7.1. Finite-dimensional subspaces are topologically complemented

Let $\left(X,\|\cdot\|_{X}\right)$ be a \mathbb{K}-Banach space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$) and $U \subseteq X$ a closed subspace. Show that:
(a) If $\operatorname{dim}(U)<\infty$, then U is topologically complemented.

Solution: It is sufficient to construct a projection map P as in Exercise 6.1. Let e_{1}, \ldots, e_{n} be a basis of the given finite-dimensional subspace $U \subseteq X$ and let $f_{1}, \ldots, f_{n} \in L(U, \mathbb{K})$ be the associated dual basis, uniquely defined by the conditions

$$
f_{i}\left(e_{j}\right)=\delta_{i j}:= \begin{cases}1 & \text { if } i=j \\ 0 & \text { else }\end{cases}
$$

From Hahn-Banach's theorem it follows that there exist extensions $F_{1}, F_{2}, \ldots, F_{n} \in$ $L(X ; \mathbb{K})$ with $\left\|F_{i}\right\|_{L(X, \mathbb{K})}=\left\|f_{i}\right\|_{L(U, \mathbb{K})}$ for every $i \in\{1,2, \ldots, n\}$. We define

$$
P: X \rightarrow X, \quad P(x)=\sum_{i=1}^{n} F_{i}(x) e_{i} .
$$

Then P is linear and continuous, since

$$
\|P x\|_{X} \leq\left(\sum_{i=1}^{n}\left\|F_{i}\right\|_{L(X, \mathrm{~K})}\left\|e_{i}\right\|_{X}\right)\|x\|_{X} \quad \text { for all } x \in X
$$

By construction, $P(X) \subseteq \operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}=U$. By definition of f_{i} and F_{i} we have $P\left(e_{i}\right)=e_{i}$ for every $i \in\{1, \ldots, n\}$. Therefore, $P(X)=U$. Finally, for every $x \in X$,

$$
(P \circ P)(x)=P\left(\sum_{i=1}^{n} F_{i}(x) e_{i}\right)=\sum_{i=1}^{n} F_{i}(x) P\left(e_{i}\right)=\sum_{i=1}^{n} F_{i}(x) e_{i}=P(x) .
$$

It follows from Exercise 6.1 that U is topologically complemented.
(b) If $\operatorname{dim}(X / U)<\infty$, then U is topologically complemented.

Solution: Denote by $\pi: X \rightarrow X / U, \pi(x)=[x]$ the canonical quotient map. Since $\operatorname{dim}(X / U)=m<\infty$ we can choose $e_{1}, e_{2}, \ldots, e_{m} \in X$ such that $\left[e_{1}\right], \ldots,\left[e_{m}\right]$ form a basis of X / U. Similar to the above, let $f_{1}, \ldots f_{m} \in L(X / U, \mathbb{K})$ be the associated dual basis. For every $i \in\{1,2, \ldots, m\}$, set $F_{i}:=f_{i} \circ \pi: X \rightarrow \mathbb{K}$. Next, we define

$$
P: X \rightarrow X, \quad P(x)=\sum_{i=1}^{n} F_{i}(x) e_{i} .
$$

Since $F_{i}\left(e_{j}\right)=f_{i}\left(\pi\left(e_{j}\right)\right)=f_{i}\left(\left[e_{j}\right]\right)=\delta_{i j}$ for all $i, j \in\{1,2, \ldots, m\}$, we have $P \circ P=P$ as above. Since $\left[e_{1}\right], \ldots,\left[e_{m}\right]$ is a basis for X / U, the representatives e_{1}, \ldots, e_{m} must
be linearly independent in X. Therefore, $P(x)=0$ implies $F_{i}(x)=f_{i}([x])=0$ for every $i \in\{1, \ldots, n\}$ which in turn implies $[x]=[0]$ or $x \in U$. Conversely, $x \in U$ implies $\pi(x)=[0]$ and therefore $P(x)=0$. Thus we have shown $\operatorname{ker}(P)=U$. As in Exercise 6.1, we conclude that $(1-P)$ is a continuous projection onto U which implies that U is topologically complemented.

