8.1. Strict convexity and extremal points

A normed space $(X, \|\cdot\|)$ with $X \neq \{0\}$ is strictly convex (cf. Problem 7.5) if and only if the unit sphere $S := \{x \in X : \|x\| = 1\}$ is equal to the set of extremal points of the closed unit ball $B := \{x \in X : \|x\| \le 1\}$.

Solution: <u>"⇒":</u> Suppose that $(X, \|\cdot\|)$ is strictly convex. We need to show that ex(B) = S. Note that no point in $B \setminus S$ can be extremal, since every point in $B \setminus S$ is the center of a small ball contained in B. That is, $ex(B) \subseteq S$. Thus, we only need to prove that $S \subseteq ex(B)$. For this, let $x \in S$, $y_1, y_2 \in B$ and $\lambda \in (0, 1)$ be such that $x = \lambda y_1 + (1 - \lambda)y_2$. Choosing $\alpha \in (0, 1)$ small enough so that $0 < \lambda - \alpha < \lambda + \alpha < 1$, we can write $x = \frac{1}{2}(z_1 + z_2)$ with $z_1 = (\lambda - \alpha)y_1 + (1 - \lambda + \alpha)y_2 \in B$ and $z_2 = (\lambda + \alpha)y_1 + (1 - \lambda - \alpha)y_2 \in B$. By the triangle inequality, we obtain

$$1 = \|x\| = \left\|\frac{1}{2}(z_1 + z_2)\right\| \le \frac{1}{2}\|z_1\| + \frac{1}{2}\|z_2\|,$$

which can be satisfied for $\max\{||z_1||, ||z_2||\} \le 1$ if and only if $||z_1|| = 1 = ||z_2||$. Strict convexity now ensures that $z_1 = z_2 = x$, which, in turn, yields $y_1 = y_2 = x$. Hence, $x \in ex(B)$. As $x \in S$ was arbitrary, we showed $S \subseteq ex(B)$, as desired.

<u>"</u> \Leftarrow ": Suppose that S = ex(B). Hence, for all $x, y \in X$ with $||x|| = ||y|| = ||\frac{x+y}{2}|| = 1$ we get x = y. This shows that X is strictly convex.

8.2. Closedness/Non-closedness of sets of extremal points

(a) Let $K \subseteq \mathbb{R}^2$ be a closed convex subset. Prove that the set E of all extremal points of K is closed.

Solution: It is clear that the set E of extremal points of the closed convex subset $K \subseteq \mathbb{R}^2$ must be a subset of the boundary ∂K of K because the center of every ball contained in K is a convex combination of other points in this ball.

Let $(y_n)_{n\in\mathbb{N}}$ be a sequence in E which converges to some $y_{\infty} \in K$. Suppose $y_{\infty} \notin E$. Then there exist distinct points $x_1, x_0 \in K$ and some $0 < \lambda < 1$ such that $\lambda x_1 + (1 - \lambda)x_0 = y_{\infty}$. For any $n \in \mathbb{N}$, the point y_n is extremal and therefore cannot lie on the segment between x_1 and x_0 . Intuitively, the sequence $(y_n)_{n\in\mathbb{N}}$ must approach y_{∞} from "above" or "below" this segment. By restriction to a subsequence, we can assume that all y_n strictly lie on the same side of the the affine line through x_1 and x_2 . By convexity of K, the triangle $D = \operatorname{conv}\{x_1, x_0, y_1\}$ is a subset of K. The arguments above and convergence $y_n \to y_{\infty}$ imply that for $n \in \mathbb{N}$ sufficiently large, y_n is in the interior of D and thus in the interior of K. This however contradicts $(y_n)_{n\in\mathbb{N}} \subseteq E \subseteq \partial K$. We conclude $y \in E$ which proves that E is closed.

