8.1. Strict convexity and extremal points

A normed space $(X,\|\cdot\|)$ with $X \neq\{0\}$ is strictly convex (cf. Problem 7.5) if and only if the unit sphere $S:=\{x \in X:\|x\|=1\}$ is equal to the set of extremal points of the closed unit ball $B:=\{x \in X:\|x\| \leq 1\}$.

Solution: " \Rightarrow ": Suppose that $(X,\|\cdot\|)$ is strictly convex. We need to show that $\operatorname{ex}(B)=S$. Note that no point in $B \backslash S$ can be extremal, since every point in $B \backslash S$ is the center of a small ball contained in B. That is, $\operatorname{ex}(B) \subseteq S$. Thus, we only need to prove that $S \subseteq \operatorname{ex}(B)$. For this, let $x \in S, y_{1}, y_{2} \in B$ and $\lambda \in(0,1)$ be such that $x=\lambda y_{1}+(1-\lambda) y_{2}$. Choosing $\alpha \in(0,1)$ small enough so that $0<\lambda-\alpha<\lambda+\alpha<1$, we can write $x=\frac{1}{2}\left(z_{1}+z_{2}\right)$ with $z_{1}=(\lambda-\alpha) y_{1}+(1-\lambda+\alpha) y_{2} \in B$ and $z_{2}=(\lambda+\alpha) y_{1}+(1-\lambda-\alpha) y_{2} \in B$. By the triangle inequality, we obtain

$$
1=\|x\|=\left\|\frac{1}{2}\left(z_{1}+z_{2}\right)\right\| \leq \frac{1}{2}\left\|z_{1}\right\|+\frac{1}{2}\left\|z_{2}\right\|,
$$

which can be satisfied for $\max \left\{\left\|z_{1}\right\|,\left\|z_{2}\right\|\right\} \leq 1$ if and only if $\left\|z_{1}\right\|=1=\left\|z_{2}\right\|$. Strict convexity now ensures that $z_{1}=z_{2}=x$, which, in turn, yields $y_{1}=y_{2}=x$. Hence, $x \in \operatorname{ex}(B)$. As $x \in S$ was arbitrary, we showed $S \subseteq \operatorname{ex}(B)$, as desired.
$" \Leftarrow$ ": Suppose that $S=\operatorname{ex}(B)$. Hence, for all $x, y \in X$ with $\|x\|=\|y\|=\left\|\frac{x+y}{2}\right\|=1$ we get $x=y$. This shows that X is strictly convex.

8.2. Closedness/Non-closedness of sets of extremal points

(a) Let $K \subseteq \mathbb{R}^{2}$ be a closed convex subset. Prove that the set E of all extremal points of K is closed.

Solution: It is clear that the set E of extremal points of the closed convex subset $K \subseteq \mathbb{R}^{2}$ must be a subset of the boundary ∂K of K because the center of every ball contained in K is a convex combination of other points in this ball.

Let $\left(y_{n}\right)_{n \in \mathbb{N}}$ be a sequence in E which converges to some $y_{\infty} \in K$. Suppose $y_{\infty} \notin$ E. Then there exist distinct points $x_{1}, x_{0} \in K$ and some $0<\lambda<1$ such that $\lambda x_{1}+(1-\lambda) x_{0}=y_{\infty}$. For any $n \in \mathbb{N}$, the point y_{n} is extremal and therefore cannot lie on the segment between x_{1} and x_{0}. Intuitively, the sequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ must approach y_{∞} from "above" or "below" this segment. By restriction to a subsequence, we can assume that all y_{n} strictly lie on the same side of the the affine line through x_{1} and x_{2}. By convexity of K, the triangle $D=\operatorname{conv}\left\{x_{1}, x_{0}, y_{1}\right\}$ is a subset of K. The arguments above and convergence $y_{n} \rightarrow y_{\infty}$ imply that for $n \in \mathbb{N}$ sufficiently large, y_{n} is in the interior of D and thus in the interior of K. This however contradicts $\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq E \subseteq \partial K$. We conclude $y \in E$ which proves that E is closed.