7.2. Dual spaces of c_{0} and c

Recall the (\mathbb{R}-vector) spaces

$$
c_{0}:=\left\{\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{\infty} \mid \lim _{k \rightarrow \infty} x_{k}=0\right\}, \quad c:=\left\{\left(x_{k}\right)_{k \in \mathbb{N}} \in \ell^{\infty} \mid \lim _{k \rightarrow \infty} x_{k} \text { exists }\right\} .
$$

with norm $\|\cdot\|_{\ell^{\infty}}($ cf. problems 3.4 and 4.1).
(a) Show that the dual space of $\left(c_{0},\|\cdot\|_{\ell^{\infty}}\right)$ is isometrically isomorphic to $\left(\ell^{1},\|\cdot\|_{\ell^{1}}\right)$.

Solution: The linear map $\Psi: \ell^{1} \rightarrow\left(c_{0}\right)^{*}$ given by

$$
\Psi(y)(x)=\sum_{n \in \mathbb{N}} x_{n} y_{n},
$$

for $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}$ and $y=\left(y_{n}\right)_{n \in \mathbb{N}} \in \ell^{1}$ is linear and well-defined, since we can estimate

$$
|\Psi(y)(x)| \leq \sum_{n \in \mathbb{N}}\left|x_{n} y_{n}\right| \leq\|x\|_{\ell_{\infty}}\|y\|_{\ell^{1}},
$$

and consequently also $\|\Psi(y)\|_{\left(c_{0}\right)^{*}} \leq\|y\|_{\ell^{1}}$. Let us show that in fact $\|\Psi(y)\|_{\left(c_{0}\right)^{*}}=\|y\|_{\ell^{1}}$ for every $y \in \ell^{1}$: given $y \in \ell^{1}$ we can apply $\Psi(y)$ to the sequence $x_{k}=\left(x_{k, n}\right)_{n \in \mathbb{N}} \in c_{0}$ given by

$$
x_{k, n}= \begin{cases}\frac{y_{n}}{\left|y_{n}\right|} & \text { if } n \leq k \text { and } y_{n} \neq 0, \\ 0 & \text { else, }\end{cases}
$$

which satisfies $\left\|x^{(k)}\right\|_{\ell_{\infty}} \leq 1$ and

$$
\lim _{k \rightarrow \infty}\left|\Psi(y)\left(x_{k}\right)\right|=\lim _{k \rightarrow \infty} \sum_{n=1}^{k}\left|y_{n}\right|=\|y\|_{\ell^{1}}
$$

implying that

$$
\|\Psi(y)\|_{\left(c_{0}\right)^{*}}=\sup _{\substack{x \in c_{0} \\\|x\|_{\ell \infty} \leq 1}}|\Psi(y)(x)| \geq\|y\|_{\ell^{1}} .
$$

Therefore, Ψ is an isometry and in particular is injective.
To prove that Ψ is surjective, we show first that every $f \in\left(c_{0}\right)^{*}$ is determined by its values on the elements $e_{k}=\left(e_{k, n}\right)_{n \in \mathbb{N}} \in c_{0}, k \in \mathbb{N}$, where $e_{k}=(0, \ldots, 0,1,0, \ldots)$ has the 1 at k-th position: in fact, given $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c_{0}$, we have

$$
\left\|x-\sum_{k=1}^{N} x_{k} e_{k}\right\|_{\ell \infty}=\sup _{n>N}\left|x_{n}\right| \xrightarrow{N \rightarrow \infty} 0 .
$$

and so continuity and linearity of f implies

$$
f(x)=\lim _{N \rightarrow \infty} f\left(\sum_{k=1}^{N} x_{k} e_{k}\right)=\lim _{N \rightarrow \infty} \sum_{k=1}^{N} x_{k} f\left(e_{k}\right) .
$$

