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8.1. Strict convexity and extremal points

A normed space (X, ‖·‖) with X 6= {0} is strictly convex (cf. Problem 7.5) if and only
if the unit sphere S := {x ∈ X : ‖x‖ = 1} is equal to the set of extremal points of the
closed unit ball B := {x ∈ X : ‖x‖ ≤ 1}.

Solution: “⇒“: Suppose that (X, ‖·‖) is strictly convex. We need to show that
ex(B) = S. Note that no point in B \ S can be extremal, since every point in
B \ S is the center of a small ball contained in B. That is, ex(B) ⊆ S. Thus, we
only need to prove that S ⊆ ex(B). For this, let x ∈ S, y1, y2 ∈ B and λ ∈ (0, 1)
be such that x = λy1 + (1 − λ)y2. Choosing α ∈ (0, 1) small enough so that
0 < λ−α < λ+α < 1, we can write x = 1

2(z1+z2) with z1 = (λ−α)y1+(1−λ+α)y2 ∈ B
and z2 = (λ+ α)y1 + (1− λ− α)y2 ∈ B. By the triangle inequality, we obtain

1 = ‖x‖ =
∥∥∥∥1

2(z1 + z2)
∥∥∥∥ ≤ 1

2‖z1‖+ 1
2‖z2‖,

which can be satisfied for max{‖z1‖, ‖z2‖} ≤ 1 if and only if ‖z1‖ = 1 = ‖z2‖. Strict
convexity now ensures that z1 = z2 = x, which, in turn, yields y1 = y2 = x. Hence,
x ∈ ex(B). As x ∈ S was arbitrary, we showed S ⊆ ex(B), as desired.

“⇐“: Suppose that S = ex(B). Hence, for all x, y ∈ X with ‖x‖ = ‖y‖ = ‖x+y
2 ‖ = 1

we get x = y. This shows that X is strictly convex.

8.2. Closedness/Non-closedness of sets of extremal points

(a) Let K ⊆ R2 be a closed convex subset. Prove that the set E of all extremal
points of K is closed.

Solution: It is clear that the set E of extremal points of the closed convex subset
K ⊆ R2 must be a subset of the boundary ∂K of K because the center of every ball
contained in K is a convex combination of other points in this ball.

Let (yn)n∈N be a sequence in E which converges to some y∞ ∈ K. Suppose y∞ /∈
E. Then there exist distinct points x1, x0 ∈ K and some 0 < λ < 1 such that
λx1 + (1− λ)x0 = y∞. For any n ∈ N, the point yn is extremal and therefore cannot
lie on the segment between x1 and x0. Intuitively, the sequence (yn)n∈N must approach
y∞ from “above” or “below” this segment. By restriction to a subsequence, we can
assume that all yn strictly lie on the same side of the the affine line through x1 and
x2. By convexity of K, the triangle D = conv{x1, x0, y1} is a subset of K. The
arguments above and convergence yn → y∞ imply that for n ∈ N sufficiently large,
yn is in the interior of D and thus in the interior of K. This however contradicts
(yn)n∈N ⊆ E ⊆ ∂K. We conclude y ∈ E which proves that E is closed.
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(b) Consider the convex hull C of the circle {(1 + cos(ϕ), sin(ϕ), 0) : 0 ≤ ϕ ≤ 2π}
and the points (0, 0,±1) in R3. Determine the extremal points of C.

Solution: The convex hull is a circular double cone with the two tips joined by a
straight line segment on the z-axis. Thus the extremal points are the given points
(circle and (0, 0,±1)) minus the origin.

8.3. Birkhoff–von Neumann theorem

A matrix M = (Mij)1≤i,j≤n ∈ Rn×n (where n ∈ N) with Mij ≥ 0 is called doubly
stochastic iff its rows and columns all add up to one: ∑n

i=1Mij = 1 = ∑n
i=1Mji. Prove

that every doubly stochastic matrix is a convex combination of permutation matrices.

