9.1. Metrizability and weak* topology

Let $\left(X,\|\cdot\|_{X}\right)$ be a separable normed \mathbb{K}-vector space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$). Prove that the weak ${ }^{*}$ topology on the unit ball $B^{*}:=\left\{\varphi \in X^{*}:\|\varphi\|_{X^{*}} \leq 1\right\}$ of X^{*} is metrizable.

Solution: Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ be a dense subset of the unit ball $B:=\left\{x \in X:\|x\|_{X} \leq\right.$ $1\}$ in X. The fact that $\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|_{X} \leq 1$ ensures that the mapping $d: B^{*} \times B^{*} \rightarrow$ $[0, \infty)$, given by

$$
d(\varphi, \psi)=\sum_{n=1}^{\infty} 2^{-n}\left|\varphi\left(x_{n}\right)-\psi\left(x_{n}\right)\right| \quad \text { for all } \varphi, \psi \in B^{*}
$$

is well-defined. Indeed:

$$
\begin{aligned}
0 & \leq \sum_{n=1}^{\infty} 2^{-n}\left|\varphi\left(x_{n}\right)-\psi\left(x_{n}\right)\right| \leq \sum_{n=1}^{\infty} 2^{-n}\|\varphi-\psi\|_{X^{*}}\left\|x_{n}\right\|_{X} \\
& \leq \sum_{n=1}^{\infty} 2^{-n}\|\varphi-\psi\|_{X^{*}} \leq\|\varphi-\psi\|_{X^{*}} \quad \text { for all } \varphi, \psi \in B^{*}
\end{aligned}
$$

We claim that d is a metric on B^{*}. For this, note that symmetry is clear. Moreover, for all $\varphi, \psi, \xi \in B^{*}$, we obtain

$$
\begin{aligned}
d(\varphi, \xi) & =\sum_{n=1}^{\infty} 2^{-n}\left|\varphi\left(x_{n}\right)-\xi\left(x_{n}\right)\right| \\
& \leq \sum_{n=1}^{\infty} 2^{-n}\left|\varphi\left(x_{n}\right)-\psi\left(x_{n}\right)\right|+\sum_{n=1}^{\infty} 2^{-n}\left|\psi\left(x_{n}\right)-\xi\left(x_{n}\right)\right| \\
& =d(\varphi, \psi)+d(\psi, \xi),
\end{aligned}
$$

that is, the triangle inequality holds. Finally, for $\varphi, \psi \in B^{*}$ we can infer from $d(\varphi, \psi)=$ 0 that $\varphi\left(x_{n}\right)=\psi\left(x_{n}\right)$ for all $n \in \mathbb{N}$. Hence, any $\varphi, \psi \in B^{*}$ with $d(\varphi, \psi)=0$ have to coincide on $\operatorname{span}\left\{x_{n} \mid n \in \mathbb{N}\right\}$ because of linearity and even on $\operatorname{span}\left\{x_{n} \mid n \in \mathbb{N}\right\}$ because of continuity. As $\overline{\operatorname{span}\left\{x_{n} \mid n \in \mathbb{N}\right\}}=X$ due to $\left(x_{n}\right)_{n \in \mathbb{N}}$ lying dense in the unit ball B of X, we obtain that any $\varphi, \psi \in B^{*}$ with $d(\varphi, \psi)=0$ have to be identical.

All of the above is useless if we cannot show that the weak ${ }^{*}$ topology $\tau_{\mathrm{w}^{*}}$ on B^{*} is equal to the topology τ_{d} on B^{*} which is induced by the metric d. Next, we are going to show that $\tau_{\mathrm{d}} \subseteq \tau_{\mathrm{w}^{*}}$ and $\tau_{\mathrm{w}^{*}} \subseteq \tau_{\mathrm{d}}$.
$" \tau_{\mathrm{d}} \subseteq \tau_{\mathrm{w}^{*}} "$ Let $O \in \tau_{\mathrm{d}}$ and $\varphi \in O$ be arbitrary. Then there exists $\varepsilon \in(0, \infty)$ such that $\left\{\psi \in B^{*} \mid d(\varphi, \psi)<\varepsilon\right\} \subseteq O$. With $N \in \mathbb{N}$ so that $2^{-N}<\frac{\varepsilon}{4}$, we get that

$$
\begin{aligned}
\sum_{n=N+1}^{\infty} 2^{-n}\left|\varphi\left(x_{n}\right)-\psi\left(x_{n}\right)\right| & \leq \sum_{n=N+1}^{\infty} 2^{-n}\left(\|\varphi\|_{X^{*}}+\|\psi\|_{X^{*}}\right) \\
& \leq \sum_{n=N+1}^{\infty} 2^{-n+1}=2^{-N+1}<\frac{\varepsilon}{2} \quad \text { for all } \psi \in B^{*}
\end{aligned}
$$

This implies in particular that

$$
\left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, N\}:\left|\varphi\left(x_{n}\right)-\psi\left(x_{n}\right)\right|<\frac{\varepsilon}{2}\right\} \subseteq O .\right.
$$