Given $f \in\left(c_{0}\right)^{*}$ we claim that $y:=\left(f\left(e_{k}\right)\right)_{k \in \mathbb{N}} \in \ell^{1}$ and $\Psi(y)=f$. Indeed, for any $N \in \mathbb{N}$

$$
\sum_{k=1}^{N}\left|f\left(e_{k}\right)\right|=\sum_{k=1}^{\infty} x_{N, k} f\left(e_{k}\right)=f\left(x_{N}\right) \leq\|f\|_{\left(c_{0}\right)^{*}},
$$

where $x_{N}=\left(x_{N, k}\right)_{k \in \mathbb{N}} \in c_{0}$ with $\left\|x_{N}\right\|_{\ell_{\infty}} \leq 1$ is defined by

$$
x_{N, k}= \begin{cases}\frac{f\left(e_{k}\right)}{\left|f\left(e_{k}\right)\right|} & \text { if } k \leq N \text { and } f\left(e_{k}\right) \neq 0, \\ 0 & \text { else. }\end{cases}
$$

Since N is arbitrary, we conclude $y \in \ell^{1}$. Moreover, given any $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in c_{0}$ and y as above, we have

$$
\Psi(y)(x)=\sum_{k \in \mathbb{N}} x_{k} y_{k}=\sum_{k \in \mathbb{N}} x_{k} f\left(e_{k}\right)=f(x)
$$

which shows that Ψ is surjective.
(b) To which space is the dual space of $\left(c,\|\cdot\|_{\ell^{\infty}}\right)$ isomorphic?

Solution: The dual space of $\left(c,\|\cdot\|_{\ell \infty}\right)$ is also isomorphic to $\left(c_{0}\right)^{*} \cong \ell^{1}$ but not isometrically. Recall from Problem 4.1 (Null and non-null limits) that the maps $S: c \rightarrow c_{0}$ and $T: c_{0} \rightarrow c$, given by

$$
S x=\left(\lim _{n \rightarrow \infty} x_{n},\left(x_{1}-\lim _{n \rightarrow \infty} x_{n}\right),\left(x_{2}-\lim _{n \rightarrow \infty} x_{n}\right), \ldots\right) \quad \text { for all } x=\left(x_{n}\right)_{n \in \mathbb{N}} \in c
$$

and

$$
T(y) \mapsto\left(\left(y_{2}+y_{1}\right),\left(y_{3}+y_{1}\right),\left(y_{4}+y_{1}\right), \ldots\right) \quad \text { for all } y=\left(y_{n}\right)_{n \in \mathbb{N}} \in c_{0}
$$

respectively, are continuous linear mappings which are inverse to each other. Now define $\Phi: c^{*} \rightarrow\left(c_{0}\right)^{*}$ by

$$
\Phi(f)=f \circ T
$$

As composition of linear maps, Φ is linear (Φ is the dual mapping of T). It is also continuous since

$$
|(\Phi f)(y)|=|f(S y)| \leq\|f\|_{c^{*}}\|S y\|_{\ell_{\infty}} \leq 2\|f\|_{c^{*}}\|y\|_{\ell_{\infty}}
$$

By the construction above, Φ is bijective with continuous inverse given by $\Phi^{-1}(g)=$ $g \circ S$ for all $g \in\left(c_{0}\right)^{*}$.

7.3. Banach Limits

Define the shift operator T on (the \mathbb{R}-Banach space) $\ell^{\infty}=\ell^{\infty}(\mathbb{N}, \mathbb{R})$ by

$$
T y=\left(y_{n+1}\right)_{n \in \mathbb{N}} \quad \text { for all } y=\left(y_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty} .
$$

Consider the subspace $X=\left\{x \in \ell^{\infty} \mid \exists y \in \ell^{\infty}\right.$ s.t. $\left.x=y-T y\right\}$.
(a) The closure of X contains the space of sequences that converge to zero.