(b) Consider the convex hull C of the circle $\{(1+\cos (\varphi), \sin (\varphi), 0): 0 \leq \varphi \leq 2 \pi\}$ and the points $(0,0, \pm 1)$ in \mathbb{R}^{3}. Determine the extremal points of C .

Solution: The convex hull is a circular double cone with the two tips joined by a straight line segment on the z-axis. Thus the extremal points are the given points (circle and $(0,0, \pm 1))$ minus the origin.

8.3. Birkhoff-von Neumann theorem

A matrix $M=\left(M_{i j}\right)_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}$ (where $n \in \mathbb{N}$) with $M_{i j} \geq 0$ is called doubly stochastic iff its rows and columns all add up to one: $\sum_{i=1}^{n} M_{i j}=1=\sum_{i=1}^{n} M_{j i}$. Prove that every doubly stochastic matrix is a convex combination of permutation matrices.

Hint: Suppose M is a doubly stochastic matrix. Find a permutation matrix P and $\lambda \in(0, \infty)$ such that $N=M-\lambda P$ has non-negative entries. If $N \geq 0$ then $\frac{1}{1-\lambda} N$ is doubly stochastic. One way to find P is as follows:

Recall Hall's Marriage Theorem: Assume X and Y are finite sets and let $\Gamma \subseteq$ $X \times Y$. The following statements are equivalent:
(i) There exists an injective function $f: X \rightarrow Y$ whose graph is contained in Γ.
(ii) For every $A \subseteq X$ the set $\Gamma(A)=\{y \in Y \mid(x, y) \in \Gamma$ for some $x \in A\}$ satisfies $\# \Gamma(A) \geq \# A$.

Let $X=Y=\{1,2, \ldots, n\}$ and let $\Gamma=\left\{(i, j) \in X \times Y \mid M_{i j}>0\right\}$. Use the fact that M is doubly stochastic to verify condition (ii). The injective map $f: X \rightarrow Y$ from (i) determines a permutation of $\{1,2, \ldots, n\}$.

Solution: We verify the condition of Hall's marriage theorem for the set Γ proposed in the above hint. Consider now an arbitrary set $A \subseteq X$. Since the rows and columns of M all sum to one, we have:
$\# \Gamma(A)=\sum_{(i, j) \in X \times \Gamma(A)} M_{i j} \geq \sum_{(i, j) \in A \times \Gamma(A)} M_{i j} \geq \sum_{(i, j) \in(A \times Y) \cap \Gamma} M_{i j}=\sum_{(i, j) \in A \times Y} M_{i j}=\# A$.

Now Hall's marriage theorem provides us with an injective map $f: X \rightarrow Y$ whose graph is contained in Γ. Note that f is bijective because $\# X=\# Y$. The permutation matrix $P=\left(P_{i j}\right)_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}$ associated with f is given by

$$
P_{i j}= \begin{cases}1 & \text { if } j=f(i) \\ 0 & \text { otherwise }\end{cases}
$$

Since the graph of f is contained in Γ, we have $\lambda=\min _{1 \leq i \leq n} M_{i, f(i)}>0$. Clearly, $N:=M-\lambda P$ has non-negative entries. If $N=0$ then $\lambda=1$, and M is a permutation matrix, otherwise $\lambda<1$ and $M=\lambda P+(1-\lambda) \frac{1}{1-\lambda} N$ is a genuine convex combination of two doubly stochastic matrices, namely P and $\frac{1}{1-\lambda} N$. Thus, we obtained that permutation matrices are the extremal points in the convex set of doubly stochastic matrices. Birkhoff-von Neumann's theorem now follows from Krein-Milman's theorem.

8.4. Topologies induced by linear functionals

Let X be a real vector space.
(a) Let $n \in \mathbb{N}$ and let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}, \psi: X \rightarrow \mathbb{R}$ be linear functionals. Prove that the following are equivalent:
(i) There exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ satisfying $\psi=\sum_{k=1}^{n} \lambda_{k} \varphi_{k}$.
(ii) There is a constant $C \in(0, \infty)$ such that $|\psi(x)| \leq C \max _{1 \leq k \leq n}\left|\varphi_{k}(x)\right|$ for all $x \in X$.
(iii) $\operatorname{ker}(\psi) \supseteq \bigcap_{k=1}^{n} \operatorname{ker}\left(\varphi_{k}\right)$.