As $\varphi \in O$ was arbitrary, this ensures that $O \in \tau_{\mathrm{w}^{*}}$. As $O \in \tau_{\mathrm{d}}$ was arbitrary, we've arrived at showing $\tau_{\mathrm{d}} \subseteq \tau_{\mathrm{w}^{*}}$.
$" \tau_{\mathrm{w}^{*}} \subseteq \tau_{\mathrm{d}} "$ Let $O \in \tau_{\mathrm{w}^{*}}$ and $\varphi \in O$ be arbitrary. Then there exist $N \in \mathbb{N}, \varepsilon \in(0, \infty)$ and $y_{1}, y_{2}, \ldots, y_{N} \in X$ satisfying that

$$
\left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, N\}:\left|\psi\left(y_{n}\right)-\varphi\left(y_{n}\right)\right|<\varepsilon\right\} \subseteq O .\right.
$$

W.l.o.g. we may assume that $\sup _{n \in \mathbb{N}}\left\|y_{n}\right\|_{X} \leq 1$ (otherwise, replace y_{n} by $\frac{y_{n}}{\left\|y_{n}\right\|_{X}}$ if $\left\|y_{n}\right\|_{X}>1$). Since $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq B$ is dense in B, there exist $k_{1}, k_{2}, \ldots, k_{N} \in \mathbb{N}$ such that

$$
\left\|y_{n}-x_{k_{n}}\right\|_{X}<\frac{\varepsilon}{4} \quad \text { for all } n \in\{1,2, \ldots, N\} .
$$

Thus, with $\mathcal{N}:=\max _{1 \leq i \leq N} k_{i} \in \mathbb{N}$, we have

$$
\begin{align*}
& \left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, \mathcal{N}\}:\left|\psi\left(x_{n}\right)-\varphi\left(x_{n}\right)\right|<\frac{\varepsilon}{2}\right\}\right. \tag{1}\\
& \subseteq\left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, N\}:\left|\psi\left(y_{n}\right)-\varphi\left(y_{n}\right)\right|<\varepsilon\right\}\right.
\end{align*}
$$

since, if $\psi \in B^{*}$ satisfies $\left|\psi\left(x_{n}\right)-\varphi\left(x_{n}\right)\right|<\frac{\varepsilon}{2}$ for all $n \in\{1,2, \ldots, \mathcal{N}\}$, then it holds in particular for all $n \in\{1,2, \ldots, N\}$ that

$$
\begin{aligned}
\left|\psi\left(y_{n}\right)-\varphi\left(y_{n}\right)\right| & \leq\left|\psi\left(y_{n}\right)-\psi\left(x_{k_{n}}\right)\right|+\left|\psi\left(x_{k_{n}}\right)-\varphi\left(x_{k_{n}}\right)\right|+\left|\varphi\left(x_{k_{n}}\right)-\varphi\left(y_{n}\right)\right| \\
& \leq\|\psi\|_{X^{*}}\left\|y_{n}-x_{k_{n}}\right\|_{X}+\left|\psi\left(x_{k_{n}}\right)-\varphi\left(x_{k_{n}}\right)\right|+\|\varphi\|_{X^{*}}\left\|x_{k_{n}}-y_{n}\right\|_{X} \\
& \leq 2\left\|y_{n}-x_{k_{n}}\right\|_{X}+\frac{\varepsilon}{2}<\varepsilon .
\end{aligned}
$$

But now we are done since for all $\psi \in B^{*}$ with $d(\psi, \varphi)<2^{-\mathcal{N} \frac{\varepsilon}{2}}$ it holds that

$$
\left|\psi\left(x_{n}\right)-\varphi\left(x_{n}\right)\right| \leq 2^{n} d(\psi, \varphi)<\frac{\varepsilon}{2} \quad \text { for all } n \in\{1,2, \ldots, \mathcal{N}\}
$$

which implies (having (1) in mind) that

$$
\begin{aligned}
& \left\{\psi \in B^{*} \left\lvert\, d(\psi, \varphi)<2^{-\mathcal{N}} \frac{\varepsilon}{2}\right.\right\} \\
& \subseteq\left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, \mathcal{N}\}:\left|\psi\left(x_{n}\right)-\varphi\left(x_{n}\right)\right|<\frac{\varepsilon}{2}\right\}\right. \\
& \subseteq\left\{\psi \in B^{*}\left|\forall n \in\{1,2, \ldots, N\}:\left|\psi\left(y_{n}\right)-\varphi\left(y_{n}\right)\right|<\varepsilon\right\} .\right.
\end{aligned}
$$

As $\phi \in O$ was arbitrary, we demonstrated that $O \in \tau_{\mathrm{d}}$. As $O \in \tau_{\mathrm{w}^{*}}$ was arbitrary, we showed $\tau_{\mathrm{w}^{*}} \subseteq \tau_{\mathrm{d}}$.

9.2. Weak convergence in Hilbert spaces

Let $\left(H,(\cdot, \cdot)_{H}\right)$ be an infinite-dimensional \mathbb{K}-Hilbert space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$).
(a) Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq H$ and $x_{\infty} \in H$ satisfy that $x_{n} \stackrel{w}{\longrightarrow} x_{\infty}$ in H and $\left\|x_{n}\right\|_{H} \rightarrow\left\|x_{\infty}\right\|_{H}$ in \mathbb{R} as $n \rightarrow \infty$. Prove that $x_{n} \rightarrow x_{\infty}$ in H as $n \rightarrow \infty$, i. e. $\lim \sup _{n \rightarrow \infty}\left\|x_{n}-x_{\infty}\right\|_{H}=0$.

