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8.1. Strict convexity and extremal points

A normed space (X, ||-]|) with X # {0} is strictly convex (cf. Problem 7.5) if and only
if the unit sphere S := {z € X : ||z|| = 1} is equal to the set of extremal points of the
closed unit ball B :={z € X: ||z|| < 1}.

Solution: “=*: Suppose that (X,|]|) is strictly convex. We need to show that
ex(B) = S. Note that no point in B\ S can be extremal, since every point in
B\ S is the center of a small ball contained in B. That is, ex(B) C S. Thus, we
only need to prove that S C ex(B). For this, let z € S, y;,y2 € B and A € (0,1)
be such that * = Ay; + (1 — N)yz. Choosing a € (0,1) small enough so that
0 < A= < Mo < 1, we can write 2 = $(21+22) with 21 = (A—a)y1+(1-A+a)y. € B
and zo = (A + a@)y; + (1 — A — )y € B. By the triangle inequality, we obtain

1 1 1
L= ol = |51+ )| < Sllaall + 5zl
which can be satisfied for max{||z1||, ||22]|} < 1 if and only if ||z;|| = 1 = ||22||. Strict

convexity now ensures that z; = 2o = x, which, in turn, yields y; = y» = x. Hence,
x € ex(B). As x € S was arbitrary, we showed S C ex(B), as desired.

“<“: Suppose that S = ex(B). Hence, for all z,y € X with |jz|| = |jy| = 2] =1
we get x = y. This shows that X is strictly convex.

8.2. Closedness/Non-closedness of sets of extremal points

(a) Let K C R? be a closed convex subset. Prove that the set E of all extremal
points of K is closed.

Solution: It is clear that the set F of extremal points of the closed convex subset
K C R? must be a subset of the boundary 0K of K because the center of every ball
contained in K is a convex combination of other points in this ball.

Let (yn)nen be a sequence in E which converges to some y,, € K. Suppose ys, ¢
E. Then there exist distinct points x1,29 € K and some 0 < A < 1 such that
Az1 + (1 — A)xg = yoo. For any n € N, the point y,, is extremal and therefore cannot
lie on the segment between z; and zy. Intuitively, the sequence (y,,)neny must approach
Yoo from “above” or “below” this segment. By restriction to a subsequence, we can
assume that all y,, strictly lie on the same side of the the affine line through x; and
xo. By convexity of K, the triangle D = conv{z,xo,y;1} is a subset of K. The
arguments above and convergence ¥, — Yo imply that for n € N sufficiently large,
Yn is in the interior of D and thus in the interior of K. This however contradicts
(Yn)nen € E C OK. We conclude y € E which proves that E is closed.

last update: 20 November 2021 1/8



ETH Ziirich Functional Analysis | D-MATH

Autumn 2021 Solution to Problem Set 8 Prof. J. Teichmann
Yr e
D
| Y To

(b) Consider the convex hull C' of the circle {(1 + cos(p),sin(¢),0): 0 < ¢ < 27}
and the points (0,0, £1) in R?. Determine the extremal points of C.

Solution: The convex hull is a circular double cone with the two tips joined by a
straight line segment on the z-axis. Thus the extremal points are the given points
(circle and (0,0, 41)) minus the origin.

8.3. Birkhoff-von Neumann theorem

A matrix M = (M;j)1<ij<n € R™" (where n € N) with M;; > 0 is called doubly
stochastic iff its rows and columns all add up to one: >°7" | M;; =1 =37 Mj;. Prove
that every doubly stochastic matrix is a convex combination of permutation matrices.

Hint: Suppose M is a doubly stochastic matrix. Find a permutation matrix P and
A € (0,00) such that N = M — AP has non-negative entries. If N > 0 then ﬁ]\f is
doubly stochastic. One way to find P is as follows:

Recall Hall’s Marriage Theorem: Assume X and Y are finite sets and let I' C
X x Y. The following statements are equivalent:

(i) There exists an injective function f: X — Y whose graph is contained in I'.

(ii) For every A C X theset I'(A) ={y € Y | (z,y) € I for some z € A} satisfies
AT(A) > 44,

Let X =Y ={1,2,...,n} and let I' = {(i,j) € X x Y | M;; > 0}. Use the fact that

M is doubly stochastic to verify condition (ii). The injective map f: X — Y from (i)
determines a permutation of {1,2,...,n}.