Solution: With $e_{n}=\left(\delta_{n k}\right)_{k \in \mathbb{N}}$ for every $n \in \mathbb{N}$, note that

$$
T\left(\sum_{k=1}^{n} e_{k}\right)=\sum_{k=1}^{n-1} e_{k} \quad \text { for every } n \in \mathbb{N},
$$

i.e., $e_{n}=x_{n}-T x_{n}$ with $x_{n}=\sum_{k=1}^{n} e_{k}$ for every $n \in \mathbb{N}$. Thus, X contains $\left\{e_{n} \mid n \in \mathbb{N}\right\}$ and therefore also the space of sequences of finite support. The closure of the latter is the space of null-sequences c_{0}.
(b) Let c be the constant sequence $c=(1)_{n \in \mathbb{N}}$. Show that $\operatorname{dist}(c, X)=1$ where $\operatorname{dist}(c, X)=\inf _{x \in X}\|c-x\|_{\ell \infty}$.

Solution: Surely $d(c, X) \leq\|c\|_{\ell_{\infty}}=1$. Suppose $x=y-T y \in X$ is such that $\|c-x\|_{\ell \infty}=1-\varepsilon$ with $\varepsilon \in(0,1)$. Then $\inf _{n \in \mathbb{N}} x_{n} \geq \varepsilon$, and as $x=y-T y$, we deduce from $y_{n+1}=y_{n}-x_{n} \leq y_{n}-\varepsilon$ (for all $n \in \mathbb{N}$) the absurdity that $y_{n} \leq y_{0}-n \varepsilon$ for all $n \in \mathbb{N}$.
(c) By the Hahn-Banach theorem there is a linear functional $L: \ell^{\infty} \rightarrow \mathbb{R}$ such that $L(c)=1,\|L\|_{L(X, \mathbb{R})}=1$ and $L(x)=0$ for all $x \in X$. (Remark: Indeed, the linear function $l: \operatorname{span}\{c\} \rightarrow \mathbb{R}$, given by $l(t c)=t$ for every $t \in \mathbb{R}$, is bounded by the restriction of the sublinear function $X \ni x \mapsto \operatorname{dist}(x, X) \in \mathbb{R}$ to $\operatorname{span}\{c\}$, and therefore possesses a linear extension $L: X \rightarrow \mathbb{R}$ satisfying $|L(x)| \leq \operatorname{dist}(x, X)$ for all $x \in X$.)
(i) Show that $L(T y)=L(y)$ for all $y \in \ell^{\infty}$.

Solution: Since, for every $y \in \ell^{\infty}$, it holds that $y-T y \in X$ and since L vanishes on X, we obtain $L(y-T y)=0$ for all $y \in \ell^{\infty}$, i.e., $L(y)=L(T y)$ for all $y \in \ell^{\infty}$.
(ii) Verify that $L(y) \geq 0$ whenever $y \geq 0$ (in the sense that, for $y=\left(y_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}$, it holds that $y_{n} \geq 0$ for all $n \in \mathbb{N}$) and deduce that $\liminf _{n \rightarrow \infty} y_{n} \leq L(y) \leq$ $\lim \sup _{n \rightarrow \infty} y_{n}$ for all $y \in \ell^{\infty}$. It follows that $L(y)=\lim _{n \rightarrow \infty} y_{n}$ whenever y is convergent.

Solution: Suppose $y \geq 0$ is such that $L(y)<0$. Set $z=c-\frac{y}{\|y\| \|_{\infty}}$ and note that $0 \leq z_{n} \leq 1$ for all $n \in \mathbb{N}$ while $L(z)>1$, contradicting $\|L\|_{\left(\ell^{\infty}\right)^{*}}=1$. Observe that this implies $L(y) \geq L(z)$ whenever $y \geq z$. Let $C=\liminf _{n \rightarrow \infty} y_{n}$ and choose $N \in \mathbb{N}$ so large that $y_{n} \geq C-\varepsilon$ for all $n \geq N$. Then $L(y)=L\left(T^{N} y\right) \geq C-\varepsilon$ and thus $L(y) \geq \liminf _{n \rightarrow \infty} y_{n}$. Replace y by $-y$ to get the upper bound.
(iii) Find y and z such that $L(y z) \neq L(y) L(z)$.