Solution: Since $\left(H \ni y \mapsto\left(y, x_{\infty}\right)_{H} \in \mathbb{K}\right) \in H^{*}$, the weak convergence of $\left(x_{n}\right)_{n \in \mathbb{N}}$ to x_{∞} implies

$$
\lim _{n \rightarrow \infty}\left(x_{n}, x_{\infty}\right)_{H}=\left(x_{\infty}, x_{\infty}\right)_{H}=\left\|x_{\infty}\right\|_{H}^{2} \quad \text { and } \quad \lim _{n \rightarrow \infty} \operatorname{Re}\left(x_{n}, x_{\infty}\right)=\left\|x_{\infty}\right\|^{2}
$$

Combining this with the assumption that $\left\|x_{n}\right\|_{H} \rightarrow\left\|x_{\infty}\right\|_{H}$ as $n \rightarrow \infty$, we obtain

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|x_{n}-x_{\infty}\right\|_{H}^{2} & =\limsup _{n \rightarrow \infty}\left(x_{n}-x_{\infty}, x_{n}-x_{\infty}\right)_{H} \\
& =\limsup _{n \rightarrow \infty}\left[\left\|x_{n}\right\|_{H}^{2}-2 \operatorname{Re}\left(x_{\infty}, x_{n}\right)_{H}+\left\|x_{\infty}\right\|_{H}^{2}\right]=0 .
\end{aligned}
$$

(b) Suppose $\left(x_{n}\right)_{n \in \mathbb{N}},\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq H$ and $x_{\infty}, y_{\infty} \in H$ satisfy that $x_{n} \xrightarrow{w} x_{\infty}$ and $\left\|y_{n}-y_{\infty}\right\|_{H} \rightarrow 0$ as $n \rightarrow \infty$. Prove that $\left(x_{n}, y_{n}\right)_{H} \rightarrow\left(x_{\infty}, y_{\infty}\right)_{H}$ as $n \rightarrow \infty$.
Solution: Weak convergence $x_{n} \xrightarrow{w} x_{\infty}$ implies in particular that $\left(x_{n}, y_{\infty}\right)_{H} \rightarrow$ $\left(x_{\infty}, y_{\infty}\right)_{H}$ as $n \rightarrow \infty$ and that there exists a finite constant C such that $\left\|x_{n}\right\|_{H} \leq C$ for all $n \in \mathbb{N}$. Thus,

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left|\left(x_{n}, y_{n}\right)_{H}-\left(x_{\infty}, y_{\infty}\right)_{H}\right| \\
& =\limsup _{n \rightarrow \infty}\left|\left(x_{n}, y_{n}-y_{\infty}\right)_{H}+\left(x_{n}, y_{\infty}\right)_{H}-\left(x_{\infty}, y_{\infty}\right)_{H}\right| \\
& \leq \limsup _{n \rightarrow \infty}\left[C\left\|y_{n}-y_{\infty}\right\|_{H}+\left|\left(x_{n}, y_{\infty}\right)_{H}-\left(x_{\infty}, y_{\infty}\right)_{H}\right|\right]=0 .
\end{aligned}
$$

(c) Let $\left(e_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal system of $\left(H,(\cdot, \cdot)_{H}\right)$. Prove $e_{n} \stackrel{w}{\longrightarrow} 0$ as $n \rightarrow \infty$.

Solution: Note that Bessel's inequality, i.e.,

$$
\sum_{n=0}^{\infty}\left|\left(x, e_{n}\right)_{H}\right|^{2} \leq\|x\|_{H}^{2} \quad \text { for all } x \in H
$$

implies that $\left(x, e_{n}\right)_{H} \rightarrow 0$ as $n \rightarrow \infty$ for any $x \in H$. Since by the Riesz representation theorem any $f \in H^{*}$ satisfies $f\left(e_{n}\right)=\left(e_{n}, x\right)_{H}$ for a unique $x \in H$, we obtain $e_{n} \stackrel{w}{\longrightarrow} 0$ as $n \rightarrow \infty$.
(d) Given any $x_{\infty} \in H$ with $\left\|x_{\infty}\right\|_{H} \leq 1$, prove that there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in H satisfying $\left\|x_{n}\right\|_{H}=1$ for all $n \in \mathbb{N}$ and $x_{n} \stackrel{w}{\rightharpoonup} x_{\infty}$ as $n \rightarrow \infty$.