Solution: We verify the condition of Hall’s marriage theorem for the set I' proposed
in the above hint. Consider now an arbitrary set A C X. Since the rows and columns
of M all sum to one, we have:

#L(A) = > My> > My> Y My= ) M;=4#A

(4,7)EX xT'(A) (4,)EAXT(A) (4,7)(AxY)NT (i,j)EAXY
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Now Hall’s marriage theorem provides us with an injective map f: X — Y whose
graph is contained in I'. Note that f is bijective because #X = #Y. The permutation
matrix P = (Pj;)1<ij<n € R™" associated with f is given by

1 ifj = f(i)
Py = |
0 otherwise.

Since the graph of f is contained in I', we have A\ = min;<;<, M; s, > 0. Clearly,

N := M — AP has non-negative entries. If N =0 then A = 1, and M is a permutation

matrix, otherwise A < 1 and M = AP+ (1 —\)7=5 N is a genuine convex combination

of two doubly stochastic matrices, namely P and ﬁ]\/ . Thus, we obtained that
permutation matrices are the extremal points in the convex set of doubly stochastic

matrices. Birkhoff-von Neumann’s theorem now follows from Krein—Milman’s theorem.

8.4. Topologies induced by linear functionals

Let X be a real vector space.

(a) Let n € N and let o1, p9,...,¢,,1%: X — R be linear functionals. Prove that
the following are equivalent:

(i) There exist A1, Aa, ..., A, € R satisfying v = >0, Appr.

(ii) There is a constant C' € (0,00) such that |[¢(z)| < Cmaxi<p<n|pr(x)| for all
reX.

(i) er(s) 2 M ker(y).
Solution: “(i) = (i7)“: With Ay, Aa, ..., A, € Rsuch that ¢ = 37| A\ppx, we obtain
for all z € X that

()] < kiwusom < max pul(a) kiwr.

1<k<n

That is, (ii) holds with C' = >_7_,|Ax| if the sum is not 0, in which case any C' € (0, c0)
works.

“(i1) = (i) With C € (0, 00) such that |¢(z)| < Cmaxi<p<n|or(z)| for all z € X
we clearly obtain for every x € N}_, ker(¢g) that ¢(z) = 0. That is, (iii) holds.

“(i19) = (4)“: Consider the linear function ¢: X — R™ given by

o(z) = (e1(x), p2(x), ..., on(x)) forall x € X.
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Note that for all z,y € X it holds that x — y € ker(¢) if and only if pi(z) = vi(y)
for all k € {1,2,...,n}. Thus, X/ker(¢) is isomorphic to im(¢). Moreover, since
ker(¢)) D Ni_; ker(pr) = ker(¢), we see that there is a well-defined linear map
[: im(¢) — R satisfying

l(p(x)) =(x) forall x € X.

We know from linear algebra (if you insist you can also invoke the Hahn—Banach
theorem) that there exists a linear extension L: R™ — R of [. Moreover do we know
from linear algebra (if you insist you can also invoke Riesz’s representation theorem
for Hilbert spaces) that there exist Ay, A, ..., A\, € R such that L(y) = Y>7_; Aryx for
all y = (y1,y2-..,yn) € R™ This ensures in particular that

W(z) =1l(p(x)) = L(op(x)) = ki Aer(z)  for all z € X.

(b) Let F C{f | X — R: fislinear} be a family of linear functionals and let Up
be the topology on X induced by F'. Prove that

span(F) = {¢: X — R | ¢ is Up-continuous and linear}.

Solution: If ¢: X — R is linear and Up-continuous, then the set ¢~ '((—1,1)) is
Up-open. Hence, there are fi,..., f, € F and € € (0, 00) such that

e 2 N (20,

By linearity, we infer for every m € N that
e () 2 N (=5 0))- (1)
k=1
Letting m — oo, we obtain that p(z) = 0 for all x € N1, ker(fx). Part (a) above

now ensures that ¢ € span({fx | k£ € {1,2,...,n}}) C span(F).