Hint: Suppose M is a doubly stochastic matrix. Find a permutation matrix P and
λ ∈ (0,∞) such that N = M − λP has non-negative entries. If N ≥ 0 then 1

1−λN is
doubly stochastic. One way to find P is as follows:

Recall Hall’s Marriage Theorem: Assume X and Y are finite sets and let Γ ⊆
X × Y . The following statements are equivalent:

(i) There exists an injective function f : X → Y whose graph is contained in Γ.

(ii) For every A ⊆ X the set Γ(A) = {y ∈ Y | (x, y) ∈ Γ for some x ∈ A} satisfies
#Γ(A) ≥ #A.

Let X = Y = {1, 2, . . . , n} and let Γ = {(i, j) ∈ X × Y |Mij > 0}. Use the fact that
M is doubly stochastic to verify condition (ii). The injective map f : X → Y from (i)
determines a permutation of {1, 2, . . . , n}.

Solution: We verify the condition of Hall’s marriage theorem for the set Γ proposed
in the above hint. Consider now an arbitrary set A ⊆ X. Since the rows and columns
of M all sum to one, we have:

#Γ(A) =
∑

(i,j)∈X×Γ(A)
Mij ≥

∑
(i,j)∈A×Γ(A)

Mij ≥
∑

(i,j)∈(A×Y )∩Γ
Mij =

∑
(i,j)∈A×Y

Mij = #A.
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Now Hall’s marriage theorem provides us with an injective map f : X → Y whose
graph is contained in Γ. Note that f is bijective because #X = #Y . The permutation
matrix P = (Pij)1≤i,j≤n ∈ Rn×n associated with f is given by

Pij =
1 if j = f(i)

0 otherwise.

Since the graph of f is contained in Γ, we have λ = min1≤i≤nMi,f(i) > 0. Clearly,
N := M −λP has non-negative entries. If N = 0 then λ = 1, and M is a permutation
matrix, otherwise λ < 1 and M = λP + (1−λ) 1

1−λN is a genuine convex combination
of two doubly stochastic matrices, namely P and 1

1−λN . Thus, we obtained that
permutation matrices are the extremal points in the convex set of doubly stochastic
matrices. Birkhoff–von Neumann’s theorem now follows from Krein–Milman’s theorem.

8.4. Topologies induced by linear functionals

Let X be a real vector space.

(a) Let n ∈ N and let ϕ1, ϕ2, . . . , ϕn, ψ : X → R be linear functionals. Prove that
the following are equivalent:

(i) There exist λ1, λ2, . . . , λn ∈ R satisfying ψ = ∑n
k=1 λkϕk.

(ii) There is a constant C ∈ (0,∞) such that |ψ(x)| ≤ C max1≤k≤n|ϕk(x)| for all
x ∈ X.

(iii) ker(ψ) ⊇ ⋂nk=1 ker(ϕk).

Solution: “(i)⇒ (ii)“: With λ1, λ2, . . . , λn ∈ R such that ψ = ∑n
k=1 λkϕk, we obtain

for all x ∈ X that

|ψ(x)| ≤
n∑
k=1
|λk||ϕk(x)| ≤ max

1≤k≤n
|ϕk(x)|

n∑
k=1
|λk|.

That is, (ii) holds with C = ∑n
k=1|λk| if the sum is not 0, in which case any C ∈ (0,∞)

works.

“(ii)⇒ (iii)“: With C ∈ (0,∞) such that |ψ(x)| ≤ C max1≤k≤n|ϕk(x)| for all x ∈ X,
we clearly obtain for every x ∈ ⋂nk=1 ker(ϕk) that ψ(x) = 0. That is, (iii) holds.

“(iii)⇒ (i)“: Consider the linear function φ : X → Rn given by

φ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x)) for all x ∈ X.
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Note that for all x, y ∈ X it holds that x− y ∈ ker(φ) if and only if ϕk(x) = ϕk(y)
for all k ∈ {1, 2, . . . , n}. Thus, X/ ker(φ) is isomorphic to im(φ). Moreover, since
ker(ψ) ⊇ ⋂n

k=1 ker(ϕk) = ker(φ), we see that there is a well-defined linear map
l : im(φ)→ R satisfying

l(φ(x)) = ψ(x) for all x ∈ X.