Solution: " $(i) \Rightarrow(i i)^{"}$: With $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ such that $\psi=\sum_{k=1}^{n} \lambda_{k} \varphi_{k}$, we obtain for all $x \in X$ that

$$
|\psi(x)| \leq \sum_{k=1}^{n}\left|\lambda_{k}\right|\left|\varphi_{k}(x)\right| \leq \max _{1 \leq k \leq n}\left|\varphi_{k}(x)\right| \sum_{k=1}^{n}\left|\lambda_{k}\right| .
$$

That is, (ii) holds with $C=\sum_{k=1}^{n}\left|\lambda_{k}\right|$ if the sum is not 0 , in which case any $C \in(0, \infty)$ works.
" $(i i) \Rightarrow($ iii $)$ ": With $C \in(0, \infty)$ such that $|\psi(x)| \leq C \max _{1 \leq k \leq n}\left|\varphi_{k}(x)\right|$ for all $x \in X$, we clearly obtain for every $x \in \bigcap_{k=1}^{n} \operatorname{ker}\left(\varphi_{k}\right)$ that $\psi(x)=0$. That is, (iii) holds.
" $($ iii $) \Rightarrow(i)$ ": Consider the linear function $\phi: X \rightarrow \mathbb{R}^{n}$ given by

$$
\phi(x)=\left(\varphi_{1}(x), \varphi_{2}(x), \ldots, \varphi_{n}(x)\right) \quad \text { for all } x \in X
$$

Note that for all $x, y \in X$ it holds that $x-y \in \operatorname{ker}(\phi)$ if and only if $\varphi_{k}(x)=\varphi_{k}(y)$ for all $k \in\{1,2, \ldots, n\}$. Thus, $X / \operatorname{ker}(\phi)$ is isomorphic to $\operatorname{im}(\phi)$. Moreover, since $\operatorname{ker}(\psi) \supseteq \bigcap_{k=1}^{n} \operatorname{ker}\left(\varphi_{k}\right)=\operatorname{ker}(\phi)$, we see that there is a well-defined linear map $l: \operatorname{im}(\phi) \rightarrow \mathbb{R}$ satisfying

$$
l(\phi(x))=\psi(x) \quad \text { for all } x \in X
$$

We know from linear algebra (if you insist you can also invoke the Hahn-Banach theorem) that there exists a linear extension $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of l. Moreover do we know from linear algebra (if you insist you can also invoke Riesz's representation theorem for Hilbert spaces) that there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{R}$ such that $L(y)=\sum_{k=1}^{n} \lambda_{k} y_{k}$ for all $y=\left(y_{1}, y_{2} \ldots, y_{n}\right) \in \mathbb{R}^{n}$. This ensures in particular that

$$
\psi(x)=l(\phi(x))=L(\phi(x))=\sum_{k=1}^{n} \lambda_{k} \varphi_{k}(x) \quad \text { for all } x \in X .
$$

(b) Let $F \subseteq\{f \mid X \rightarrow \mathbb{R}: f$ is linear $\}$ be a family of linear functionals and let \mathcal{U}_{F} be the topology on X induced by F. Prove that

$$
\operatorname{span}(F)=\left\{\varphi: X \rightarrow \mathbb{R} \mid \varphi \text { is } \mathcal{U}_{F} \text {-continuous and linear }\right\} .
$$

Solution: If $\varphi: X \rightarrow \mathbb{R}$ is linear and \mathcal{U}_{F}-continuous, then the set $\varphi^{-1}((-1,1))$ is \mathcal{U}_{F}-open. Hence, there are $f_{1}, \ldots, f_{n} \in F$ and $\varepsilon \in(0, \infty)$ such that

$$
\varphi^{-1}((-1,1)) \supseteq \bigcap_{k=1}^{n} f_{k}^{-1}((-\varepsilon, \varepsilon)) .
$$

By linearity, we infer for every $m \in \mathbb{N}$ that

$$
\begin{equation*}
\varphi^{-1}\left(\left(-\frac{1}{m}, \frac{1}{m}\right)\right) \supseteq \bigcap_{k=1}^{n} f_{k}^{-1}\left(\left(-\frac{\varepsilon}{m}, \frac{\varepsilon}{m}\right)\right) . \tag{1}
\end{equation*}
$$

Letting $m \rightarrow \infty$, we obtain that $\varphi(x)=0$ for all $x \in \bigcap_{k=1}^{m} \operatorname{ker}\left(f_{k}\right)$. Part (a) above now ensures that $\varphi \in \operatorname{span}\left(\left\{f_{k} \mid k \in\{1,2, \ldots, n\}\right\}\right) \subseteq \operatorname{span}(F)$.