Solution: Let $y=\left(\frac{1+(-1)^{n-1}}{2}\right)_{n \in \mathbb{N}}$ (i.e., the sequence $1,0,1,0, \ldots$) and $z=T y$. Then $c=y+z$, so $L(y)=L(z)=\frac{1}{2}$, while $0=L(y z)$.
(iv) Show that there is no $z \in \ell^{1}$ such that $L(y)=\sum_{n=1}^{\infty} y_{n} z_{n}$ for all $y=\left(y_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}$, so L is a functional in $\left(\ell^{\infty}\right)^{*} \backslash \ell^{1}$.

Solution: If there was $z=\left(z_{n}\right)_{n \in \mathbb{N}} \in \ell^{1}$ so that $L(y)=\sum_{n=1}^{\infty} y_{n} z_{n}$ for every $y=\left(y_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}$, then we would get with $e_{k}=\left(\delta_{k n}\right)_{n \in \mathbb{N}}, k \in \mathbb{N}$, that

$$
z_{k}=L\left(e_{k}\right)=0 \quad \text { for all } k \in \mathbb{N},
$$

a contradiction.

7.4. Inseparable Disjoint Closed Convex Sets

In the Hilbert space $\ell^{2}=\ell^{2}(\mathbb{N}, \mathbb{R})$ of square summable sequences, set $A=\mathbb{R} e_{1}$ and let

$$
B=\left\{x \in \ell^{2}: x_{1} \geq n \cdot\left|x_{n}-\frac{1}{n^{2 / 3}}\right| \text { for all } n \geq 2\right\} .
$$

(a) Verify that A and B are disjoint, non-empty, closed and convex.

Solution: The set A is a one-dimensional linear subspace, hence it is closed, convex and non-empty. The set B is non-empty because $x=\left(n^{-2 / 3}\right)_{n \in \mathbb{N}}$ is an element of B.

Also, B is clearly closed with respect to coordinate-wise convergence, so it is closed in ℓ^{2}. If $x, y \in B$ and $t \in[0,1]$, then $(1-t) x+t y \in B$ because

$$
\begin{aligned}
n\left|(1-t) x_{n}+t y_{n}-\frac{1}{n^{2 / 3}}\right| & =n\left|(1-t)\left(x_{n}-\frac{1}{n^{2 / 3}}\right)+t\left(y_{n}-\frac{1}{n^{2 / 3}}\right)\right| \\
& \leq(1-t) n\left|x_{n}-\frac{1}{n^{2 / 3}}\right|+t n\left|y_{n}-\frac{1}{n^{2 / 3}}\right| \\
& \leq(1-t) x_{1}+t y_{1} \quad \text { for all } n \geq 2 .
\end{aligned}
$$

Finally, if $x \in A \cap B$, then $x_{1} \geq n^{1 / 3}$ for all $n \geq 2$, which is impossible.
(b) Prove that $A-B$ is dense in ℓ^{2} and conclude that there is no non-zero continuous linear functional on ℓ^{2} which separates A from B.

Solution: Let $x \in \ell^{2}$. Define $\left(b^{(n)}\right)_{n \in \mathbb{N}} \subseteq \ell^{2}$ by

$$
b_{k}^{(n)}= \begin{cases}\max \left\{l\left|x_{l}+\frac{1}{l^{2 / 3}}\right|: 2 \leq l \leq n\right\} & : k=1, \\ -x_{k} & : 2 \leq k \leq n, \\ \frac{1}{k^{2 / 3}} & : k>n,\end{cases}
$$

and $\left(a^{(n)}\right)_{n \in \mathbb{N}} \subseteq \ell^{2}$ by

$$
a_{k}^{(n)}= \begin{cases}x_{1}+b_{1}^{(n)} & : k=1, \\ 0 & : k>1 .\end{cases}
$$