Solution: If $x_{\infty}=0$, then any orthonormal system converges weakly to x_{∞} by (c). If $x_{\infty} \neq 0$, then an orthonormal system $\left(e_{n}\right)_{n \in \mathbb{N}}$ of H with $e_{1}=\left\|x_{\infty}\right\|_{H}^{-1} x_{\infty}$ can be constructed via the Gram-Schmidt algorithm. For $n \in \mathbb{N}$, let

$$
x_{n}:=x_{\infty}+\left(\sqrt{1-\left\|x_{\infty}\right\|_{H}^{2}}\right) e_{n+1} .
$$

Then, since $x_{\infty} \perp e_{n+1}$ for every $n \in \mathbb{N}$, we have $\left\|x_{n}\right\|^{2}=\left\|x_{\infty}\right\|_{H}^{2}+\left(1-\left\|x_{\infty}\right\|_{H}^{2}\right)=1$ for every $n \in \mathbb{N}$. Moreover, $x_{n} \stackrel{w}{w} x_{\infty}$ follows from $e_{n+1} \stackrel{w}{\longrightarrow} 0$ as $n \rightarrow \infty$ by (c).
(e) Let the functions $f_{n}:[0,2 \pi] \rightarrow \mathbb{R}$ be given by $f_{n}(t)=\sin (n t)$ for $n \in \mathbb{N}$. Prove the Riemann-Lebesgue Lemma: $f_{n} \xrightarrow{w} 0$ in $L^{2}([0,2 \pi], \mathbb{R})$ as $n \rightarrow \infty$.

Solution: Let $f_{n}:[0,2 \pi] \rightarrow \mathbb{R}$ be given by $f_{n}(t)=\sin (n t)$ for $n \in \mathbb{N}$. Then, $\left(\sqrt{\frac{1}{\pi}} f_{n}\right)_{n \in \mathbb{N}}$ is an orthonormal system of $L^{2}([0,2 \pi], \mathbb{R})$, because

$$
\begin{aligned}
\int_{0}^{2 \pi} \sin (m t) \sin (n t) d t & =\frac{1}{2} \int_{0}^{2 \pi}[\cos ((m-n) t)-\cos ((m+n) t)] d t \\
& = \begin{cases}0, \text { if } m \neq n, \\
\pi, & \text { if } m=n\end{cases}
\end{aligned}
$$

holds for any $m, n \in \mathbb{N}$. By (c) weak convergence $f_{n} \stackrel{w}{\rightharpoonup} 0$ as $n \rightarrow \infty$ follows.
Remark. The assumption that H is infinite-dimensional was only used in (c) and (d). As weak and strong convergence are equivalent in finite-dimensional spaces, adaptions of (c) and (d) to the finite-dimensional situation are necessarily wrong. (a) and (b), however, hold in any Hilbert space. (b) can even be formulated so that weak convergence of $x_{n} \rightarrow x_{\infty}$ in a Banach space X and strong convergence of $\varphi_{n} \rightarrow \varphi_{\infty}$ in the dual space X^{*} imply the convergence $\varphi_{n}\left(x_{n}\right) \rightarrow \varphi_{\infty}\left(x_{\infty}\right)$.

9.3. Annihilating annihilators

Let X be a normed \mathbb{K}-vector space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$).

- For every set $U \subseteq X$ let $U^{\perp} \subseteq X^{*}$ be defined by $U^{\perp}=\left\{\varphi \in X^{*}: \varphi(u)=\right.$ 0 for all $u \in U\}$.
- For every set $\Phi \subseteq X^{*}$ let ${ }^{\perp} \Phi \subseteq X$ be defined by ${ }^{\perp} \Phi=\{x \in X: \varphi(x)=$ 0 for all $\varphi \in \Phi\}$.

Prove for all $\emptyset \neq U \subseteq X$ and $\emptyset \neq \Phi \subseteq X^{*}$ that ${ }^{\perp}\left(U^{\perp}\right)=\overline{\operatorname{span}(U)}$ and $\overline{\operatorname{span}(\Phi)} \subseteq$ $\left({ }^{\perp} \Phi\right)^{\perp}$.

Solution: Let $\emptyset \neq U \subseteq X$. Then it holds for all $\varphi \in U^{\perp}$ that $\varphi(u)=0$ for all $u \in U$. By linearity, this extends to $\varphi(u)=0$ for all $u \in \operatorname{span}(U), \varphi \in U^{\perp}$ and by continuity, we even get $\varphi(u)=0$ for all $u \in \overline{\operatorname{span}(U)}, \varphi \in U^{\perp}$. Hence, we obtain $\overline{\operatorname{span}(U)} \subseteq{ }^{\perp}\left(U^{\perp}\right)$. For the opposite inclusion, let us consider an arbitrary $u \in^{\perp}\left(U^{\perp}\right) \backslash \operatorname{span}(U)$ (if existent). Note that $A=\{u\}$ is a non-empty, convex and compact set while $B=\overline{\operatorname{span}(U)}$ is a non-empty, convex and closed set. Since, in addition, $A \cap B=\emptyset$, there exist $\varphi \in X^{*}, \lambda \in \mathbb{R}$ such that $\varphi(u)<\lambda \leq \inf _{b \in B} \varphi(b)$. As B is a linear space, $\inf _{b \in B} \varphi(b)$ can only be 0 (in which case $\left.\varphi\right|_{B} \equiv 0$) or $-\infty$, the latter being impossible as $\left.\varphi\right|_{B}$ is bounded below by $\varphi(u)$. Long story short, there exists $\varphi \in X^{*}$ such that $\varphi(u) \neq 0$ but $\left.\varphi\right|_{B} \equiv 0$ (and, in particular, $\left.\varphi\right|_{U} \equiv 0$). In other words, there exists $\varphi \in U^{\perp}$ with $\varphi(u) \neq 0$, which proves that $u \not{ }^{\perp}\left(U^{\perp}\right)$. Thus, we have shown that ${ }^{\perp}\left(U^{\perp}\right) \subseteq \overline{\operatorname{span}(U)}$, which concludes the proof of ${ }^{\perp}\left(U^{\perp}\right)=\overline{\operatorname{span}(U)}$.
For the second claim, let $\emptyset \neq \Phi \subseteq X^{*}$. Then it holds for all $u \in{ }^{\perp} \Phi$ that $\varphi(u)=0$ for all $\varphi \in \Phi$. By linearity, this extends to $\varphi(u)=0$ for all $\varphi \in \operatorname{span}(\Phi)$ and by continuity, we get $\varphi(u)=0$ for all $u \in{ }^{\perp} \Phi, \varphi \in \overline{\operatorname{span}(\Phi)}$. Thus, $\overline{\operatorname{span}(\Phi)} \subseteq\left({ }^{\perp} \Phi\right)^{\perp}$.