Remark: We checked condition (i) in (a). We could also have deduced from (1) that $|\varphi(x)| \leq \frac{1}{\varepsilon} \max _{1 \leq k \leq n}\left|f_{k}(x)\right|$ for every $x \in X$, in other words: condition (ii) of (a).
(c) Suppose X is a normed space. Consider a weak*-continuous linear functional $\varphi: X^{*} \rightarrow \mathbb{R}$. Prove that there is $x \in X$ such that $\varphi(f)=f(x)$ for all $f \in X^{*}$.

Solution: This follows immediately from (b) when taking $F=\left\{X^{*} \ni \varphi \mapsto \varphi(x) \in\right.$ $\mathbb{R}: x \in X\}$ and noticing that $F=\operatorname{span}(F)$.

8.5. Weak topologies are in general non-metrizable

Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and let τ_{w} denote the weak topology on X. This exercise's goal is to show that τ_{w} is not metrizable if X is infinite-dimensional. Let us start by recalling what a neighbourhood basis is and what it means for a topology to be metrizable:

- (Neighbourhood basis) Let (Y, τ) be a topological space. Denoting the set of all neighbourhoods of a point $y \in Y$ by

$$
\mathcal{U}_{y}=\{U \subseteq Y \mid \exists O \in \tau: y \in O \subseteq U\}
$$

we call $\mathcal{B}_{y} \subseteq \mathcal{U}_{y}$ a neighbourhood basis of y in (Y, τ), if $\forall U \in \mathcal{U}_{y} \exists V \in \mathcal{B}_{y}: V \subseteq U$.

- (Metrizability) A topological space (Y, τ) is called metrizable if there exists a metric $d: Y \times Y \rightarrow \mathbb{R}$ on Y denoting $B_{\varepsilon}(a)=\{y \in Y \mid d(y, a)<\varepsilon\}$ (for $a \in Y$, $\varepsilon \in(0, \infty))$, there holds

$$
\left.\tau=\left\{O \subseteq Y \mid \forall a \in O \exists \varepsilon>0: B_{\varepsilon}(a) \subseteq O\right)\right\}
$$

(a) Show that any metrizable topology τ satisfies the first axiom of countability which means that each point has a countable neighbourhood basis.

Solution: Let (Y, τ) be a metrizable topological space. Let $d: Y \times Y \rightarrow \mathbb{R}$ be a metric inducing the topology τ. Given $y \in Y$, we consider

$$
B_{\varepsilon}(y):=\{z \in Y \mid d(y, z)<\varepsilon\} \text { for } \varepsilon \in(0, \infty), \quad \mathcal{B}_{y}:=\left\{\left.B_{\frac{1}{n}}(y) \right\rvert\, n \in \mathbb{N}\right\}
$$

Let U now be any neighbourhood of y. Since (Y, τ) is metrizable, there exists $\varepsilon \in(0, \infty)$ such that $B_{\varepsilon}(y) \subseteq U$. Choosing $\mathbb{N} \ni n>\frac{1}{\varepsilon}$, we have $B_{\frac{1}{n}}(y) \subseteq U$, which shows that \mathcal{B}_{y} is a neighbourhood basis of y in (Y, τ). Since $y \in Y^{n}$ is arbitrary and \mathcal{B}_{y} countable, we have verified the first axiom of countability for (Y, τ).
(b) Prove that

$$
\mathcal{B}:=\left\{\bigcap_{k=1}^{n} f_{k}^{-1}((-\varepsilon, \varepsilon)) \mid n \in \mathbb{N}, f_{1}, \ldots, f_{n} \in X^{*}, \varepsilon>0\right\}
$$

