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7.1. Finite-dimensional subspaces are topologically complemented

Let (X, ‖·‖X) be a K-Banach space (with K ∈ {R,C}) and U ⊆ X a closed subspace.
Show that:

(a) If dim(U) <∞, then U is topologically complemented.

Solution: It is sufficient to construct a projection map P as in Exercise 6.1.
Let e1, . . . , en be a basis of the given finite-dimensional subspace U ⊆ X and let
f1, . . . , fn ∈ L(U,K) be the associated dual basis, uniquely defined by the conditions

fi(ej) = δij :=

1 if i = j,

0 else.

From Hahn–Banach’s theorem it follows that there exist extensions F1, F2, . . . , Fn ∈
L(X;K) with ‖Fi‖L(X,K) = ‖fi‖L(U,K) for every i ∈ {1, 2, . . . , n}. We define

P : X → X, P (x) =
n∑

i=1
Fi(x) ei.

Then P is linear and continuous, since

‖Px‖X ≤
( n∑

i=1
‖Fi‖L(X,K)‖ei‖X

)
‖x‖X for all x ∈ X.

By construction, P (X) ⊆ span{e1, . . . , en} = U . By definition of fi and Fi we have
P (ei) = ei for every i ∈ {1, . . . , n}. Therefore, P (X) = U . Finally, for every x ∈ X,

(P ◦ P )(x) = P
( n∑

i=1
Fi(x) ei

)
=

n∑
i=1

Fi(x)P (ei) =
n∑

i=1
Fi(x) ei = P (x).

It follows from Exercise 6.1 that U is topologically complemented.

(b) If dim(X/U) <∞, then U is topologically complemented.

Solution: Denote by π : X → X/U , π(x) = [x] the canonical quotient map. Since
dim(X/U) = m <∞ we can choose e1, e2, . . . , em ∈ X such that [e1], . . . , [em] form a
basis of X/U . Similar to the above, let f1, . . . fm ∈ L(X/U,K) be the associated dual
basis. For every i ∈ {1, 2, . . . ,m}, set Fi := fi ◦ π : X → K. Next, we define

P : X → X, P (x) =
n∑

i=1
Fi(x) ei.

Since Fi(ej) = fi(π(ej)) = fi([ej ]) = δij for all i, j ∈ {1, 2, . . . ,m}, we have P ◦P = P
as above. Since [e1], . . . , [em] is a basis for X/U , the representatives e1, . . . , em must
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be linearly independent in X. Therefore, P (x) = 0 implies Fi(x) = fi([x]) = 0 for
every i ∈ {1, . . . , n} which in turn implies [x] = [0] or x ∈ U . Conversely, x ∈ U
implies π(x) = [0] and therefore P (x) = 0. Thus we have shown ker(P ) = U . As
in Exercise 6.1, we conclude that (1 − P ) is a continuous projection onto U which
implies that U is topologically complemented.

7.2. Dual spaces of c0 and c

Recall the (R-vector) spaces

c0 :=
{

(xk)k∈N ∈ `∞
∣∣∣ lim

k→∞
xk = 0

}
, c :=

{
(xk)k∈N ∈ `∞

∣∣∣ lim
k→∞

xk exists
}
.

with norm ‖·‖`∞ (cf. problems 3.4 and 4.1).

(a) Show that the dual space of (c0, ‖·‖`∞) is isometrically isomorphic to (`1, ‖·‖`1).

Solution: The linear map Ψ: `1 → (c0)∗ given by

Ψ(y)(x) =
∑
n∈N

xnyn,

for x = (xn)n∈N ∈ c0 and y = (yn)n∈N ∈ `1 is linear and well-defined, since we can
estimate

|Ψ(y)(x)| ≤
∑
n∈N
|xnyn| ≤ ‖x‖`∞‖y‖`1 ,

and consequently also ‖Ψ(y)‖(c0)∗ ≤ ‖y‖`1 . Let us show that in fact ‖Ψ(y)‖(c0)∗ = ‖y‖`1

for every y ∈ `1: given y ∈ `1 we can apply Ψ(y) to the sequence xk = (xk,n)n∈N ∈ c0
given by

xk,n =


yn

|yn| if n ≤ k and yn 6= 0,
0 else,

which satisfies ‖x(k)‖`∞ ≤ 1 and

lim
k→∞
|Ψ(y)(xk)| = lim

k→∞

k∑
n=1
|yn| = ‖y‖`1 ,

implying that

‖Ψ(y)‖(c0)∗ = sup
x∈c0

‖x‖`∞≤1

|Ψ(y)(x)| ≥ ‖y‖`1 .
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Therefore, Ψ is an isometry and in particular is injective.