Remark: We checked condition (i) in (a). We could also have deduced from (1) that
lp(2)] < £ maxi<g<n|fr(z)| for every € X, in other words: condition (ii) of (a).

(c) Suppose X is a normed space. Consider a weak*-continuous linear functional
¢: X* — R. Prove that there is € X such that ¢(f) = f(z) for all f € X*.

Solution: This follows immediately from (b) when taking F' = {X* 2 ¢ — ¢(x) €
R: 2 € X} and noticing that F' = span(F).
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8.5. Weak topologies are in general non-metrizable

Let (X, ||-]|x) be a normed space and let 7, denote the weak topology on X. This
exercise’s goal is to show that 7, is not metrizable if X is infinite-dimensional. Let us
start by recalling what a neighbourhood basis is and what it means for a topology to
be metrizable:

o (Neighbourhood basis) Let (Y, T) be a topological space. Denoting the set of all
neighbourhoods of a point y € Y by

U,={UCY |F0eT: yec O CU},
we call B, C U, a neighbourhood basis of yin (Y, 7),ifVU e U, 3V € B,: V C U.

o (Metrizability) A topological space (Y, 7) is called metrizable if there exists a
metric d: Y x Y — R on Y denoting B.(a) ={y € Y | d(y,a) <e} (foraeY,
e € (0,00)), there holds

7={0CY |Va€O3e>0: B.a) CO)}.

(a) Show that any metrizable topology 7 satisfies the first axiom of countability
which means that each point has a countable neighbourhood basis.

Solution: Let (Y, 7) be a metrizable topological space. Let d: Y xY — R be a
metric inducing the topology 7. Given y € Y, we consider

B.(y) ={z €Y |d(y,z) <e} for € € (0,00), B, = {B (y) | n e N}.

1
n

Let U now be any neighbourhood of y. Since (Y, 7) is metrizable, there exists
e € (0,00) such that B.(y) C U. Choosing N 3 n > %, we have Bi(y) C U, which
shows that B, is a neighbourhood basis of y in (Y, 7). Since y € Y'is arbitrary and
B, countable, we have verified the first axiom of countability for (Y, 7).

(b) Prove that
B::{ﬁfk_l((—e,s)) ‘nEN, fiooo o, fn € X7, 5>0}
k=1

is a neighbourhood basis of 0 € X in (X, 7).

Solution: Let U C X be any neighbourhood of 0 € X in (X, 7). Then there exists
Q2 € 1y such that 0 € 2 C U. By definition of weak topology, () is an arbitrary union
and finite intersection of sets of the form f~'(I) for f € X* and I C R open. In
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particular, €2 contains a finite intersection of such sets containing the origin. More
precisely, there exist fi,..., f, € X* and open sets I,..., I, C R such that

Q2 ﬂ fk,_l(]k) > 0.
k=1
By linearity fi(0) =0 € I, for every k € {1,...,n}. Since I,...,I, C R are open

and n finite, there exists € € (0, 00) such that (—¢,¢) C I for every k € {1,...,n}.
Thus,

Q2 N fi'((—e.0)) ={z e X |Vk € {1,....n}: |fa(w)| <}
k=1
and we conclude that a neighbourhood basis of 0 € X in (X, 7y,) is given by

B:= {6 fk,_l((—s,s)) ’neN, fi,o o fnEXT € (0,00)}.

(c) Show that if (X, 7) is first countable, then (X*, ||
algebraic basis.

x+) admits a countable

Solution: Let (X, ||-||x) be a normed space and suppose that (X, 7,) is first countable.
Then there exists a countable neighbourhood basis {Ay}aeny of 0 € X in (X, 7).
Since B defined in (b) is also a neighbourhood basis of 0 € X in (X, 7,), we have

VaoeN dB,eB: B, CA,.

By construction of B, this means that

VaeN dn,eN, fi,... fi € X" e, € (0,00):
B, ={x e X |Vk e {l,...,n.}: |fe(x)] < ea} C Aa.

In other words, the topology 7, coincides with the topology Ur which is induced
by F' = Upen Up2 1 {f2} (cf. Problem 8.4 (Topologies induced by linear functionals)).
According to 8.4(b), X* C span(F'). In other words, F' contains an algebraic basis of
X* and F' is clearly countable.