9.4. Duals and quotient spaces

Let $\left(X,\|\cdot\|_{X}\right)$ be a normed \mathbb{K}-vector space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$) and $U \subseteq X$ a closed subspace.
(a) Prove that $(X / U)^{*}$ is isometrically isomorphic to U^{\perp}.

Solution: Let $\pi:=(X \ni x \mapsto x+U \in X / U)$ denote the canonical projection. As π is a linear and continuous mapping from X to X / U (i.e., $\pi \in L(X, X / U)$), it holds for every $\Phi \in(X / U)^{*}$ that $\Phi \circ \pi \in X^{*}$. Hence, the mapping $T:(X / U)^{*} \rightarrow X^{*}$, defined by

$$
T \Phi=\Phi \circ \pi \quad \text { for all } \Phi \in(X / U)^{*},
$$

is well-defined. T is clearly a linear mapping. Moreover, for all $\Phi \in(X / U)^{*}, x \in X$ it holds that

$$
|(T \Phi)(x)|=|\Phi(\pi(x))| \leq\|\Phi\|_{(X / U)^{*}}\|\pi(x)\|_{X / U} \leq\|\Phi\|_{(X / U)^{*}}\|x\|_{X}
$$

that is, $\|T \Phi\|_{X^{*}} \leq\|\Phi\|_{(X / U)^{*}}$ for all $\Phi \in(X / U)^{*}$. On the other hand, for every $\Phi \in(X / U)^{*}$ we can find $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ such that

- $\left\|\pi\left(x_{n}\right)\right\|_{(X / U)^{*}}=1$ for all $n \in \mathbb{N}$,
- $\lim _{n \rightarrow \infty} \Phi\left(\pi\left(x_{n}\right)\right)=\|\Phi\|_{(X / U) *}$,
- $\left\|x_{n}\right\|_{X}<\left\|\pi\left(x_{n}\right)\right\|_{(X / U)^{*}}+\frac{1}{n}$ for every $n \in \mathbb{N}$,
which implies that

$$
\|T \Phi\|_{X^{*}} \geq \sup _{n \in \mathbb{N}} \frac{(T \Phi)\left(x_{n}\right)}{\left\|x_{n}\right\|_{X}}=\sup _{n \in \mathbb{N}} \frac{\Phi\left(\pi\left(x_{n}\right)\right)}{1+\frac{1}{n}} \geq \lim _{n \rightarrow \infty} \frac{\Phi\left(\pi\left(x_{n}\right)\right)}{1+\frac{1}{n}}=\|\Phi\|_{(X / U)^{*}}
$$

Thus, we obtain for all $\Phi \in(X / U)^{*}$ that $\|T \Phi\|_{X^{*}}=\|\Phi\|_{(X / U)^{*}}$. In other words, T is an isometry (and, in particular, injective). In the following we are going to show that $\operatorname{im}(T) \subseteq U^{\perp}$ and $U^{\perp} \subseteq \operatorname{im}(T)$, which will complete the proof as it shows that the range of the isometry T is U^{\perp}.
"im $(T) \subseteq U^{\perp "}$: From $\pi(u)=0$ for all $u \in U$ we get that $(T \Phi)(u)=0$ for all $\Phi \in(X / U)^{*}, u \in U$. Hence, $T \Phi \in U^{\perp}$ for all $\Phi \in(X / U)^{*}$, which shows $\operatorname{im}(T) \subseteq U^{\perp}$. $"{ }^{\prime} U^{\perp} \subseteq \operatorname{im}(T) "$: Define the mapping $S: U^{\perp} \rightarrow(X / U)^{*}$ via

$$
(S \varphi)(x+U)=\varphi(x) \quad \text { for all } x \in X .
$$

Since for all $\varphi \in U^{\perp}$ and $x, y \in X$ with $x+U=y+U$ it holds (as $x-y \in U$) that $\varphi(x-y)=0$, we obtain that, for every $\varphi \in U^{\perp}, S \varphi:(X / U) \rightarrow \mathbb{R}$ is a well-defined mapping. Moreover, by linearity of π, every $\varphi \in U^{\perp}$ gives rise to a linear function $S \varphi$. Next, since for all $x \in X$ it holds that