Then $a \in A$ and $b \in B$ and

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|x-\left(a^{(n)}-b^{(n)}\right)\right\|_{\ell^{2}}^{2} & =\limsup _{n \rightarrow \infty} \sum_{k=n+1}^{\infty}\left|x_{k}+\frac{1}{k^{2 / 3}}\right|^{2} \\
& \leq 2 \limsup _{n \rightarrow \infty} \sum_{k>n}\left|x_{k}\right|^{2}+2 \limsup _{n \rightarrow \infty} \sum_{k>n} \frac{1}{k^{4 / 3}}=0 .
\end{aligned}
$$

If φ is continuous and ≥ 0 on $A-B$, then $\varphi \geq 0$ on all of ℓ^{2}, so $\varphi=0$ by linearity.

7.5. Strict convexity and uniqueness of the Hahn-Banach extension

(a) (Ruston's Theorem) Show that the following properties of a normed \mathbb{R}-vector space $\left(X,\|\cdot\|_{X}\right)$ are equivalent:
(i) If $x \neq y$ and $\|x\|_{X}=1=\|y\|_{X}$ then $\left\|\frac{x+y}{2}\right\|_{X}<1$.
(ii) If $x \neq 0 \neq y$ and $\|x+y\|_{X}=\|x\|_{X}+\|y\|_{X}$, then $x=\lambda y$ for some $\lambda>0$.
(iii) If $\varphi \in X^{*}$ is a nonzero bounded linear functional, then there is at most one $x \in X$ with $\|x\|_{X}=1$ such that $\varphi(x)=\|\varphi\|_{X^{*}}$.

Remark: A normed space is said to be strictly convex if any of these properties is satisfied. Point (i) says that the unit sphere contains no non-trivial line segment. Point (ii) says that equality in the triangle inequality only occurs in the trivial situation. Point (iii) says that for $\varphi \neq 0$ the support hyperplane $H_{\varphi}=\left\{x \in X: \varphi(x)=\|\varphi\|_{X^{*}}\right\}$ of the unit sphere meets the sphere in at most one point (note that $\inf _{x \in H_{\varphi}}\|x\|_{X}=1$).

Solution: " $(i i) \Rightarrow(i)$ ": Let $x, y \in X$ with $\|x\|_{X}=1=\|y\|_{X}$ and $x \neq y$. Since $\|x\|_{X}=\|y\|_{X}$, this implies that we cannot have that $x=\lambda y$ with $\lambda>0$. Consequentially, by (ii), it cannot hold that $\|x+y\|_{X}=\|x\|_{X}+\|y\|_{X}$. Since $\|x+y\|_{X} \leq\|x\|_{X}+$ $\|y\|_{X}$ and equality cannot be the case, we infer that $\|x+y\|_{X}<\|x\|_{X}+\|y\|_{X}=2$.
$\frac{"(i) \Rightarrow(i i) ": \text { Let } x, y \in X \text { satisfy that }\|x+y\|_{X}=\|x\|_{X}+\|y\|_{X} \text { where } 0<\|x\|_{X} \leq}{\|y\|_{X} \text {. Then }}$

$$
\begin{aligned}
\left\|\frac{x}{\|x\|_{X}}+\frac{y}{\|y\|_{X}}\right\|_{X} & \geq\left\|\frac{x}{\|x\|_{X}}+\frac{y}{\|x\|_{X}}\right\|_{X}-\left\|\frac{y}{\|x\|_{X}}-\frac{y}{\|y\|_{X}}\right\|_{X} \\
& =\frac{1}{\|x\|_{X}}\left(\|x\|_{X}+\|y\|_{X}\right)-\|y\|_{X}\left(\frac{1}{\|x\|_{X}}-\frac{1}{\|y\|_{X}}\right)=2
\end{aligned}
$$