(d) Assume that X is infinite-dimensional and conclude from (a), (c¢) and Problem
2.2 (Algebraic bases for Banach spaces) that (X, 1) is not metrizable.

Solution: By (a) and (c), (X*, ||-||x~) admits a countable algebraic basis. But since
X is infinite-dimensional, (X*, ||| x+) is infinite-dimensional. Moreover, (X*, ||-||x+) is
a Banach space. But as such, according to Problem 2.2, it can only have a countable
algebraic basis if it is finite-dimensional, a contradiction.
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8.6. Weak and weak* topology on /!

Let e, = (0gn)ren C R for every n € N. For p € (1,00), (€,)nen € ¢P converges to 0
with respect to both weak as well as weak* convergence in 7 as n — oo. ¢! behaves
similarly with respect to weak® convergence, but differently with respect to weak
convergence:

(a) Show that (e,)nen C ¢' does not converge weakly to 0 in £'.

Solution: Let ¢ € (/1)* be given by p(x) = 3%, x, for z = (2,)nen € ¢* (in other
words, ¢ is the element of the dual space of ¢! which is represented by the constant
sequence (1),en € £°°). Then we obtain that ¢(e,) =1 for all n € N, contradicting
en — 0 in £'.

(b) Viewing ¢! as the dual space of ¢y (cf. Problem 7.2 (Dual spaces of ¢y and c)),
argue that (e,)nen converges to zero in the weak™ topology.

Solution: We identify ¢! with (c)* via the mapping ® = (! 3 (x,)neny — (co 3
(Yn )nen — 200 Toyn € R) € (c0)*). With this, we obtain for every y = (yn)nen € Co
that

0= lim y, = lim [®(e,)](y),
that is, (®(en))nen ~ 0 in (c)* as n — oo. And this is exactly what we meant by
saying that e, Y0 in ' with ¢! being viewed as (cg)*.
(c) (Schur’s Theorem.) Let (z,)nen C £' be converging weakly to 0. Prove that
|zn]|er — 0 as k — oo.

Solution: Suppose that ||z, ||, does not converge to zero as n — oo. After passing
to a subsequence there is € (0,00) such that ||z,[a > n for all n € N. Note that
for every K € N it holds that fx: /' — R, defined by fx(y) = S, |y| for all
y = (yr)ren € (', is weakly continuous. Hence, we obtain for every K € N that
fr(z,) = 0 as n — oo. Thus, there exists J: N x (0, 00) — N satisfying that

sup fr(z;) <e forall K € N e e (0,00).
j>J(Ke)

Moreover, there exists L: N x (0,00) — N satisfying that (using the notation z,, =
(Tn,j)jen)

L(n,e)
> @yl = lznlln —e foralln e N,e € (0,00).
=1

Now, define (K;)jen, € N, (n;)jen, € N so that
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« Ko=mng=1,
e n; = max{J(Kj_l, %)777/]'—1 =+ 1} for all] c N,
° K] :maX{L(’)’I,]7Jl),K]_1+]_} fOI' allj EN

Note that (n;);en, and (K;);en, are strictly increasing. In addition, the fact that for
all j € N it holds that n; > J(K;_, %) as well as K; > L(n;, %) implies for all j € N
that

K;

R 1 1
Dolzn el <= and D fan kl > o llo — -
k=1 J k=1 J
In particular, it holds for all j € N that
& 2 b 1
Y lwaul 2wy lle — = and D0 [zl < -
k=K, _1+1 J k=K, +1 J

Hence, for y = (yx)ren € £°°, defined via

0 k=1,
Uh = {sign(xnm) cif Koy < k < K for some j € N,

we obtain, by what was deduced above, for every j € N that

oo Kj1 K; 00
Z YT,k = Z YkTn, ke + Z YkTn, ke + Z YkTn; k
k=1 k=1

k:Kj_1+1 k):KJ-‘rl
Kj_ K; %)
Z - Z |xnj,k| + Z |xnj,k| - Z |:L‘nj,k|
k=1 kZKj,1+1 kZKj-‘rl

4 4
> Hi[fn].Hgl—sz]—f.
J J

This implies that lim sup,,_,. S22 YxZni > 1 > 0, contradicting x,, — 0 in £*.
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