We know from linear algebra (if you insist you can also invoke the Hahn–Banach
theorem) that there exists a linear extension L : Rn → R of l. Moreover do we know
from linear algebra (if you insist you can also invoke Riesz’s representation theorem
for Hilbert spaces) that there exist λ1, λ2, . . . , λn ∈ R such that L(y) = ∑n

k=1 λkyk for
all y = (y1, y2 . . . , yn) ∈ Rn. This ensures in particular that

ψ(x) = l(φ(x)) = L(φ(x)) =
n∑
k=1

λkϕk(x) for all x ∈ X.

(b) Let F ⊆ {f | X → R : f is linear} be a family of linear functionals and let UF
be the topology on X induced by F . Prove that

span(F ) = {ϕ : X → R | ϕ is UF -continuous and linear}.

Solution: If ϕ : X → R is linear and UF -continuous, then the set ϕ−1((−1, 1)) is
UF -open. Hence, there are f1, . . . , fn ∈ F and ε ∈ (0,∞) such that

ϕ−1((−1, 1)) ⊇
n⋂
k=1

f−1
k ((−ε, ε)).

By linearity, we infer for every m ∈ N that

ϕ−1((− 1
m
, 1
m

)) ⊇
n⋂
k=1

f−1
k ((− ε

m
, ε
m

)). (1)

Letting m → ∞, we obtain that ϕ(x) = 0 for all x ∈ ⋂mk=1 ker(fk). Part (a) above
now ensures that ϕ ∈ span({fk | k ∈ {1, 2, . . . , n}}) ⊆ span(F ).

Remark: We checked condition (i) in (a). We could also have deduced from (1) that
|ϕ(x)| ≤ 1

ε
max1≤k≤n|fk(x)| for every x ∈ X, in other words: condition (ii) of (a).

(c) Suppose X is a normed space. Consider a weak∗-continuous linear functional
ϕ : X∗ → R. Prove that there is x ∈ X such that ϕ(f) = f(x) for all f ∈ X∗.

Solution: This follows immediately from (b) when taking F = {X∗ 3 ϕ 7→ ϕ(x) ∈
R : x ∈ X} and noticing that F = span(F ).
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8.5. Weak topologies are in general non-metrizable

Let (X, ‖·‖X) be a normed space and let τw denote the weak topology on X. This
exercise’s goal is to show that τw is not metrizable if X is infinite-dimensional. Let us
start by recalling what a neighbourhood basis is and what it means for a topology to
be metrizable:

• (Neighbourhood basis) Let (Y, τ) be a topological space. Denoting the set of all
neighbourhoods of a point y ∈ Y by

Uy = {U ⊆ Y | ∃O ∈ τ : y ∈ O ⊆ U},

we call By ⊆ Uy a neighbourhood basis of y in (Y, τ), if ∀U ∈ Uy ∃V ∈ By : V ⊆ U .

• (Metrizability) A topological space (Y, τ) is called metrizable if there exists a
metric d : Y × Y → R on Y denoting Bε(a) = {y ∈ Y | d(y, a) < ε} (for a ∈ Y ,
ε ∈ (0,∞)), there holds

τ = {O ⊆ Y | ∀a ∈ O ∃ ε > 0 : Bε(a) ⊆ O)}.

(a) Show that any metrizable topology τ satisfies the first axiom of countability
which means that each point has a countable neighbourhood basis.

Solution: Let (Y, τ) be a metrizable topological space. Let d : Y × Y → R be a
metric inducing the topology τ . Given y ∈ Y , we consider

Bε(y) := {z ∈ Y | d(y, z) < ε} for ε ∈ (0,∞), By :=
{
B 1

n
(y) | n ∈ N

}
.

Let U now be any neighbourhood of y. Since (Y, τ) is metrizable, there exists
ε ∈ (0,∞) such that Bε(y) ⊆ U . Choosing N 3 n > 1

ε
, we have B 1

n
(y) ⊆ U , which

shows that By is a neighbourhood basis of y in (Y, τ). Since y ∈ Y is arbitrary and
By countable, we have verified the first axiom of countability for (Y, τ).