(b) Consider the convex hull C of the circle $\{(1 + \cos(\varphi), \sin(\varphi), 0) : 0 \le \varphi \le 2\pi\}$ and the points $(0, 0, \pm 1)$ in \mathbb{R}^3 . Determine the extremal points of C.

Solution: The convex hull is a circular double cone with the two tips joined by a straight line segment on the z-axis. Thus the extremal points are the given points (circle and $(0, 0, \pm 1)$) minus the origin.

8.3. Birkhoff–von Neumann theorem

A matrix $M = (M_{ij})_{1 \le i,j \le n} \in \mathbb{R}^{n \times n}$ (where $n \in \mathbb{N}$) with $M_{ij} \ge 0$ is called *doubly* stochastic iff its rows and columns all add up to one: $\sum_{i=1}^{n} M_{ij} = 1 = \sum_{i=1}^{n} M_{ji}$. Prove that every doubly stochastic matrix is a convex combination of permutation matrices.

Hint: Suppose M is a doubly stochastic matrix. Find a permutation matrix P and $\lambda \in (0, \infty)$ such that $N = M - \lambda P$ has non-negative entries. If $N \ge 0$ then $\frac{1}{1-\lambda}N$ is doubly stochastic. One way to find P is as follows:

Recall Hall's Marriage Theorem: Assume X and Y are finite sets and let $\Gamma \subseteq X \times Y$. The following statements are equivalent:

- (i) There exists an injective function $f: X \to Y$ whose graph is contained in Γ .
- (ii) For every $A \subseteq X$ the set $\Gamma(A) = \{y \in Y \mid (x, y) \in \Gamma \text{ for some } x \in A\}$ satisfies $\#\Gamma(A) \ge \#A$.

Let $X = Y = \{1, 2, ..., n\}$ and let $\Gamma = \{(i, j) \in X \times Y \mid M_{ij} > 0\}$. Use the fact that M is doubly stochastic to verify condition (ii). The injective map $f: X \to Y$ from (i) determines a permutation of $\{1, 2, ..., n\}$.

Solution: We verify the condition of Hall's marriage theorem for the set Γ proposed in the above hint. Consider now an arbitrary set $A \subseteq X$. Since the rows and columns of M all sum to one, we have:

$$\#\Gamma(A) = \sum_{(i,j)\in X\times\Gamma(A)} M_{ij} \ge \sum_{(i,j)\in A\times\Gamma(A)} M_{ij} \ge \sum_{(i,j)\in (A\times Y)\cap\Gamma} M_{ij} = \sum_{(i,j)\in A\times Y} M_{ij} = \#A.$$

last update: 20 November 2021

Now Hall's marriage theorem provides us with an injective map $f: X \to Y$ whose graph is contained in Γ . Note that f is bijective because #X = #Y. The permutation matrix $P = (P_{ij})_{1 \leq i,j \leq n} \in \mathbb{R}^{n \times n}$ associated with f is given by

$$P_{ij} = \begin{cases} 1 & \text{if } j = f(i) \\ 0 & \text{otherwise.} \end{cases}$$

Since the graph of f is contained in Γ , we have $\lambda = \min_{1 \le i \le n} M_{i,f(i)} > 0$. Clearly, $N := M - \lambda P$ has non-negative entries. If N = 0 then $\lambda = 1$, and M is a permutation matrix, otherwise $\lambda < 1$ and $M = \lambda P + (1 - \lambda) \frac{1}{1-\lambda} N$ is a genuine convex combination of two doubly stochastic matrices, namely P and $\frac{1}{1-\lambda}N$. Thus, we obtained that permutation matrices are the extremal points in the convex set of doubly stochastic matrices. Birkhoff-von Neumann's theorem now follows from Krein-Milman's theorem.

8.4. Topologies induced by linear functionals

Let X be a real vector space.