$$
\begin{aligned}
|(S \varphi)(\pi(x))| & =\inf _{y \in \pi^{-1}(\pi(x))}|(S \varphi)(\pi(y))|=\inf _{y \in \pi^{-1}(\pi(x))}|\varphi(y)| \\
& \leq \inf _{y \in \pi^{-1}(\pi(x))}\|\varphi\|_{X^{*}}\|y\|_{X}=\|\varphi\|_{X^{*}}\|\pi(x)\|_{(X / U)^{*}},
\end{aligned}
$$

we finally get that $S: U^{\perp} \rightarrow(X / U)^{*}$ is indeed well-defined. In addition, for all $\varphi \in U^{\perp}, x \in X$ it holds that

$$
(T S \varphi)(x)=(S \varphi)(\pi(x))=\varphi(x),
$$

which proves that $U^{\perp} \subseteq \operatorname{im}(T)$.
(b) Prove that U^{*} is isometrically isomorphic to X^{*} / U^{\perp}.

Solution: Let $\Pi:=X^{*} \ni x^{*} \mapsto x^{*}+U^{\perp} \in X^{*} / U^{\perp}$ be the canonical projection. Define the mapping $T: X^{*} / U^{\perp} \rightarrow U^{*}$ by

$$
T\left(x^{*}+U^{\perp}\right)=\left.x^{*}\right|_{U} \quad \text { for all } x^{*} \in X^{*} .
$$

T is well-defined as for all $x^{*}, y^{*} \in X^{*}$ with $x^{*}+U^{\perp}=y^{*}+U^{\perp}$ it holds that $x^{*}-y^{*} \in U^{\perp}$ and therefore $\left.\left(x^{*}-y^{*}\right)\right|_{U} \equiv 0$. Also, T is clearly a linear mapping.

Moreover, $\left.x^{*}\right|_{U}$ belongs clearly to U^{*} if $x^{*} \in X^{*}$. Next, note that for all $x^{*} \in X^{*}$ it holds that

$$
\left\|T\left(x^{*}+U^{\perp}\right)\right\|_{U^{*}}=\left\|\left.x^{*}\right|_{U}\right\|_{U^{*}} \leq\left\|x^{*}\right\|_{X^{*}}
$$

Hence,

$$
\left\|T\left(x^{*}+U^{\perp}\right)\right\|_{U^{*}} \leq \inf _{y^{*} \in x^{*}+U^{\perp}}\left\|y^{*}\right\|_{X^{*}}=\left\|x^{*}+U^{\perp}\right\|_{X^{*} / U^{\perp}} \quad \text { for all } x^{*} \in X^{*} .
$$

Note that, according to the Hahn-Banach theorem, for every $u^{*} \in U^{*}$, there exists $x^{*} \in X^{*}$ with $\left.x^{*}\right|_{U}=u^{*}$ and $\left\|x^{*}\right\|_{X^{*}}=\left\|u^{*}\right\|_{U^{*}}$. This implies that T is surjective and that

$$
\left\|T\left(x^{*}+U^{\perp}\right)\right\|_{U^{*}}=\left\|\left.x^{*}\right|_{U}\right\|_{U^{*}} \geq\left\|x^{*}+U^{*}\right\|_{X^{*} \backslash U^{\perp}} \quad \text { for every } x^{*} \in X^{*} .
$$

Putting everything together, we have that T is a surjective isometry, which completes our proof.
(c) Prove that reflexivity of X implies reflexivity of U (in other words, closed subspaces of reflexive spaces are reflexive).

Solution: Let $u^{* *} \in U^{* *}$ be arbitrary but fixed. The map $X^{*} \ni x^{*} \mapsto u^{* *}\left(\left.x^{*}\right|_{U}\right) \in \mathbb{K}$ is clearly linear and bounded and therefore belongs to $X^{* *}$. By the reflexivity of X, there exists $x \in X$ such that

$$
x^{*}(x)=u^{* *}\left(\left.x^{*}\right|_{U}\right) \quad \text { for all } x^{*} \in X^{*} .
$$

In particular, it holds for all $x^{*} \in U^{\perp}$ that $x^{*}(x)=0$. Therefore, $x \in{ }^{\perp}\left(U^{\perp}\right)=\bar{U}=U$ by Problem 9.3 (Annihilating annihilators). Since for every $u^{*} \in U^{*}$ there exists $x^{*} \in X^{*}$ with $\left.x^{*}\right|_{U}=u^{*}$ by the Hahn-Banach theorem, we have that

$$
u^{*}(x)=u^{* *}\left(u^{*}\right) \quad \text { for all } u^{*} \in U^{*} .
$$

Thus, the canonical embedding $\iota_{U}:=\left(U \ni u \mapsto\left(U^{*} \ni u^{*} \mapsto u^{*}(u) \in \mathbb{K}\right) \in U^{* *}\right)$ is surjective. This proves that U is reflexive.

9.5. Invariant measures à la Krylov-Bogolioubov

Let (K, d) be a non-empty compact metric space and let $T: K \rightarrow K$ be continuous. Prove that there exists a Borel probability measure $\mu \in \mathcal{P}(K)$ on K satisfying for all Borel sets $A \subseteq K$ that $\mu\left(T^{-1}(A)\right)=\mu(A)$.

