(x) \leq N\}}$ for every $z \in X$ with $\|z\|<\varepsilon$. Thus, we have for all $z \in X$ with $\|z\|<\varepsilon$ that there exist $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq X$ with $p\left(x_{n}\right) \leq N$ and $p\left(y_{n}\right) \leq N$ for all $n \in \mathbb{N}$ satisfying that

$$
\xi+z=\lim _{n \rightarrow \infty} x_{n} \quad \text { and } \quad-\xi+z=\lim _{n \rightarrow \infty} y_{n} .
$$

Consequently, for $z=\frac{1}{2}((\xi+z)+(-\xi+z))=\lim _{n \rightarrow \infty} \frac{1}{2}\left(x_{n}+y_{n}\right)$ we have because of

$$
p\left(\frac{x_{n}+y_{n}}{2}\right)=\frac{1}{2} p\left(x_{n}+y_{n}\right) \leq \frac{1}{2} p\left(x_{n}\right)+\frac{1}{2} p\left(y_{n}\right) \leq N
$$

that $z \in \overline{\{x \in X: p(x) \leq N\}}$. It remains to show that $z \in\{x \in X: p(x) \leq N\}$ for every $z \in X$ with $\|z\|<\varepsilon$. For this, let $z \in X$ with $\|z\|<\varepsilon$ and choose $\delta \in(\|z\|, \varepsilon)$. Moreover, choose $\alpha \in(0,1)$ such that $(1-\alpha) \varepsilon>\delta$. Note that, still, $\left\|\varepsilon \frac{z}{\delta}\right\|<\varepsilon$ and therefore, there exists $x_{0} \in X$ with $p\left(x_{0}\right) \leq N$ satisfying

$$
\left\|\varepsilon \frac{z}{\delta}-x_{0}\right\|<\alpha \varepsilon .
$$

This, in turn, implies that $\left\|\frac{1}{\alpha}\left(\varepsilon \frac{z}{\delta}-x_{0}\right)\right\|<\varepsilon$ and, again, there exists $x_{1} \in X$ with $p\left(x_{1}\right) \leq N$ satisfying

$$
\left\|\frac{\varepsilon \frac{z}{\delta}-x_{0}}{\alpha}-x_{1}\right\|<\alpha \varepsilon .
$$

Inductively, we obtain $\left(x_{n}\right)_{n \in \mathbb{N}_{0}} \subseteq X$ satisfying for all $n \in \mathbb{N}_{0}$ that $p\left(x_{n}\right) \leq N$ and

$$
\left\|\varepsilon \frac{z}{\delta}-\sum_{k=0}^{n} \alpha^{k} x_{k}\right\|<\alpha^{n+1} \varepsilon .
$$

This implies that $\sum_{k=0}^{\infty} \alpha^{k} x_{k}$ exists and equals $\varepsilon \frac{z}{\delta}$. The assumptions on p now ascertain

$$
p(z)=\frac{\delta}{\varepsilon} p\left(\varepsilon \frac{z}{\delta}\right) \leq \frac{\delta}{\varepsilon} \sum_{k=0}^{\infty} p\left(\alpha^{k} x_{k}\right)=\frac{\delta}{\varepsilon} \sum_{k=0}^{\infty} \alpha^{k} p\left(x_{k}\right) \leq \frac{\delta}{\varepsilon} \sum_{k=0}^{\infty} \alpha^{k} N=\frac{\delta}{\varepsilon} \frac{N}{1-\alpha} \leq N .
$$

Hence, we obtain for every $z \in X$ with $\|z\|<\varepsilon$ that $p(x) \leq N$. This implies for every $z \in X$ that $p(x) \leq \frac{N}{\varepsilon}\|x\|$.

6.5. Proving everything by Zabreiko's lemma

Recall Zabreiko's lemma from problem 6.4. In this problem we will infer more or less all the fundamental principles from Zabreiko's lemma. Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$.
(a) (Uniform boundedness principle.) For a \mathbb{K}-Banach space $\left(X,\|\cdot\|_{X}\right)$, a normed \mathbb{K}-vector space $\left(Y,\|\cdot\|_{Y}\right)$ and a collection of continuous linear mappings $\mathcal{F} \subseteq L(X, Y)$, prove (by applying Zabreiko's lemma) that

$$
\left(\sup _{T \in \mathcal{F}}\|T x\|_{Y}<\infty \quad \text { for every } x \in X\right) \Rightarrow \sup _{T \in \mathcal{F}}\|T\|_{L(X, Y)}<\infty .
$$