(a) Let $n \in \mathbb{N}$ and let $\varphi_1, \varphi_2, \ldots, \varphi_n, \psi \colon X \to \mathbb{R}$ be linear functionals. Prove that the following are equivalent:

- (i) There exist $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ satisfying $\psi = \sum_{k=1}^n \lambda_k \varphi_k$.
- (ii) There is a constant $C \in (0, \infty)$ such that $|\psi(x)| \leq C \max_{1 \leq k \leq n} |\varphi_k(x)|$ for all $x \in X$.
- (iii) $\ker(\psi) \supseteq \bigcap_{k=1}^n \ker(\varphi_k).$

Solution: $(i) \Rightarrow (ii)$: With $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ such that $\psi = \sum_{k=1}^n \lambda_k \varphi_k$, we obtain for all $x \in \overline{X}$ that

$$|\psi(x)| \le \sum_{k=1}^n |\lambda_k| |\varphi_k(x)| \le \max_{1 \le k \le n} |\varphi_k(x)| \sum_{k=1}^n |\lambda_k|.$$

That is, (ii) holds with $C = \sum_{k=1}^{n} |\lambda_k|$ if the sum is not 0, in which case any $C \in (0, \infty)$ works.

 $\frac{(ii) \Rightarrow (iii)}{\text{we clearly obtain for every } x \in \bigcap_{k=1}^{n} \ker(\varphi_k) \text{ that } |\psi(x)| \leq C \max_{1 \leq k \leq n} |\varphi_k(x)| \text{ for all } x \in X,$

"(*iii*) \Rightarrow (*i*)": Consider the linear function $\phi \colon X \to \mathbb{R}^n$ given by

$$\phi(x) = (\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x))$$
 for all $x \in X$.

last update: 20 November 2021

Note that for all $x, y \in X$ it holds that $x - y \in \ker(\phi)$ if and only if $\varphi_k(x) = \varphi_k(y)$ for all $k \in \{1, 2, ..., n\}$. Thus, $X/\ker(\phi)$ is isomorphic to $\operatorname{im}(\phi)$. Moreover, since $\ker(\psi) \supseteq \bigcap_{k=1}^n \ker(\varphi_k) = \ker(\phi)$, we see that there is a well-defined linear map $l: \operatorname{im}(\phi) \to \mathbb{R}$ satisfying

 $l(\phi(x)) = \psi(x)$ for all $x \in X$.

We know from linear algebra (if you insist you can also invoke the Hahn–Banach theorem) that there exists a linear extension $L: \mathbb{R}^n \to \mathbb{R}$ of l. Moreover do we know from linear algebra (if you insist you can also invoke Riesz's representation theorem for Hilbert spaces) that there exist $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ such that $L(y) = \sum_{k=1}^n \lambda_k y_k$ for all $y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$. This ensures in particular that

$$\psi(x) = l(\phi(x)) = L(\phi(x)) = \sum_{k=1}^{n} \lambda_k \varphi_k(x)$$
 for all $x \in X$.

(b) Let $F \subseteq \{f \mid X \to \mathbb{R} : f \text{ is linear}\}$ be a family of linear functionals and let \mathcal{U}_F be the topology on X induced by F. Prove that

 $\operatorname{span}(F) = \{ \varphi \colon X \to \mathbb{R} \mid \varphi \text{ is } \mathcal{U}_F \text{-continuous and linear} \}.$

Solution: If $\varphi \colon X \to \mathbb{R}$ is linear and \mathcal{U}_F -continuous, then the set $\varphi^{-1}((-1,1))$ is \mathcal{U}_F -open. Hence, there are $f_1, \ldots, f_n \in F$ and $\varepsilon \in (0, \infty)$ such that

$$\varphi^{-1}((-1,1)) \supseteq \bigcap_{k=1}^n f_k^{-1}((-\varepsilon,\varepsilon)).$$

By linearity, we infer for every $m \in \mathbb{N}$ that

$$\varphi^{-1}((-\frac{1}{m},\frac{1}{m})) \supseteq \bigcap_{k=1}^{n} f_k^{-1}((-\frac{\varepsilon}{m},\frac{\varepsilon}{m})).$$
(1)

Letting $m \to \infty$, we obtain that $\varphi(x) = 0$ for all $x \in \bigcap_{k=1}^{m} \ker(f_k)$. Part (a) above now ensures that $\varphi \in \operatorname{span}(\{f_k \mid k \in \{1, 2, \ldots, n\}\}) \subseteq \operatorname{span}(F)$.