is a neighbourhood basis of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$.
Solution: Let $U \subseteq X$ be any neighbourhood of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$. Then there exists $\Omega \in \tau_{\mathrm{w}}$ such that $0 \in \Omega \subseteq U$. By definition of weak topology, Ω is an arbitrary union and finite intersection of sets of the form $f^{-1}(I)$ for $f \in X^{*}$ and $I \subseteq \mathbb{R}$ open. In
particular, Ω contains a finite intersection of such sets containing the origin. More precisely, there exist $f_{1}, \ldots, f_{n} \in X^{*}$ and open sets $I_{1}, \ldots, I_{n} \subseteq \mathbb{R}$ such that

$$
\Omega \supseteq \bigcap_{k=1}^{n} f_{k}^{-1}\left(I_{k}\right) \ni 0 .
$$

By linearity $f_{k}(0)=0 \in I_{k}$ for every $k \in\{1, \ldots, n\}$. Since $I_{1}, \ldots, I_{n} \subseteq \mathbb{R}$ are open and n finite, there exists $\varepsilon \in(0, \infty)$ such that $(-\varepsilon, \varepsilon) \subseteq I_{k}$ for every $k \in\{1, \ldots, n\}$. Thus,

$$
\Omega \supseteq \bigcap_{k=1}^{n} f_{k}^{-1}((-\varepsilon, \varepsilon))=\left\{x \in X\left|\forall k \in\{1, \ldots, n\}:\left|f_{k}(x)\right|<\varepsilon\right\}\right.
$$

and we conclude that a neighbourhood basis of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$ is given by

$$
\mathcal{B}:=\left\{\bigcap_{k=1}^{n} f_{k}^{-1}((-\varepsilon, \varepsilon)) \mid n \in \mathbb{N}, f_{1}, \ldots, f_{n} \in X^{*}, \varepsilon \in(0, \infty)\right\} .
$$

(c) Show that if $\left(X, \tau_{\mathrm{w}}\right)$ is first countable, then $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ admits a countable algebraic basis.

Solution: Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and suppose that (X, τ_{w}) is first countable. Then there exists a countable neighbourhood basis $\left\{A_{\alpha}\right\}_{\alpha \in \mathbb{N}}$ of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$. Since \mathcal{B} defined in (b) is also a neighbourhood basis of $0 \in X$ in $\left(X, \tau_{\mathrm{w}}\right)$, we have

$$
\forall \alpha \in \mathbb{N} \quad \exists B_{\alpha} \in \mathcal{B}: \quad B_{\alpha} \subseteq A_{\alpha}
$$

By construction of \mathcal{B}, this means that

$$
\begin{aligned}
\forall \alpha \in \mathbb{N} \quad \exists n_{\alpha} \in \mathbb{N}, f_{1}^{\alpha}, \ldots, f_{n_{\alpha}}^{\alpha} \in X^{*}, \varepsilon_{\alpha} & \in(0, \infty): \\
B_{\alpha} & :=\left\{x \in X\left|\forall k \in\left\{1, \ldots, n_{\alpha}\right\}:\left|f_{k}^{\alpha}(x)\right|<\varepsilon_{\alpha}\right\} \subseteq A_{\alpha}\right.
\end{aligned}
$$

In other words, the topology τ_{w} coincides with the topology \mathcal{U}_{F} which is induced by $F=\bigcup_{\alpha \in \mathbb{N}} \bigcup_{k=1}^{n_{\alpha}}\left\{f_{k}^{\alpha}\right\}$ (cf. Problem 8.4 (Topologies induced by linear functionals)). According to 8.4(b), $X^{*} \subseteq \operatorname{span}(F)$. In other words, F contains an algebraic basis of X^{*} and F is clearly countable.
(d) Assume that X is infinite-dimensional and conclude from (a), (c) and Problem 2.2 (Algebraic bases for Banach spaces) that $\left(X, \tau_{\mathrm{w}}\right)$ is not metrizable.