To prove that Ψ is surjective, we show first that every f ∈ (c0)∗ is determined by its
values on the elements ek = (ek,n)n∈N ∈ c0, k ∈ N, where ek = (0, . . . , 0, 1, 0, . . .) has
the 1 at k-th position: in fact, given x = (xn)n∈N ∈ c0, we have

∥∥∥∥x− N∑
k=1

xkek

∥∥∥∥
`∞

= sup
n>N
|xn|

N→∞−−−→ 0.

and so continuity and linearity of f implies

f(x) = lim
N→∞

f
( N∑

k=1
xkek

)
= lim

N→∞

N∑
k=1

xkf(ek).

Given f ∈ (c0)∗ we claim that y := (f(ek))k∈N ∈ `1 and Ψ(y) = f . Indeed, for any
N ∈ N

N∑
k=1
|f(ek)| =

∞∑
k=1

xN,kf(ek) = f(xN) ≤ ‖f‖(c0)∗ ,

where xN = (xN,k)k∈N ∈ c0 with ‖xN‖`∞ ≤ 1 is defined by

xN,k =


f(ek)
|f(ek)| if k ≤ N and f(ek) 6= 0,
0 else.

Since N is arbitrary, we conclude y ∈ `1. Moreover, given any x = (xk)k∈N ∈ c0 and y
as above, we have

Ψ(y)(x) =
∑
k∈N

xkyk =
∑
k∈N

xkf(ek) = f(x)

which shows that Ψ is surjective.

(b) To which space is the dual space of (c, ‖·‖`∞) isomorphic?

Solution: The dual space of (c, ‖·‖`∞) is also isomorphic to (c0)∗ ∼= `1 but not
isometrically. Recall from Problem 4.1 (Null and non-null limits) that the maps
S : c→ c0 and T : c0 → c, given by

Sx =
(

lim
n→∞

xn, (x1 − lim
n→∞

xn), (x2 − lim
n→∞

xn), . . .
)

for allx = (xn)n∈N ∈ c

and

T (y) 7→
(
(y2 + y1), (y3 + y1), (y4 + y1), . . .

)
for all y = (yn)n∈N ∈ c0
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respectively, are continuous linear mappings which are inverse to each other. Now
define Φ: c∗ → (c0)∗ by

Φ(f) = f ◦ T.

As composition of linear maps, Φ is linear (Φ is the dual mapping of T ). It is also
continuous since

|(Φf)(y)| = |f(Sy)| ≤ ‖f‖c∗‖Sy‖`∞ ≤ 2‖f‖c∗‖y‖`∞

By the construction above, Φ is bijective with continuous inverse given by Φ−1(g) =
g ◦ S for all g ∈ (c0)∗.

7.3. Banach Limits

Define the shift operator T on (the R-Banach space) `∞ = `∞(N,R) by

Ty = (yn+1)n∈N for all y = (yn)n∈N ∈ `∞.

Consider the subspace X = {x ∈ `∞ | ∃y ∈ `∞ s.t. x = y − Ty}.

(a) The closure of X contains the space of sequences that converge to zero.

Solution: With en = (δnk)k∈N for every n ∈ N, note that

T

(
n∑

k=1
ek

)
=

n−1∑
k=1

ek for every n ∈ N,

i.e., en = xn−Txn with xn = ∑n
k=1 ek for every n ∈ N. Thus, X contains {en | n ∈ N}

and therefore also the space of sequences of finite support. The closure of the latter
is the space of null-sequences c0.

(b) Let c be the constant sequence c = (1)n∈N. Show that dist(c,X) = 1 where
dist(c,X) = infx∈X‖c− x‖`∞ .

Solution: Surely d(c,X) ≤ ‖c‖`∞ = 1. Suppose x = y − Ty ∈ X is such that
‖c− x‖`∞ = 1− ε with ε ∈ (0, 1). Then infn∈N xn ≥ ε, and as x = y − Ty, we deduce
from yn+1 = yn − xn ≤ yn − ε (for all n ∈ N) the absurdity that yn ≤ y0 − nε for all
n ∈ N.