Remark: We checked condition (i) in (a). We could also have deduced from (1) that $|\varphi(x)| \leq \frac{1}{\varepsilon} \max_{1 \leq k \leq n} |f_k(x)|$ for every $x \in X$, in other words: condition (ii) of (a).

(c) Suppose X is a normed space. Consider a weak*-continuous linear functional $\varphi: X^* \to \mathbb{R}$. Prove that there is $x \in X$ such that $\varphi(f) = f(x)$ for all $f \in X^*$.

Solution: This follows immediately from (b) when taking $F = \{X^* \ni \varphi \mapsto \varphi(x) \in \mathbb{R} : x \in X\}$ and noticing that $F = \operatorname{span}(F)$.

8.5. Weak topologies are in general non-metrizable

Let $(X, \|\cdot\|_X)$ be a normed space and let τ_w denote the weak topology on X. This exercise's goal is to show that τ_w is not metrizable if X is infinite-dimensional. Let us start by recalling what a *neighbourhood basis* is and what it means for a topology to be *metrizable*:

• (*Neighbourhood basis*) Let (Y, τ) be a topological space. Denoting the set of all neighbourhoods of a point $y \in Y$ by

 $\mathcal{U}_y = \{ U \subseteq Y \mid \exists O \in \tau : y \in O \subseteq U \},\$

we call $\mathcal{B}_{y} \subseteq \mathcal{U}_{y}$ a *neighbourhood basis* of y in (Y, τ) , if $\forall U \in \mathcal{U}_{y} \exists V \in \mathcal{B}_{y} : V \subseteq U$.

• (Metrizability) A topological space (Y, τ) is called *metrizable* if there exists a metric $d: Y \times Y \to \mathbb{R}$ on Y denoting $B_{\varepsilon}(a) = \{y \in Y \mid d(y, a) < \varepsilon\}$ (for $a \in Y$, $\varepsilon \in (0, \infty)$), there holds

 $\tau = \{ O \subseteq Y \mid \forall a \in O \exists \varepsilon > 0 : B_{\varepsilon}(a) \subseteq O \} \}.$

(a) Show that any metrizable topology τ satisfies the first axiom of countability which means that each point has a countable neighbourhood basis.

Solution: Let (Y, τ) be a metrizable topological space. Let $d: Y \times Y \to \mathbb{R}$ be a metric inducing the topology τ . Given $y \in Y$, we consider

$$B_{\varepsilon}(y) := \{ z \in Y \mid d(y, z) < \varepsilon \} \text{ for } \varepsilon \in (0, \infty), \qquad \mathcal{B}_y := \left\{ B_{\frac{1}{n}}(y) \mid n \in \mathbb{N} \right\}.$$

Let U now be any neighbourhood of y. Since (Y, τ) is metrizable, there exists $\varepsilon \in (0, \infty)$ such that $B_{\varepsilon}(y) \subseteq U$. Choosing $\mathbb{N} \ni n > \frac{1}{\varepsilon}$, we have $B_{\frac{1}{n}}(y) \subseteq U$, which shows that \mathcal{B}_y is a neighbourhood basis of y in (Y, τ) . Since $y \in Y$ is arbitrary and \mathcal{B}_y countable, we have verified the first axiom of countability for (Y, τ) .