Solution: The assumption that $\sup _{T \in \mathcal{F}}\|T x\|_{Y}<\infty$ for every $x \in X$ ensures that the function

$$
p:\left\{\begin{aligned}
X & \rightarrow[0, \infty) \\
x & \mapsto \sup _{T \in \mathcal{F}}\|T x\|_{Y}
\end{aligned}\right.
$$

is indeed well-defined. Moreover, by linearity and by the triangle inequality it holds clearly for all $\lambda \in \mathbb{K}, x, y \in X$ that

$$
p(\lambda x)=\sup _{T \in \mathcal{F}}\|T(\lambda x)\|_{Y}=\sup _{T \in \mathcal{F}}\|\lambda T x\|_{Y}=|\lambda| \sup _{T \in \mathcal{F}}\|T x\|_{Y}=|\lambda| p(x)
$$

and

$$
\begin{aligned}
p(x+y) & =\sup _{T \in \mathcal{F}}\|T(x+y)\|_{Y}=\sup _{T \in \mathcal{F}}\|T x+T y\|_{Y} \leq \sup _{T \in \mathcal{F}}\left(\|T x\|_{Y}+\|T y\|_{Y}\right) \\
& \leq \sup _{T \in \mathcal{F}}\|T x\|_{Y}+\sup _{T \in \mathcal{F}}\|T y\|_{Y}=p(x)+p(y),
\end{aligned}
$$

that is, p is a semi-norm. Finally, let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ be a sequence such that $\sum_{n=1}^{\infty} x_{n}$ converges. Since every $T \in \mathcal{F}$ is continuous, we have that

$$
\begin{aligned}
\left\|T\left(\sum_{n=1}^{\infty} x_{n}\right)\right\|_{Y} & =\left\|\sum_{n=1}^{\infty} T x_{n}\right\|_{Y}=\lim _{N \rightarrow \infty}\left\|\sum_{n=1}^{N} T x_{n}\right\|_{Y} \leq \limsup _{N \rightarrow \infty} \sum_{n=1}^{N}\left\|T x_{n}\right\|_{Y} \\
& \leq \limsup _{N \rightarrow \infty} \sum_{n=1}^{N} p\left(x_{n}\right)=\sum_{n=1}^{\infty} p\left(x_{n}\right) \quad \text { for all } T \in \mathcal{F} .
\end{aligned}
$$

This implies that $p\left(\sum_{n=1}^{\infty} x_{n}\right) \leq \sum_{n=1}^{\infty} p\left(x_{n}\right)$. Now we're in the position to apply Zabreiko's lemma which ensures that there exists $M \in[0, \infty)$ satisfying

$$
\sup _{T \in \mathcal{F}}\|T x\|_{Y}=p(x) \leq M\|x\|_{X}
$$

This is nothing else than $\sup _{T \in \mathcal{F}}\|T\|_{L(X, Y)} \leq M<\infty$, what we intended to prove.
(b) (Closed graph theorem.) For \mathbb{K}-Banach spaces $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ and a linear map $T: X \rightarrow Y$, prove (by applying Zabreiko's lemma) that

$$
(\operatorname{graph}(T)=\{(x, T x) \mid x \in X\} \subseteq X \times Y \text { is closed }) \Rightarrow T \in L(X, Y)
$$

Solution: The fact that $T x \in Y$ for every $x \in X$ ensures that the function

$$
p:\left\{\begin{array}{rll}
X & \rightarrow & {[0, \infty),} \\
x & \mapsto & \|T x\|_{Y}
\end{array}\right.
$$

is well-defined. Linearity and the triangle inequality again ensure for all $\lambda \in \mathbb{K}$, $x, y \in X$ that

- $p(\lambda x)=\|T(\lambda x)\|_{Y}=\|\lambda T x\|_{Y}=|\lambda|\|T x\|_{Y}=|\lambda| p(x)$ and
- $p(x+y)=\|T(x+y)\|_{Y}=\|T x+T y\|_{Y} \leq\|T x\|_{Y}+\|T y\|_{Y}=p(x)+p(y)$.