Solution: By (a) and (c), ($\left.X^{*},\|\cdot\|_{X^{*}}\right)$ admits a countable algebraic basis. But since X is infinite-dimensional, $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ is infinite-dimensional. Moreover, $\left(X^{*},\|\cdot\|_{X^{*}}\right)$ is a Banach space. But as such, according to Problem 2.2, it can only have a countable algebraic basis if it is finite-dimensional, a contradiction.

8.6. Weak and weak* topology on ℓ^{1}

Let $e_{n}=\left(\delta_{k n}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}$ for every $n \in \mathbb{N}$. For $p \in(1, \infty),\left(e_{n}\right)_{n \in \mathbb{N}} \subseteq \ell^{p}$ converges to 0 with respect to both weak as well as weak ${ }^{*}$ convergence in ℓ^{p} as $n \rightarrow \infty$. ℓ^{1} behaves similarly with respect to weak* convergence, but differently with respect to weak convergence:
(a) Show that $\left(e_{n}\right)_{n \in \mathbb{N}} \subseteq \ell^{1}$ does not converge weakly to 0 in ℓ^{1}.

Solution: Let $\varphi \in\left(\ell^{1}\right)^{*}$ be given by $\varphi(x)=\sum_{n=1}^{\infty} x_{n}$ for $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1}$ (in other words, φ is the element of the dual space of ℓ^{1} which is represented by the constant sequence $\left.(1)_{n \in \mathbb{N}} \in \ell^{\infty}\right)$. Then we obtain that $\varphi\left(e_{n}\right)=1$ for all $n \in \mathbb{N}$, contradicting $e_{n} \xrightarrow{w} 0$ in ℓ^{1}.
(b) Viewing ℓ^{1} as the dual space of c_{0} (cf. Problem 7.2 (Dual spaces of c_{0} and $\left.c\right)$), argue that $\left(e_{n}\right)_{n \in \mathbb{N}}$ converges to zero in the weak ${ }^{*}$ topology.
Solution: We identify ℓ^{1} with $\left(c_{0}\right)^{*}$ via the mapping $\Phi=\left(\ell^{1} \ni\left(x_{n}\right)_{n \in \mathbb{N}} \mapsto\left(c_{0} \ni\right.\right.$ $\left.\left.\left(y_{n}\right)_{n \in \mathbb{N}} \mapsto \sum_{n=1}^{\infty} x_{n} y_{n} \in \mathbb{R}\right) \in\left(c_{0}\right)^{*}\right)$. With this, we obtain for every $y=\left(y_{n}\right)_{n \in \mathbb{N}} \in c_{0}$ that

$$
0=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty}\left[\Phi\left(e_{n}\right)\right](y),
$$

that is, $\left(\Phi\left(e_{n}\right)\right)_{n \in \mathbb{N}} \xrightarrow{w^{*}} 0$ in $\left(c_{0}\right)^{*}$ as $n \rightarrow \infty$. And this is exactly what we meant by saying that $e_{n} \xrightarrow{w^{*}} 0$ in ℓ^{1} with ℓ^{1} being viewed as $\left(c_{0}\right)^{*}$.
(c) (Schur's Theorem.) Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \ell^{1}$ be converging weakly to 0 . Prove that $\left\|x_{n}\right\|_{\ell^{1}} \rightarrow 0$ as $k \rightarrow \infty$.
Solution: Suppose that $\left\|x_{n}\right\|_{\ell^{1}}$ does not converge to zero as $n \rightarrow \infty$. After passing to a subsequence there is $\eta \in(0, \infty)$ such that $\left\|x_{n}\right\|_{\ell^{1}} \geq \eta$ for all $n \in \mathbb{N}$. Note that for every $K \in \mathbb{N}$ it holds that $f_{K}: \ell^{1} \rightarrow \mathbb{R}$, defined by $f_{K}(y)=\sum_{k=1}^{K}\left|y_{k}\right|$ for all $y=\left(y_{k}\right)_{k \in \mathbb{N}} \in \ell^{1}$, is weakly continuous. Hence, we obtain for every $K \in \mathbb{N}$ that $f_{K}\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus, there exists $J: \mathbb{N} \times(0, \infty) \rightarrow \mathbb{N}$ satisfying that

$$
\sup _{j \geq J(K, \varepsilon)} f_{K}\left(x_{j}\right) \leq \varepsilon \quad \text { for all } K \in \mathbb{N}, \varepsilon \in(0, \infty)
$$