(b) Prove that

$$\mathcal{B} := \left\{ \bigcap_{k=1}^{n} f_{k}^{-1} \left((-\varepsilon, \varepsilon) \right) \mid n \in \mathbb{N}, \ f_{1}, \dots, f_{n} \in X^{*}, \ \varepsilon > 0 \right\}$$

is a neighbourhood basis of $0 \in X$ in (X, τ_w) .

Solution: Let $U \subseteq X$ be any neighbourhood of $0 \in X$ in (X, τ_w) . Then there exists $\Omega \in \tau_w$ such that $0 \in \Omega \subseteq U$. By definition of weak topology, Ω is an arbitrary union and finite intersection of sets of the form $f^{-1}(I)$ for $f \in X^*$ and $I \subseteq \mathbb{R}$ open. In

last update: 20 November 2021

5/8

particular, Ω contains a finite intersection of such sets containing the origin. More precisely, there exist $f_1, \ldots, f_n \in X^*$ and open sets $I_1, \ldots, I_n \subseteq \mathbb{R}$ such that

$$\Omega \supseteq \bigcap_{k=1}^{n} f_k^{-1}(I_k) \ni 0$$

By linearity $f_k(0) = 0 \in I_k$ for every $k \in \{1, \ldots, n\}$. Since $I_1, \ldots, I_n \subseteq \mathbb{R}$ are open and *n* finite, there exists $\varepsilon \in (0, \infty)$ such that $(-\varepsilon, \varepsilon) \subseteq I_k$ for every $k \in \{1, \ldots, n\}$. Thus,

$$\Omega \supseteq \bigcap_{k=1}^{n} f_k^{-1} \left((-\varepsilon, \varepsilon) \right) = \{ x \in X \mid \forall k \in \{1, \dots, n\} \colon |f_k(x)| < \varepsilon \}$$

and we conclude that a neighbourhood basis of $0 \in X$ in (X, τ_w) is given by

$$\mathcal{B} := \left\{ \bigcap_{k=1}^{n} f_{k}^{-1} \big((-\varepsilon, \varepsilon) \big) \ \Big| \ n \in \mathbb{N}, \ f_{1}, \dots, f_{n} \in X^{*}, \ \varepsilon \in (0, \infty) \right\}.$$

(c) Show that if (X, τ_w) is first countable, then $(X^*, \|\cdot\|_{X^*})$ admits a countable algebraic basis.

Solution: Let $(X, \|\cdot\|_X)$ be a normed space and suppose that (X, τ_w) is first countable. Then there exists a countable neighbourhood basis $\{A_{\alpha}\}_{\alpha \in \mathbb{N}}$ of $0 \in X$ in (X, τ_w) . Since \mathcal{B} defined in (b) is also a neighbourhood basis of $0 \in X$ in (X, τ_w) , we have

$$\forall \alpha \in \mathbb{N} \quad \exists B_{\alpha} \in \mathcal{B} : \quad B_{\alpha} \subseteq A_{\alpha}.$$

By construction of \mathcal{B} , this means that

$$\forall \alpha \in \mathbb{N} \quad \exists n_{\alpha} \in \mathbb{N}, \ f_{1}^{\alpha}, \dots, f_{n_{\alpha}}^{\alpha} \in X^{*}, \ \varepsilon_{\alpha} \in (0, \infty) :$$
$$B_{\alpha} := \{ x \in X \mid \forall k \in \{1, \dots, n_{\alpha}\} \colon |f_{k}^{\alpha}(x)| < \varepsilon_{\alpha} \} \subseteq A_{\alpha}.$$

In other words, the topology τ_{w} coincides with the topology \mathcal{U}_{F} which is induced by $F = \bigcup_{\alpha \in \mathbb{N}} \bigcup_{k=1}^{n_{\alpha}} \{f_{k}^{\alpha}\}$ (cf. Problem 8.4 (*Topologies induced by linear functionals*)). According to 8.4(b), $X^{*} \subseteq \operatorname{span}(F)$. In other words, F contains an algebraic basis of X^{*} and F is clearly countable.