(c) By the Hahn–Banach theorem there is a linear functional L : `∞ → R such
that L(c) = 1, ‖L‖L(X,R) = 1 and L(x) = 0 for all x ∈ X. (Remark: Indeed, the
linear function l : span{c} → R, given by l(tc) = t for every t ∈ R, is bounded by
the restriction of the sublinear function X 3 x 7→ dist(x,X) ∈ R to span{c}, and
therefore possesses a linear extension L : X → R satisfying |L(x)| ≤ dist(x,X) for all
x ∈ X.)
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(i) Show that L(Ty) = L(y) for all y ∈ `∞.

Solution: Since, for every y ∈ `∞, it holds that y−Ty ∈ X and since L vanishes
on X, we obtain L(y − Ty) = 0 for all y ∈ `∞, i.e., L(y) = L(Ty) for all y ∈ `∞.

(ii) Verify that L(y) ≥ 0 whenever y ≥ 0 (in the sense that, for y = (yn)n∈N ∈ `∞,
it holds that yn ≥ 0 for all n ∈ N) and deduce that lim infn→∞ yn ≤ L(y) ≤
lim supn→∞ yn for all y ∈ `∞. It follows that L(y) = limn→∞ yn whenever y is
convergent.

Solution: Suppose y ≥ 0 is such that L(y) < 0. Set z = c− y
‖y‖`∞

and note that
0 ≤ zn ≤ 1 for all n ∈ N while L(z) > 1, contradicting ‖L‖(`∞)∗ = 1. Observe
that this implies L(y) ≥ L(z) whenever y ≥ z. Let C = lim infn→∞ yn and choose
N ∈ N so large that yn ≥ C − ε for all n ≥ N . Then L(y) = L(TNy) ≥ C − ε
and thus L(y) ≥ lim infn→∞ yn. Replace y by −y to get the upper bound.

(iii) Find y and z such that L(yz) 6= L(y)L(z).

Solution: Let y = (1+(−1)n−1

2 )n∈N (i.e., the sequence 1, 0, 1, 0, ...) and z = Ty.
Then c = y + z, so L(y) = L(z) = 1

2 , while 0 = L(yz).

(iv) Show that there is no z ∈ `1 such that L(y) = ∑∞
n=1 ynzn for all y = (yn)n∈N ∈ `∞,

so L is a functional in (`∞)∗ \ `1.

Solution: If there was z = (zn)n∈N ∈ `1 so that L(y) = ∑∞
n=1 ynzn for every

y = (yn)n∈N ∈ `∞, then we would get with ek = (δkn)n∈N, k ∈ N, that

zk = L(ek) = 0 for all k ∈ N,

a contradiction.

7.4. Inseparable Disjoint Closed Convex Sets

In the Hilbert space `2 = `2(N,R) of square summable sequences, set A = Re1 and let

B =
{
x ∈ `2 : x1 ≥ n ·

∣∣∣∣xn −
1
n2/3

∣∣∣∣ for all n ≥ 2
}
.

(a) Verify that A and B are disjoint, non-empty, closed and convex.

Solution: The set A is a one-dimensional linear subspace, hence it is closed, convex
and non-empty. The set B is non-empty because x = (n−2/3)n∈N is an element of B.
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Also, B is clearly closed with respect to coordinate-wise convergence, so it is closed
in `2. If x, y ∈ B and t ∈ [0, 1], then (1− t)x+ ty ∈ B because

n
∣∣∣∣(1− t)xn + tyn −

1
n2/3

∣∣∣∣ = n
∣∣∣∣(1− t)(xn −

1
n2/3 ) + t(yn −

1
n2/3 )

∣∣∣∣
≤ (1− t)n

∣∣∣∣xn −
1
n2/3

∣∣∣∣+ tn
∣∣∣∣yn −

1
n2/3

∣∣∣∣
≤ (1− t)x1 + ty1 for all n ≥ 2.

Finally, if x ∈ A ∩B, then x1 ≥ n1/3 for all n ≥ 2, which is impossible.

(b) Prove that A−B is dense in `2 and conclude that there is no non-zero continuous
linear functional on `2 which separates A from B.

Solution: Let x ∈ `2. Define (b(n))n∈N ⊆ `2 by

b
(n)
k =


max{l

∣∣∣xl + 1
l2/3

∣∣∣ : 2 ≤ l ≤ n} : k = 1,
−xk : 2 ≤ k ≤ n,

1
k2/3 : k > n,

and (a(n))n∈N ⊆ `2 by

a
(n)
k =

x1 + b
(n)
1 : k = 1,

0 : k > 1.