whence by $\frac{x}{\|x\|_{X}}=\frac{y}{\|y\|_{X}}$ by (i). Thus, (ii) is satisfied with $\lambda=\frac{\|x\|_{X}}{\|y\|_{X}}$.
$"(i i i) \Rightarrow(i) ":$ Let $x, y \in X$ with $\|x\|_{X}=\|y\|_{X}=1$. Suppose that their midpoint $\frac{x+y}{2}$ $\overline{\text { has norm } 1}$ as well. By the Hahn-Banach theorem, there exists $\varphi \in X^{*}$ such that $\|\varphi\|_{X^{*}}=1=\varphi\left(\frac{x+y}{2}\right)=\frac{1}{2}(\varphi(x)+\varphi(y))$. As $|\varphi(x)| \leq 1$ and $|\varphi(y)| \leq 1$, it follows that $\varphi(x)=1=\varphi(y)$. By (iii), we have $x=y=\frac{x+y}{2}$.
" $(i) \Rightarrow(i i i)^{*}$: Let $\varphi \in X^{*} \backslash\{0\}$ be a bounded linear functional and let $x, y \in X$ with $\|x\|_{X}=1=\|y\|_{X}$ and $\varphi(x)=\|\varphi\|_{X^{*}}=\varphi(y)$. Since $\|\varphi\|_{X^{*}} \neq 0$, we infer from $\|\varphi\|_{X^{*}}=\varphi\left(\frac{x+y}{2}\right) \leq\|\varphi\|_{X^{*}}\left\|\frac{x+y}{2}\right\|_{X}$ that $\left\|\frac{x+y}{2}\right\|_{X} \geq 1$. By (i), $x=y$.
(b) For which $p \in[1, \infty]$ is $L^{p}([0,1], \mathbb{R})$ strictly convex?

Solution: If $1<p<\infty$, then the convexity properties of the function $\mathbb{R} \ni x \mapsto$ $|x|^{p} \in \mathbb{R}$ ensure for all $a, b \in \mathbb{R}$ that $\left|\frac{a+b}{2}\right|^{p} \leq \frac{|a|^{p}}{2}+\frac{|b|^{p}}{2}$ with equality if and only if $a=b$. This implies for all $f, g \in L^{p}([0,1], \mathbb{R})$ with $\|f\|_{L^{p}}=1=\|g\|_{L^{p}}$ that

$$
\left\|\frac{f+g}{2}\right\|_{L^{p}}^{p}=\int_{[0,1]}\left|\frac{f+g}{2}\right|^{p} d x \leq \int_{[0,1]} \frac{|f|^{p}+|g|^{p}}{2} d x=1
$$

with equality if and only if $f=g$ almost everywhere. Clearly, $L^{1}([0,1], \mathbb{R})$ and $L^{\infty}([0,1], \mathbb{R})$ are not strictly convex. In $L^{1}([0,1], \mathbb{R})$ the norm is additive on functions
of disjoint support, in $L^{\infty}([0,1], \mathbb{R})$ on characteristic functions of sets whose intersection has positive measure.
(c) Is $C([0,1], \mathbb{R})$ strictly convex?

Solution: $C([0,1], \mathbb{R})$ is not strictly convex, as one can see, e.g., with $f=([0,1] \ni$ $x \mapsto 1 \in \mathbb{R})$ and $g=([0,1] \ni x \mapsto x \in \mathbb{R})$. These functions satisfy $\|f\|_{\text {sup }}=\|g\|_{\text {sup }}=$ $1, f \neq g$, and $\left\|\frac{f+g}{2}\right\|_{\text {sup }}=1$.
(d) If X^{*} is strictly convex, then every bounded linear functional ψ defined on a subspace U of X has a unique extension Ψ to all of X such that $\|\Psi\|_{X^{*}}=\|\psi\|_{L(U, \mathbb{R})}$.