Hint: Use Problem 7.3 (Banach limits) to show that there exists $\varphi \in(C(K, \mathbb{R}))^{*}$ satisfying $\varphi \geq 0,\|\varphi\|_{(C(K, \mathbb{R}))^{*}}=1$ and $\varphi(f)=\varphi(f \circ T)$ for all $f \in C(K, \mathbb{R})$. Conclude recalling Riesz's representation theorem:

With (K, d) being a compact metric space and with $\mathcal{M}(K)$ denoting the set of Borel regular finite signed measures on $K, \mathcal{M}(K)$ is isometrically isomorphic to $(C(K, \mathbb{R}))^{*}$ via the mapping $\Phi: \mathcal{M}(K) \rightarrow(C(K, \mathbb{R}))^{*}$, defined by

$$
[\Phi(\mu)](f)=\int_{K} f d \mu \quad \text { for all } \mu \in \mathcal{M}(K), f \in C(K, \mathbb{R})
$$

In particular, the positive regular Borel measures correspond to the positive continuous linear functionals.

Solution: Let $\mathcal{T}: \ell^{\infty} \rightarrow \ell^{\infty}$ denote the left shift, i.e., $\mathcal{T} x=\left(x_{n+1}\right)_{n \in \mathbb{N}}$ for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}$. From Problem 7.3 (Banach limits) we know that there exists $L \in\left(\ell^{\infty}\right)^{*}$ such that

- $\|L\|_{\left(\ell^{\infty}\right)^{*}}=1$,
- Lx ≥ 0 for all $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}$ satisfying $x_{n} \geq 0$ for all $n \in \mathbb{N}$,
- $L x=L(\mathcal{T} x)$ for all $\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{\infty}$.

Now, fix an arbitrary $x \in K$ and define the mapping $S: C(K, \mathbb{R}) \rightarrow \ell^{\infty}$ by

$$
S(f)=\left(\left(f \circ T^{n}\right)(x)\right)_{n \in \mathbb{N}} \quad \text { for all } f \in C(K, \mathbb{R})
$$

Note that S is well-defined because $\|S(f)\|_{\ell \infty} \leq \sup _{x \in K}|f(x)|<\infty$ for every $f \in$ $C(K, \mathbb{R})$ by compactness of K. Moreover, S is clearly linear and - by $\|S(f)\|_{\ell \infty} \leq$ $\sup _{x \in K}|f(x)|$ for all $f \in C(K, \mathbb{R})$ - bounded. Thus, $\varphi:=L \circ S \in(C(K, \mathbb{R}))^{*}$. In addition, for all $f \in C(K, \mathbb{R})$ with $f \geq 0$ it holds that $S(f) \geq 0$ in ℓ^{∞} and therefore also $\varphi(f) \geq 0$. Riesz's representation theorem therefore ensures that there exists a finite positive Borel regular measure μ on K such that for all $f \in C(K, \mathbb{R})$ it holds that $\varphi(f)=\int_{K} f d \mu$. Since

$$
\mu(K)=\int_{K} 1 d \mu=\varphi(K \ni x \mapsto 1 \in \mathbb{R})=L\left((1)_{n \in \mathbb{N}}\right)=1
$$

we obtain that μ is a probability measure. Furthermore, it holds for all $f \in C(K, \mathbb{R})$ that

$$
\varphi(f \circ T)=L(S(f \circ T))=L(\mathcal{T} S(f))=L(S(f))=\varphi(f)
$$

This implies that

$$
\int_{K} f d \mu=\int_{K} f \circ T d \mu \quad \text { for all } f \in C(K, \mathbb{R}) .
$$

It follows by standard measure-theoretic arguments that $\int_{K} f d \mu=\int_{K} f \circ T d \mu$ for all bounded Borel measurable $f: K \rightarrow \mathbb{R}$. In particular, for all Borel sets $A \subseteq K$, we get $\mu(A)=\mu\left(T^{-1}(A)\right)$.

9.6. Optimal transport à la Kantorovich

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be non-empty compact metric spaces, let $c: X \times Y \rightarrow \mathbb{R} \cup\{\infty\}$ be lower semi-continuous, and let $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$ be probability measures on X and Y, respectively. We denote by $\Gamma(\mu, \nu)$ the set of probability measures on $X \times Y$ with first marginal μ and second marginal ν, i.e.,

$$
\Gamma(\mu, \nu)=\left\{\gamma \in \mathcal{P}(X \times Y): \begin{array}{c}
\gamma(A \times Y)=\mu(A), \gamma(X \times B)=\nu(B) \\
\text { for all Borel sets } A \subseteq X, B \subseteq Y
\end{array}\right\}
$$

Prove that there exists $\gamma \in \Gamma(\mu, \nu)$ satisfying that

$$
\int_{X \times Y} c(x, y) d \gamma(x, y)=\inf _{\eta \in \Gamma(\mu, \nu)} \int_{X \times Y} c(x, y) d \eta(x, y) .
$$

Hint: Assume first that c is continuous. For general lower semi-continuous c, use that c can be written as pointwise limit of an increasing sequence $\left(f_{k}\right)_{k \in \mathbb{N}} \subseteq C(X \times Y, \mathbb{R})$.