Hence p is a semi-norm. Next, let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ be a sequence satisfying that $\sum_{n=1}^{\infty} x_{n}$ converges. In the case that $\sum_{n=1}^{\infty}\left\|T x_{n}\right\|_{Y}=\infty$, we clearly have that $p\left(\sum_{n=1}^{\infty} x_{n}\right) \leq$ $\sum_{n=1}^{\infty} p\left(x_{n}\right)$. In the case that $\sum_{n=1}^{\infty}\left\|T x_{n}\right\|_{Y}<\infty$, the completeness of Y ensures that $\sum_{n=1}^{\infty} T x_{n}$ converges in Y. With $\sum_{n=1}^{\infty} x_{n}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} x_{n}$ converging in X and $\sum_{n=1}^{\infty} T x_{n}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} T x_{n}=\lim _{N \rightarrow \infty} T\left(\sum_{n=1}^{N} x_{n}\right)$ converging in Y, the closedness of $\operatorname{graph}(T)$ ensures that

$$
T\left(\sum_{n=1}^{\infty} x_{n}\right)=\sum_{n=1}^{\infty} T x_{n} .
$$

Continuity of $\|\cdot\|_{Y}$ and the triangle inequality hence ensure that

$$
\begin{aligned}
p\left(\sum_{n=1}^{\infty} x_{n}\right) & =\left\|T\left(\sum_{n=1}^{\infty} x_{n}\right)\right\|_{Y}=\left\|\sum_{n=1}^{\infty} T x_{n}\right\|_{Y}=\lim _{N \rightarrow \infty}\left\|\sum_{n=1}^{N} T x_{n}\right\|_{Y} \\
& \leq \limsup _{N \rightarrow \infty} \sum_{n=1}^{N}\left\|T x_{n}\right\|_{Y}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} p\left(x_{n}\right)=\sum_{n=1}^{\infty} p\left(x_{n}\right) .
\end{aligned}
$$

(c) (Open mapping theorem.) For \mathbb{K}-Banach spaces $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ and a surjective continuous linear map $T \in L(X, Y)$, prove (by applying Zabreiko's lemma) that T is open.

Solution: Since T is surjective, the function

$$
p:\left\{\begin{aligned}
Y & \rightarrow[0, \infty), \\
y & \mapsto \inf _{x \in X, T x=y}\|x\|_{X}
\end{aligned}\right.
$$

is well-defined. Linearity, surjectivity of T, and the triangle inequality again imply for all $\lambda \in \mathbb{K}, y, z \in X$ that

$$
p(\lambda y)=\inf _{x \in X, T x=\lambda y}\|x\|_{X}=\inf _{x \in X, T x=y}\|\lambda x\|_{X}=|\lambda| \inf _{x \in X, T x=y}\|x\|_{X}=|\lambda| p(y)
$$

and

$$
\begin{aligned}
p(y+z) & =\inf _{x \in X, T x=y+z}\|x\|_{X} \leq \inf _{u, v \in X, T u y, T v=z}\|u+v\|_{X} \\
& \leq \inf _{u, v \in X, T u=y, T v=z}\left(\|u\|_{X}+\|v\|_{X}\right) \\
& =\inf _{u \in X, T u=y}\|u\|_{X}+\inf _{v \in X, T v=z}\|v\|_{X}=p(y)+p(z) .
\end{aligned}
$$

Thus, p is a semi-norm. Next, let $\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq Y$ be such that $\sum_{n=1}^{\infty} y_{n}$ converges in Y. In the case that $\sum_{n=1}^{\infty} p\left(y_{n}\right)=\infty$, we clearly have that $p\left(\sum_{n=1}^{\infty} y_{n}\right) \leq \sum_{n=1}^{\infty} p\left(y_{n}\right)$. In the case that $\sum_{n=1}^{\infty} p\left(y_{n}\right)<\infty$, there exist $\left(x_{n, \varepsilon}\right)_{(n, \varepsilon) \in \mathbb{N} \times(0, \infty)} \subseteq X$ such that

$$
T x_{n, \varepsilon}=y_{n} \quad \text { and } \quad\left\|x_{n, \varepsilon}\right\|_{X} \leq p\left(y_{n}\right)+2^{-n} \varepsilon \quad \text { for all } n \in \mathbb{N}, \varepsilon \in(0, \infty)
$$

Hence, we obtain for every $\varepsilon \in(0, \infty)$ that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\|x_{n, \varepsilon}\right\|_{X} \leq \sum_{n=1}^{\infty}\left(p\left(y_{n}\right)+2^{-n} \varepsilon\right)=\sum_{n=1}^{\infty} p\left(y_{n}\right)+\varepsilon<\infty \tag{3}
\end{equation*}
$$

which - by completeness of X - ensures that

$$
\sum_{n=1}^{\infty} x_{n, \varepsilon} \quad \text { converges in } X
$$

Continuity of T makes sure that

$$
T\left(\sum_{n=1}^{\infty} x_{n, \varepsilon}\right)=\sum_{n=1}^{\infty} T x_{n, \varepsilon}=\sum_{n=1}^{\infty} y_{n} \quad \text { for every } \varepsilon \in(0, \infty)
$$