(b) Prove that

B :=
{ n⋂
k=1

f−1
k

(
(−ε, ε)

) ∣∣∣∣ n ∈ N, f1, . . . , fn ∈ X∗, ε > 0
}

is a neighbourhood basis of 0 ∈ X in (X, τw).

Solution: Let U ⊆ X be any neighbourhood of 0 ∈ X in (X, τw). Then there exists
Ω ∈ τw such that 0 ∈ Ω ⊆ U . By definition of weak topology, Ω is an arbitrary union
and finite intersection of sets of the form f−1(I) for f ∈ X∗ and I ⊆ R open. In

last update: 20 November 2021 5/8



ETH Zürich
Autumn 2021

Functional Analysis I
Solution to Problem Set 8

d-math
Prof. J. Teichmann

particular, Ω contains a finite intersection of such sets containing the origin. More
precisely, there exist f1, . . . , fn ∈ X∗ and open sets I1, . . . , In ⊆ R such that

Ω ⊇
n⋂
k=1

f−1
k (Ik) 3 0.

By linearity fk(0) = 0 ∈ Ik for every k ∈ {1, . . . , n}. Since I1, . . . , In ⊆ R are open
and n finite, there exists ε ∈ (0,∞) such that (−ε, ε) ⊆ Ik for every k ∈ {1, . . . , n}.
Thus,

Ω ⊇
n⋂
k=1

f−1
k

(
(−ε, ε)

)
= {x ∈ X | ∀k ∈ {1, . . . , n} : |fk(x)| < ε}

and we conclude that a neighbourhood basis of 0 ∈ X in (X, τw) is given by

B :=
{

n⋂
k=1

f−1
k

(
(−ε, ε)

) ∣∣∣∣ n ∈ N, f1, . . . , fn ∈ X∗, ε ∈ (0,∞)
}
.

(c) Show that if (X, τw) is first countable, then (X∗, ‖·‖X∗) admits a countable
algebraic basis.

Solution: Let (X, ‖·‖X) be a normed space and suppose that (X, τw) is first countable.
Then there exists a countable neighbourhood basis {Aα}α∈N of 0 ∈ X in (X, τw).
Since B defined in (b) is also a neighbourhood basis of 0 ∈ X in (X, τw), we have

∀α ∈ N ∃Bα ∈ B : Bα ⊆ Aα.

By construction of B, this means that

∀α ∈ N ∃nα ∈ N, fα1 , . . . , fαnα ∈ X
∗, εα ∈ (0,∞) :

Bα := {x ∈ X | ∀k ∈ {1, . . . , nα} : |fαk (x)| < εα} ⊆ Aα.

In other words, the topology τw coincides with the topology UF which is induced
by F = ⋃

α∈N
⋃nα
k=1{fαk } (cf. Problem 8.4 (Topologies induced by linear functionals)).

According to 8.4(b), X∗ ⊆ span(F ). In other words, F contains an algebraic basis of
X∗ and F is clearly countable.

(d) Assume that X is infinite-dimensional and conclude from (a), (c) and Problem
2.2 (Algebraic bases for Banach spaces) that (X, τw) is not metrizable.

Solution: By (a) and (c), (X∗, ‖·‖X∗) admits a countable algebraic basis. But since
X is infinite-dimensional, (X∗, ‖·‖X∗) is infinite-dimensional. Moreover, (X∗, ‖·‖X∗) is
a Banach space. But as such, according to Problem 2.2, it can only have a countable
algebraic basis if it is finite-dimensional, a contradiction.
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8.6. Weak and weak∗ topology on `1

Let en = (δkn)k∈N ⊆ R for every n ∈ N. For p ∈ (1,∞), (en)n∈N ⊆ `p converges to 0
with respect to both weak as well as weak∗ convergence in `p as n→∞. `1 behaves
similarly with respect to weak∗ convergence, but differently with respect to weak
convergence:

(a) Show that (en)n∈N ⊆ `1 does not converge weakly to 0 in `1.