Then a ∈ A and b ∈ B and

lim sup
n→∞

‖x− (a(n) − b(n))‖2
`2 = lim sup

n→∞

∞∑
k=n+1

∣∣∣∣xk + 1
k2/3

∣∣∣∣2
≤ 2 lim sup

n→∞

∑
k>n

|xk|2 + 2 lim sup
n→∞

∑
k>n

1
k4/3 = 0.

If ϕ is continuous and ≥ 0 on A−B, then ϕ ≥ 0 on all of `2, so ϕ = 0 by linearity.

7.5. Strict convexity and uniqueness of the Hahn–Banach extension

(a) (Ruston’s Theorem) Show that the following properties of a normed R-vector
space (X, ‖·‖X) are equivalent:

(i) If x 6= y and ‖x‖X = 1 = ‖y‖X then ‖x+y
2 ‖X < 1.

(ii) If x 6= 0 6= y and ‖x+ y‖X = ‖x‖X + ‖y‖X , then x = λy for some λ > 0.
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(iii) If ϕ ∈ X∗ is a nonzero bounded linear functional, then there is at most one
x ∈ X with ‖x‖X = 1 such that ϕ(x) = ‖ϕ‖X∗ .

Remark: A normed space is said to be strictly convex if any of these properties is
satisfied. Point (i) says that the unit sphere contains no non-trivial line segment. Point
(ii) says that equality in the triangle inequality only occurs in the trivial situation.
Point (iii) says that for ϕ 6= 0 the support hyperplane Hϕ = {x ∈ X : ϕ(x) = ‖ϕ‖X∗}
of the unit sphere meets the sphere in at most one point (note that infx∈Hϕ‖x‖X = 1).

Solution: “(ii)⇒ (i)“: Let x, y ∈ X with ‖x‖X = 1 = ‖y‖X and x 6= y. Since
‖x‖X = ‖y‖X , this implies that we cannot have that x = λy with λ > 0. Consequen-
tially, by (ii), it cannot hold that ‖x+ y‖X = ‖x‖X + ‖y‖X . Since ‖x+ y‖X ≤ ‖x‖X +
‖y‖X and equality cannot be the case, we infer that ‖x+ y‖X < ‖x‖X + ‖y‖X = 2.

“(i)⇒ (ii)“: Let x, y ∈ X satisfy that ‖x+ y‖X = ‖x‖X + ‖y‖X where 0 < ‖x‖X ≤
‖y‖X . Then∥∥∥∥∥ x

‖x‖X

+ y

‖y‖X

∥∥∥∥∥
X

≥
∥∥∥∥∥ x

‖x‖X

+ y

‖x‖X

∥∥∥∥∥
X

−
∥∥∥∥∥ y

‖x‖X

− y

‖y‖X

∥∥∥∥∥
X

= 1
‖x‖X

(‖x‖X + ‖y‖X)− ‖y‖X

(
1
‖x‖X

− 1
‖y‖X

)
= 2,

whence by x
‖x‖X

= y
‖y‖X

by (i). Thus, (ii) is satisfied with λ = ‖x‖X

‖y‖X
.

“(iii)⇒ (i)“: Let x, y ∈ X with ‖x‖X = ‖y‖X = 1. Suppose that their midpoint x+y
2

has norm 1 as well. By the Hahn–Banach theorem, there exists ϕ ∈ X∗ such that
‖ϕ‖X∗ = 1 = ϕ(x+y

2 ) = 1
2(ϕ(x) + ϕ(y)). As |ϕ(x)| ≤ 1 and |ϕ(y)| ≤ 1, it follows that

ϕ(x) = 1 = ϕ(y). By (iii), we have x = y = x+y
2 .

“(i)⇒ (iii)“: Let ϕ ∈ X∗ \ {0} be a bounded linear functional and let x, y ∈ X
with ‖x‖X = 1 = ‖y‖X and ϕ(x) = ‖ϕ‖X∗ = ϕ(y). Since ‖ϕ‖X∗ 6= 0, we infer from
‖ϕ‖X∗ = ϕ(x+y

2 ) ≤ ‖ϕ‖X∗‖x+y
2 ‖X that ‖x+y

2 ‖X ≥ 1. By (i), x = y.