Combining this with (3) implies that

$$
p\left(\sum_{n=1}^{\infty} y_{n}\right) \leq \sum_{n=1}^{\infty}\left\|x_{n, \varepsilon}\right\|_{X} \leq \sum_{n=1}^{\infty} p\left(y_{n}\right)+\varepsilon \quad \text { for all } \varepsilon \in(0, \infty)
$$

Letting $\varepsilon \rightarrow 0$ shows that the assumptions of Zabreiko's lemma are satisfied. Thus, there exists $M \in(0, \infty)$ satisfying that

$$
\inf _{x \in X, T x=y}\|x\|_{X}=p(y) \leq M\|y\|_{Y} \quad \text { for every } y \in Y
$$

This allows to infer that T maps the open unit ball in X to an open set in Y (which, by linearity, is enough for showing that T is an open map). Indeed, for every $y=T x$ with $x \in X,\|x\|_{X}<1$, the above inequality implies that for every $z \in Y$ with $\|z-y\|_{Y}<\frac{1-\|x\|_{X}}{2 M}$, there exists $\xi \in X$ with $\|\xi\|_{X}<\frac{3}{4}\left(1-\|x\|_{X}\right)$ satisfying $T \xi=z-y$ and, therefore, $T(x+\xi)=z$ and $\|x+\xi\|_{X} \leq\|x\|_{X}+\frac{3}{4}\left(1-\|x\|_{X}\right)<1$.

6.6. Riesz representation theorem for Hilbert spaces

Let $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and let $(H,\langle\cdot, \cdot\rangle)$ be \mathbb{K}-Hilbert space.
(a) Prove for every $\varphi \in L(H, \mathbb{K})$ (i.e., every φ in the dual space of H) that there exists a unique $v \in H$ such that

$$
\varphi(u)=\langle u, v\rangle \quad \text { for every } u \in H
$$

Solution: Let $\varphi \in L(H, \mathbb{K})$. We first prove the existence of an element $v \in H$ s.t. $\varphi(u)=\langle u, v\rangle$ for all $u \in H$. W.l.o.g. we assume that $\varphi \neq 0$ (as the case $\varphi=0$ is clear). Take $u \in H$ with $\varphi(u) \neq 0$. We know - from problem 5.6, for example - that
there exists a unique $x \in \operatorname{ker}(\varphi)$ satisfying $u-x \perp \operatorname{ker}(\varphi)$. As $u \notin \operatorname{ker}(\varphi)$, we have $u-x \neq 0$ and we may define $e:=\frac{u-x}{\|u-x\|}$. Note that, for every $w \in H$, it holds that

$$
\varphi(w)=\frac{\varphi(w)}{\varphi(e)} \varphi(e)=\varphi\left(\frac{\varphi(w)}{\varphi(e)} e\right)
$$

indicating that $w-\frac{\varphi(w)}{\varphi(e)} e \in \operatorname{ker}(\varphi)$. As $e \perp \operatorname{ker}(\varphi)$, this implies

$$
\langle w, e\rangle=\left\langle\frac{\varphi(w)}{\varphi(e)} e, e\right\rangle=\frac{\varphi(w)}{\varphi(e)} \quad \text { for all } w \in H,
$$

which results in

$$
\varphi(w)=\varphi(e)\langle w, e\rangle=\langle w, \overline{\varphi(e)} e\rangle \quad \text { for all } w \in H
$$

This covers the existence part. For uniqueness, note that for all $v_{1}, v_{2} \in H$ satisfying

$$
\varphi(w)=\left\langle w, v_{1}\right\rangle=\left\langle w, v_{2}\right\rangle \quad \text { for all } w \in H,
$$

we get immediately that

$$
\left\|v_{1}-v_{2}\right\|^{2}=\left\langle v_{1}-v_{2}, v_{1}-v_{2}\right\rangle=\left\langle v_{1}-v_{2}, v_{1}\right\rangle-\left\langle v_{1}-v_{2}, v_{2}\right\rangle=\varphi\left(v_{1}-v_{2}\right)-\varphi\left(v_{1}-v_{2}\right)=0 .
$$

Thus, $v_{1}=v_{2}$.
(b) Prove that the map $T: H \rightarrow L(H, \mathbb{K})$, defined by

$$
(T v)(u)=\langle u, v\rangle \quad \text { for all } u, v \in H,
$$

is antilinear, bijective and isometric.
Solution: By the Cauchy-Schwarz inequality, the map T is well-defined and satisfies $\|T u\|_{L(H, \mathbb{K})} \leq\|u\|$ for all $u \in H$. Clearly, T is antilinear. Moreover, from (a), we know that T is bijective. Finally, as $(T u) u=\|u\|^{2}$ for all $u \in H$, it holds for all $u \in H$ that $\|T u\|_{L(H, \mathbb{K})}=\|u\|$.