Moreover, there exists $L: \mathbb{N} \times(0, \infty) \rightarrow \mathbb{N}$ satisfying that (using the notation $x_{n}=$ $\left.\left(x_{n, j}\right)_{j \in \mathbb{N}}\right)$

$$
\sum_{j=1}^{L(n, \varepsilon)}\left|x_{n, j}\right| \geq\left\|x_{n}\right\|_{\ell^{1}}-\varepsilon \quad \text { for all } n \in \mathbb{N}, \varepsilon \in(0, \infty)
$$

Now, define $\left(K_{j}\right)_{j \in \mathbb{N}_{0}} \subseteq \mathbb{N},\left(n_{j}\right)_{j \in \mathbb{N}_{0}} \subseteq \mathbb{N}$ so that

- $K_{0}=n_{0}=1$,
- $n_{j}=\max \left\{J\left(K_{j-1}, \frac{1}{j}\right), n_{j-1}+1\right\}$ for all $j \in \mathbb{N}$,
- $K_{j}=\max \left\{L\left(n_{j}, \frac{1}{j}\right), K_{j-1}+1\right\}$ for all $j \in \mathbb{N}$.

Note that $\left(n_{j}\right)_{j \in \mathbb{N}_{0}}$ and $\left(K_{j}\right)_{j \in \mathbb{N}_{0}}$ are strictly increasing. In addition, the fact that for all $j \in \mathbb{N}$ it holds that $n_{j} \geq J\left(K_{j-1}, \frac{1}{j}\right)$ as well as $K_{j} \geq L\left(n_{j}, \frac{1}{j}\right)$ implies for all $j \in \mathbb{N}$ that

$$
\sum_{k=1}^{K_{j-1}}\left|x_{n_{j}, k}\right| \leq \frac{1}{j} \quad \text { and } \quad \sum_{k=1}^{K_{j}}\left|x_{n_{j}, k}\right| \geq\left\|x_{n_{j}}\right\|_{\ell^{1}}-\frac{1}{j} .
$$

In particular, it holds for all $j \in \mathbb{N}$ that

$$
\sum_{k=K_{j-1}+1}^{K_{j}}\left|x_{n_{j}, k}\right| \geq\left\|x_{n_{j}}\right\|_{\ell^{1}}-\frac{2}{j} \quad \text { and } \quad \sum_{k=K_{j}+1}^{\infty}\left|x_{n_{j}, k}\right| \leq \frac{1}{j} .
$$

Hence, for $y=\left(y_{k}\right)_{k \in \mathbb{N}} \in \ell^{\infty}$, defined via

$$
y_{k}= \begin{cases}0 & : k=1 \\ \operatorname{sign}\left(x_{n_{j}, k}\right) & : \text { if } K_{j-1}<k \leq K_{j} \text { for some } j \in \mathbb{N},\end{cases}
$$

we obtain, by what was deduced above, for every $j \in \mathbb{N}$ that

$$
\begin{aligned}
\sum_{k=1}^{\infty} y_{k} x_{n_{j}, k} & =\sum_{k=1}^{K_{j-1}} y_{k} x_{n_{j}, k}+\sum_{k=K_{j-1}+1}^{K_{j}} y_{k} x_{n_{j}, k}+\sum_{k=K_{j}+1}^{\infty} y_{k} x_{n_{j}, k} \\
& \geq-\sum_{k=1}^{K_{j-1}}\left|x_{n_{j}, k}\right|+\sum_{k=K_{j-1}+1}^{K_{j}}\left|x_{n_{j}, k}\right|-\sum_{k=K_{j}+1}^{\infty}\left|x_{n_{j}, k}\right| \\
& \geq\left\|x_{n_{j}}\right\|_{\ell^{1}}-\frac{4}{j} \geq \eta-\frac{4}{j} .
\end{aligned}
$$

This implies that $\lim \sup _{n \rightarrow \infty} \sum_{k=1}^{\infty} y_{k} x_{n, k} \geq \eta>0$, contradicting $x_{n} \xrightarrow{w} 0$ in ℓ^{1}.