Solution: Let $\psi \in L(U, \mathbb{R}) \backslash\{0\}$. The Hahn-Banach theorem ensures that there exists $\Psi \in X^{*}$ with $\|\Psi\|_{X^{*}}=\|\psi\|_{L(U, \mathbb{R})}$. Let $\Phi \in X^{*}$ satisfy that $\left.\Phi\right|_{U}=\left.\Psi\right|_{U}=\psi$ and $\|\Phi\|_{X^{*}}=\|\psi\|_{L(U, \mathbb{R})}=\|\Psi\|_{X^{*}}>0$. Then $\frac{\Phi+\Psi}{2} \in X^{*}$ is also an extension of ψ with $\left\|\frac{\Phi+\Psi}{2}\right\|_{X^{*}}=\|\psi\|_{L(U, \mathbb{R})}$. The strict convexity of X^{*} implies, according to (a), that $\Psi=\Phi$.

7.6. Another application of the Hahn-Banach theorem

Let $\left(X,\|\cdot\|_{X}\right)$ be a normed \mathbb{K}-vector space (with $\left.\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}\right)$, let $\left(x_{j}\right)_{j \in \mathbb{N}} \subseteq X$ be a sequence of points X, let $\gamma \in[0, \infty)$, and let $\left(\alpha_{j}\right)_{j \in \mathbb{N}} \subseteq \mathbb{K}$ be a sequence. Prove that the following are equivalent:
(i) There exists a functional $l \in X^{*}$ satisfying

$$
\|l\|_{X^{*}} \leq \gamma \quad \text { and } \quad l\left(x_{j}\right)=\alpha_{j} \quad \text { for all } j \in \mathbb{N}
$$

(ii) It holds that

$$
\left|\sum_{j=1}^{n} \beta_{j} \alpha_{j}\right| \leq \gamma\left\|\sum_{j=1}^{n} \beta_{j} x_{j}\right\|_{X} \quad \text { for all } n \in \mathbb{N} \text { and }\left(\beta_{j}\right)_{j=1}^{n} \subseteq \mathbb{K}
$$

Solution: \Rightarrow : A direct calculation shows for all $n \in \mathbb{N}$ and all $\left(\beta_{j}\right)_{j=1}^{n} \subseteq \mathbb{K}$ that

$$
\left|\sum_{j=1}^{n} \beta_{j} \alpha_{j}\right|=\left|\sum_{j=1}^{n} \beta_{j} l\left(x_{j}\right)\right|=\left|l\left(\sum_{j=1}^{n} \beta_{j} x_{j}\right)\right| \leq\|l\|_{X^{*}}\left\|\sum_{j=1}^{n} \beta_{j} x_{j}\right\|_{X} .
$$

$\Leftarrow:$ Let $U=\operatorname{span}\left\{x_{j}: j \in \mathbb{N}\right\}$. Let $\mathfrak{l}: U \rightarrow \mathbb{K}$ be given by

$$
\mathfrak{l}\left(\sum_{k=1}^{n} \beta_{j} x_{j}\right)=\sum_{k=1}^{n} \beta_{j} \alpha_{j} \quad \text { for all } n \in \mathbb{N},\left(\beta_{j}\right)_{j=1}^{n} \subseteq \mathbb{K}
$$

The mapping \mathfrak{l} is clearly linear (if it is well-defined at all). It is well-defined, though, since $\sum_{k=1}^{n} \beta_{j} x_{j}=0$ for $n \in \mathbb{N},\left(\beta_{j}\right)_{j=1}^{n} \subseteq \mathbb{K}$ implies that $\sum_{k=1}^{n} \beta_{j} \alpha_{j}=0$. By assumption, $\|l\|_{L(U, \mathbb{K})} \leq \gamma$. The Hahn-Banach theorem guarantees the existence of $l \in X^{*}$ with $\|l\|_{X^{*}} \leq \gamma$ and $\left.l\right|_{U}=\mathfrak{l}$ (and therefore, in particular, $l\left(x_{j}\right)=\alpha_{j}$ for all $j \in \mathbb{N}$).