(d) Assume that X is infinite-dimensional and conclude from (a), (c) and Problem 2.2 (Algebraic bases for Banach spaces) that (X, τ_w) is not metrizable.

Solution: By (a) and (c), $(X^*, \|\cdot\|_{X^*})$ admits a countable algebraic basis. But since X is infinite-dimensional, $(X^*, \|\cdot\|_{X^*})$ is infinite-dimensional. Moreover, $(X^*, \|\cdot\|_{X^*})$ is a Banach space. But as such, according to Problem 2.2, it can only have a countable algebraic basis if it is finite-dimensional, a contradiction.

8.6. Weak and weak^{*} topology on ℓ^1

Let $e_n = (\delta_{kn})_{k \in \mathbb{N}} \subseteq \mathbb{R}$ for every $n \in \mathbb{N}$. For $p \in (1, \infty)$, $(e_n)_{n \in \mathbb{N}} \subseteq \ell^p$ converges to 0 with respect to both weak as well as weak^{*} convergence in ℓ^p as $n \to \infty$. ℓ^1 behaves similarly with respect to weak^{*} convergence, but differently with respect to weak convergence:

(a) Show that $(e_n)_{n\in\mathbb{N}}\subseteq \ell^1$ does not converge weakly to 0 in ℓ^1 .

Solution: Let $\varphi \in (\ell^1)^*$ be given by $\varphi(x) = \sum_{n=1}^{\infty} x_n$ for $x = (x_n)_{n \in \mathbb{N}} \in \ell^1$ (in other words, φ is the element of the dual space of ℓ^1 which is represented by the constant sequence $(1)_{n \in \mathbb{N}} \in \ell^\infty$). Then we obtain that $\varphi(e_n) = 1$ for all $n \in \mathbb{N}$, contradicting $e_n \xrightarrow{w} 0$ in ℓ^1 .

(b) Viewing ℓ^1 as the dual space of c_0 (cf. Problem 7.2 (*Dual spaces of* c_0 and c)), argue that $(e_n)_{n \in \mathbb{N}}$ converges to zero in the weak^{*} topology.

Solution: We identify ℓ^1 with $(c_0)^*$ via the mapping $\Phi = (\ell^1 \ni (x_n)_{n \in \mathbb{N}} \mapsto (c_0 \ni (y_n)_{n \in \mathbb{N}} \mapsto \sum_{n=1}^{\infty} x_n y_n \in \mathbb{R}) \in (c_0)^*$. With this, we obtain for every $y = (y_n)_{n \in \mathbb{N}} \in c_0$ that

 $0 = \lim_{n \to \infty} y_n = \lim_{n \to \infty} [\Phi(e_n)](y),$

that is, $(\Phi(e_n))_{n \in \mathbb{N}} \xrightarrow{w^*} 0$ in $(c_0)^*$ as $n \to \infty$. And this is exactly what we meant by saying that $e_n \xrightarrow{w^*} 0$ in ℓ^1 with ℓ^1 being viewed as $(c_0)^*$.

(c) (Schur's Theorem.) Let $(x_n)_{n \in \mathbb{N}} \subseteq \ell^1$ be converging weakly to 0. Prove that $||x_n||_{\ell^1} \to 0$ as $k \to \infty$.

Solution: Suppose that $||x_n||_{\ell^1}$ does not converge to zero as $n \to \infty$. After passing to a subsequence there is $\eta \in (0, \infty)$ such that $||x_n||_{\ell^1} \ge \eta$ for all $n \in \mathbb{N}$. Note that for every $K \in \mathbb{N}$ it holds that $f_K \colon \ell^1 \to \mathbb{R}$, defined by $f_K(y) = \sum_{k=1}^K |y_k|$ for all $y = (y_k)_{k \in \mathbb{N}} \in \ell^1$, is weakly continuous. Hence, we obtain for every $K \in \mathbb{N}$ that $f_K(x_n) \to 0$ as $n \to \infty$. Thus, there exists $J \colon \mathbb{N} \times (0, \infty) \to \mathbb{N}$ satisfying that

$$\sup_{j \ge J(K,\varepsilon)} f_K(x_j) \le \varepsilon \quad \text{for all } K \in \mathbb{N}, \varepsilon \in (0,\infty).$$