6.7. Reproducing kernels

Let S be a set and let H be a \mathbb{K}-Hilbert space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$) of functions on S. A reproducing kernel for H is a function $k: S \times S \rightarrow \mathbb{K}$ satisfying for all $t \in S$, $f \in H$ that $k_{t}=(S \ni s \mapsto k(s, t) \in \mathbb{K}) \in H$ and $f(t)=\left\langle f, k_{t}\right\rangle$.
(a) Prove that a reproducing kernel, if existent, is unique.

Solution: Let $k, l: S \times S \rightarrow \mathbb{K}$ be reproducing kernels, i.e., satisfy for all $t \in S$, $f \in H$ that $k_{t}, l_{t} \in H$ and $f(t)=\left\langle f, k_{t}\right\rangle=\left\langle f, l_{t}\right\rangle$. Consequentially, it holds for all $t \in S, f \in H$ that $0=\left\langle f, k_{t}-l_{t}\right\rangle$. Since $k_{t}-l_{t} \in H$ for every $t \in S$, this implies that $0=\left\|k_{t}-l_{t}\right\|^{2}$ for all $t \in S$. This ensures that $k_{t}=l_{t}$ in H for every $t \in S$.
(b) Show that a reproducing kernel exists if and only if, for every $t \in S$, the mapping $H \ni f \mapsto f(t) \in \mathbb{K}$ is continuous.

Solution: " \Rightarrow :" If a reproducing kernel exists, then we have for all $t \in S, f \in H$ that $|f(t)|=\left\langle f, k_{t}\right\rangle \leq\|f\|\left\|k_{t}\right\|$. That is, for every $t \in S$, the mapping $H \ni f \mapsto f(t) \in \mathbb{K}$ is continuous.
$" \Leftarrow: "$ If it holds for every $t \in S$ that $H \ni f \mapsto f(t) \in \mathbb{K}$ is continuous, then according to the Riesz representation theorem - there exist elements $\left(h_{t}\right)_{t \in S} \subseteq H$ satisfying for every $t \in S$ that

$$
f(t)=\left\langle f, h_{t}\right\rangle \quad \text { for all } f \in H
$$

That is, $h: S \times S \rightarrow \mathbb{K}$, defined by $h(s, t)=h_{t}(s)$ for all $s, t \in S$, is a reproducing kernel.
(c) Prove that $H=\overline{\operatorname{span}\left\{k_{t} \mid t \in S\right\}}$ if a reproducing kernel exists.

Solution: Let $h \in \operatorname{span}\left\{k_{t} \mid t \in S\right\}^{\perp}$. This means nothing else but $0=\left\langle h, k_{t}\right\rangle$ for all $t \in S$. The defining property of the reproducing kernel k now implies that $h(t)=0$ for all $t \in S$. Hence,

$$
\overline{\operatorname{span}\left\{k_{t} \mid t \in S\right\}}=\operatorname{span}\left\{k_{t} \mid t \in S\right\}^{\perp \perp}=\{0\}^{\perp}=H
$$

(d) Prove that the Hardy space $\mathcal{H}^{2}(\mathbb{D})$ (cf. problem 5.7) possesses a reproducing kernel and determine the reproducing kernel for $\mathcal{H}^{2}(\mathbb{D})$.

Solution: Let $z_{0} \in \mathbb{D}$ be arbitrary. We know from complex analysis that

$$
f\left(z_{0}\right)=\sum_{n=0}^{\infty} a_{n}(f) z_{0}^{n} .
$$

The right hand side can - according to problem 5.7(b) - be interpreted as $\mathcal{H}^{2}(\mathbb{D})$-scalar product of f and the function $k_{z_{0}}: \mathbb{D} \rightarrow \mathbb{C}$, defined by

$$
k_{z_{0}}(z)=\sum_{n=0}^{\infty}{\overline{z_{0}}}^{n} z^{n} \quad \text { for all } z \in \mathbb{D}
$$

Note that $k_{z_{0}}$ is well-defined on \mathbb{D} due to $\left|z_{0}\right|<1$. For the same reason, $k_{z_{0}} \in \mathcal{H}^{2}(\mathbb{D})$. As a matter of fact, we may rewrite $k_{z_{0}}$ via

$$
k_{z_{0}}(z)=\frac{1}{1-\overline{z_{0}} z} \quad \text { for all } z \in \mathbb{D}
$$