Solution: Let ϕ ∈ (`1)∗ be given by ϕ(x) = ∑∞
n=1 xn for x = (xn)n∈N ∈ `1 (in other

words, ϕ is the element of the dual space of `1 which is represented by the constant
sequence (1)n∈N ∈ `∞). Then we obtain that ϕ(en) = 1 for all n ∈ N, contradicting
en

w−⇀ 0 in `1.

(b) Viewing `1 as the dual space of c0 (cf. Problem 7.2 (Dual spaces of c0 and c)),
argue that (en)n∈N converges to zero in the weak∗ topology.

Solution: We identify `1 with (c0)∗ via the mapping Φ = (`1 3 (xn)n∈N 7→ (c0 3
(yn)n∈N 7→

∑∞
n=1 xnyn ∈ R) ∈ (c0)∗). With this, we obtain for every y = (yn)n∈N ∈ c0

that

0 = lim
n→∞

yn = lim
n→∞

[Φ(en)](y),

that is, (Φ(en))n∈N w∗
−⇀ 0 in (c0)∗ as n→∞. And this is exactly what we meant by

saying that en w∗
−⇀ 0 in `1 with `1 being viewed as (c0)∗.

(c) (Schur’s Theorem.) Let (xn)n∈N ⊆ `1 be converging weakly to 0. Prove that
‖xn‖`1 → 0 as k →∞.

Solution: Suppose that ‖xn‖`1 does not converge to zero as n→∞. After passing
to a subsequence there is η ∈ (0,∞) such that ‖xn‖`1 ≥ η for all n ∈ N. Note that
for every K ∈ N it holds that fK : `1 → R, defined by fK(y) = ∑K

k=1 |yk| for all
y = (yk)k∈N ∈ `1, is weakly continuous. Hence, we obtain for every K ∈ N that
fK(xn)→ 0 as n→∞. Thus, there exists J : N× (0,∞)→ N satisfying that

sup
j≥J(K,ε)

fK(xj) ≤ ε for all K ∈ N, ε ∈ (0,∞).

Moreover, there exists L : N× (0,∞)→ N satisfying that (using the notation xn =
(xn,j)j∈N)

L(n,ε)∑
j=1
|xn,j| ≥ ‖xn‖`1 − ε for all n ∈ N, ε ∈ (0,∞).

Now, define (Kj)j∈N0 ⊆ N, (nj)j∈N0 ⊆ N so that
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• K0 = n0 = 1,

• nj = max{J(Kj−1,
1
j
), nj−1 + 1} for all j ∈ N,

• Kj = max{L(nj, 1
j
), Kj−1 + 1} for all j ∈ N.

Note that (nj)j∈N0 and (Kj)j∈N0 are strictly increasing. In addition, the fact that for
all j ∈ N it holds that nj ≥ J(Kj−1,

1
j
) as well as Kj ≥ L(nj, 1

j
) implies for all j ∈ N

that
Kj−1∑
k=1
|xnj ,k| ≤

1
j

and
Kj∑
k=1
|xnj ,k| ≥ ‖xnj‖`1 −

1
j
.

In particular, it holds for all j ∈ N that

Kj∑
k=Kj−1+1

|xnj ,k| ≥ ‖xnj‖`1 −
2
j

and
∞∑

k=Kj+1
|xnj ,k| ≤

1
j
.

Hence, for y = (yk)k∈N ∈ `∞, defined via

yk =
0 : k = 1,

sign(xnj ,k) : if Kj−1 < k ≤ Kj for some j ∈ N,

we obtain, by what was deduced above, for every j ∈ N that

∞∑
k=1

ykxnj ,k =
Kj−1∑
k=1

ykxnj ,k +
Kj∑

k=Kj−1+1
ykxnj ,k +

∞∑
k=Kj+1

ykxnj ,k

≥ −
Kj−1∑
k=1
|xnj ,k|+

Kj∑
k=Kj−1+1

|xnj ,k| −
∞∑

k=Kj+1
|xnj ,k|

≥ ‖xnj‖`1 −
4
j
≥ η − 4

j
.

This implies that lim supn→∞
∑∞
k=1 ykxn,k ≥ η > 0, contradicting xn w−⇀ 0 in `1.
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