(b) For which p ∈ [1,∞] is Lp([0, 1],R) strictly convex?

Solution: If 1 < p < ∞, then the convexity properties of the function R 3 x 7→
|x|p ∈ R ensure for all a, b ∈ R that |a+b

2 |
p ≤ |a|p

2 + |b|p
2 with equality if and only if

a = b. This implies for all f, g ∈ Lp([0, 1],R) with ‖f‖Lp = 1 = ‖g‖Lp that∥∥∥∥∥f + g

2

∥∥∥∥∥
p

Lp

=
∫

[0,1]

∣∣∣∣∣f + g

2

∣∣∣∣∣
p

dx ≤
∫

[0,1]

|f |p + |g|p
2 dx = 1

with equality if and only if f = g almost everywhere. Clearly, L1([0, 1],R) and
L∞([0, 1],R) are not strictly convex. In L1([0, 1],R) the norm is additive on functions
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of disjoint support, in L∞([0, 1],R) on characteristic functions of sets whose intersection
has positive measure.

(c) Is C([0, 1],R) strictly convex?

Solution: C([0, 1],R) is not strictly convex, as one can see, e.g., with f = ([0, 1] 3
x 7→ 1 ∈ R) and g = ([0, 1] 3 x 7→ x ∈ R). These functions satisfy ‖f‖sup = ‖g‖sup =
1, f 6= g, and ‖f+g

2 ‖sup = 1.

(d) If X∗ is strictly convex, then every bounded linear functional ψ defined on a
subspace U of X has a unique extension Ψ to all of X such that ‖Ψ‖X∗ = ‖ψ‖L(U,R).

Solution: Let ψ ∈ L(U,R) \ {0}. The Hahn–Banach theorem ensures that there
exists Ψ ∈ X∗ with ‖Ψ‖X∗ = ‖ψ‖L(U,R). Let Φ ∈ X∗ satisfy that Φ|U = Ψ|U = ψ
and ‖Φ‖X∗ = ‖ψ‖L(U,R) = ‖Ψ‖X∗ > 0. Then Φ+Ψ

2 ∈ X∗ is also an extension of ψ
with ‖Φ+Ψ

2 ‖X∗ = ‖ψ‖L(U,R). The strict convexity of X∗ implies, according to (a), that
Ψ = Φ.

7.6. Another application of the Hahn–Banach theorem

Let (X, ‖·‖X) be a normed K-vector space (with K ∈ {R,C}), let (xj)j∈N ⊆ X be a
sequence of points X, let γ ∈ [0,∞), and let (αj)j∈N ⊆ K be a sequence. Prove that
the following are equivalent:

(i) There exists a functional l ∈ X∗ satisfying

‖l‖X∗ ≤ γ and l(xj) = αj for all j ∈ N.

(ii) It holds that∣∣∣∣∣∣
n∑

j=1
βjαj

∣∣∣∣∣∣ ≤ γ

∥∥∥∥∥∥
n∑

j=1
βjxj

∥∥∥∥∥∥
X

for all n ∈ N and (βj)n
j=1 ⊆ K.

Solution: ⇒: A direct calculation shows for all n ∈ N and all (βj)n
j=1 ⊆ K that∣∣∣∣∣∣

n∑
j=1

βjαj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

j=1
βjl(xj)

∣∣∣∣∣∣ =

∣∣∣∣∣∣l
 n∑

j=1
βjxj

∣∣∣∣∣∣ ≤ ‖l‖X∗

∥∥∥∥∥∥
n∑

j=1
βjxj

∥∥∥∥∥∥
X

.

⇐: Let U = span{xj : j ∈ N}. Let l : U → K be given by

l

(
n∑

k=1
βjxj

)
=

n∑
k=1

βjαj for all n ∈ N, (βj)n
j=1 ⊆ K.
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The mapping l is clearly linear (if it is well-defined at all). It is well-defined, though,
since ∑n

k=1 βjxj = 0 for n ∈ N, (βj)n
j=1 ⊆ K implies that ∑n

k=1 βjαj = 0. By
assumption, ‖l‖L(U,K) ≤ γ. The Hahn–Banach theorem guarantees the existence of
l ∈ X∗ with ‖l‖X∗ ≤ γ and l|U = l (and therefore, in particular, l(xj) = αj for all
j ∈ N).
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