Moreover, there exists $L: \mathbb{N} \times (0, \infty) \to \mathbb{N}$ satisfying that (using the notation $x_n = (x_{n,j})_{j \in \mathbb{N}}$)

$$\sum_{j=1}^{L(n,\varepsilon)} |x_{n,j}| \ge ||x_n||_{\ell^1} - \varepsilon \quad \text{for all } n \in \mathbb{N}, \varepsilon \in (0,\infty).$$

Now, define $(K_j)_{j \in \mathbb{N}_0} \subseteq \mathbb{N}$, $(n_j)_{j \in \mathbb{N}_0} \subseteq \mathbb{N}$ so that

last update: 20 November 2021

- $K_0 = n_0 = 1$,
- $n_j = \max\{J(K_{j-1}, \frac{1}{i}), n_{j-1} + 1\}$ for all $j \in \mathbb{N}$,
- $K_j = \max\{L(n_j, \frac{1}{i}), K_{j-1} + 1\}$ for all $j \in \mathbb{N}$.

Note that $(n_j)_{j \in \mathbb{N}_0}$ and $(K_j)_{j \in \mathbb{N}_0}$ are strictly increasing. In addition, the fact that for all $j \in \mathbb{N}$ it holds that $n_j \geq J(K_{j-1}, \frac{1}{j})$ as well as $K_j \geq L(n_j, \frac{1}{j})$ implies for all $j \in \mathbb{N}$ that

$$\sum_{k=1}^{K_{j-1}} |x_{n_j,k}| \le \frac{1}{j} \quad \text{and} \quad \sum_{k=1}^{K_j} |x_{n_j,k}| \ge \|x_{n_j}\|_{\ell^1} - \frac{1}{j}.$$

In particular, it holds for all $j \in \mathbb{N}$ that

$$\sum_{k=K_{j-1}+1}^{K_j} |x_{n_j,k}| \ge ||x_{n_j}||_{\ell^1} - \frac{2}{j} \quad \text{and} \quad \sum_{k=K_j+1}^{\infty} |x_{n_j,k}| \le \frac{1}{j}.$$

Hence, for $y = (y_k)_{k \in \mathbb{N}} \in \ell^{\infty}$, defined via

$$y_k = \begin{cases} 0 & : k = 1, \\ \operatorname{sign}(x_{n_j,k}) & : \text{ if } K_{j-1} < k \le K_j \text{ for some } j \in \mathbb{N}, \end{cases}$$

we obtain, by what was deduced above, for every $j \in \mathbb{N}$ that

$$\sum_{k=1}^{\infty} y_k x_{n_j,k} = \sum_{k=1}^{K_{j-1}} y_k x_{n_j,k} + \sum_{k=K_{j-1}+1}^{K_j} y_k x_{n_j,k} + \sum_{k=K_j+1}^{\infty} y_k x_{n_j,k}$$
$$\geq -\sum_{k=1}^{K_{j-1}} |x_{n_j,k}| + \sum_{k=K_{j-1}+1}^{K_j} |x_{n_j,k}| - \sum_{k=K_j+1}^{\infty} |x_{n_j,k}|$$
$$\geq ||x_{n_j}||_{\ell^1} - \frac{4}{j} \geq \eta - \frac{4}{j}.$$

This implies that $\limsup_{n\to\infty} \sum_{k=1}^{\infty} y_k x_{n,k} \ge \eta > 0$, contradicting $x_n \stackrel{w}{\rightharpoonup} 0$ in ℓ^1 .