Solution: Since $\mu \otimes \nu \in \Gamma(\mu, \nu)$, we know that $\Gamma(\mu, \nu) \neq \emptyset$. Since $X \times Y$ is compact and c is lower semi-continuous, $\inf _{(x, y) \in X \times Y} c(x, y)>-\infty$. Consequentially, we obtain for all $\eta \in \Gamma(\mu, \nu)$ that

$$
\int_{X \times Y} c(x, y) d \eta(x, y) \geq \int_{X \times Y} \inf _{X \times Y} c d \eta(x, y)=\inf _{X \times Y} c>-\infty .
$$

Let $\left(\gamma_{n}\right)_{n \in \mathbb{N}} \subseteq \Gamma(\mu, \nu)$ be a sequence satisfying

$$
\lim _{n \rightarrow \infty} \int_{X \times Y} c(x, y) d \gamma_{n}(x, y)=\inf _{\eta \in \Gamma(\mu, \nu)} \int_{X \times Y} c(x, y) d \eta(x, y) .
$$

Since $\Gamma(\mu, \nu) \subseteq \mathcal{P}(X \times Y) \hookrightarrow(C(X \times Y, \mathbb{R}))^{*}$ and $C(X \times Y, \mathbb{R})$ is separable, we may by the Banach-Alaoglu theorem assume w.l.o.g. that $\gamma_{n} \xrightarrow{w^{*}} \gamma_{\infty} \in(C(K, \mathbb{R}))^{*}$. By the Riesz representation theorem we may (and will) interpret γ_{∞} as an element of $\mathcal{M}(X \times Y)$. Due to

$$
\int_{X \times Y} f(x, y) d \gamma_{\infty}(x, y)=\lim _{n \rightarrow \infty} \int_{X \times Y} f(x, y) d \gamma_{n}(x, y) \quad \text { for all } f \in C(X \times Y, \mathbb{R})
$$

we get (by applying the above with $f \geq 0$ and with $f=(X \times Y \ni(x, y) \mapsto 1 \in \mathbb{R})$ respectively) that $\gamma_{\infty} \in \mathcal{P}(X \times Y)$. Moreover, for all $f \in C(X, \mathbb{R})$ and all $g \in C(Y, \mathbb{R})$ we have that

$$
\int_{X \times Y} f(x) d \gamma_{\infty}(x, y)=\lim _{n \rightarrow \infty} \int_{X \times Y} f(x) d \gamma_{n}(x, y)=\int_{X} f(x) d \mu(x)
$$

and

$$
\int_{X \times Y} g(y) d \gamma_{\infty}(x, y)=\lim _{n \rightarrow \infty} \int_{X \times Y} g(y) d \gamma_{n}(x, y)=\int_{Y} g(y) d \nu(y),
$$

i.e., $\gamma_{\infty} \in \Gamma(\mu, \nu)$. In the case that $c: X \times Y \rightarrow \mathbb{R}$ was continuous (and not only lower semi-continuous), we obtain

$$
\int_{X \times Y} c(x, y) d \gamma_{\infty}(x, y)=\lim _{n \rightarrow \infty} \int_{X \times Y} c(x, y) d \gamma_{n}(x, y)=\inf _{\eta \in \Gamma(\mu, \nu)} \int_{X \times Y} c(x, y) d \eta(x, y) .
$$

In the general case, there exist (Lipschitz) continuous functions $\left(f_{n}\right)_{n \in \mathbb{N}} \subseteq C(X \times Y, \mathbb{R})$ with $f_{n} \geq \inf _{(x, y) \in X \times Y} c(x, y)$ for all $n \in \mathbb{N}$ and with $c(x, y)=\sup _{n \in \mathbb{N}} f_{n}(x, y)$ for all $(x, y) \in X \times Y$. With this, we obtain for every $m \in \mathbb{N}$ that

$$
\begin{aligned}
\int_{X \times Y} f_{m}(x, y) d \gamma_{\infty}(x, y) & =\lim _{n \rightarrow \infty} \int_{X \times Y} f_{m}(x, y) d \gamma_{n}(x, y) \\
& \leq \limsup _{n \rightarrow \infty} \int_{X \times Y} c(x, y) d \gamma_{n}(x, y) \\
& =\inf _{\eta \in \Gamma(\mu, \nu)} \int_{X \times Y} c(x, y) d \eta(x, y)
\end{aligned}
$$

Lebesgue's monotone convergence theorem implies that the left hand side converges to $\int_{X \times Y} c(x, y) d \gamma_{\infty}(x, y)$ as $m \rightarrow \infty$.

9.7. Minimal Energy

Let $m \in \mathbb{N}$ and let $\Omega \subseteq \mathbb{R}^{m}$ be a bounded measurable set with $|\Omega|>0$. For $g \in L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)$, we define the map

$$
\begin{aligned}
V: L^{2}(\Omega, \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto \int_{\Omega} \int_{\Omega} g(x-y) f(x) f(y) d y d x
\end{aligned}
$$

and given $h \in L^{2}(\Omega, \mathbb{R})$, we define the map

$$
\begin{aligned}
E: L^{2}(\Omega, \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto\|f-h\|_{L^{2}(\Omega, \mathbb{R})}^{2}+V(f) .
\end{aligned}
$$

(a) Prove that V is weakly sequentially continuous.

Solution: Given a bounded measurable $\Omega \subseteq \mathbb{R}^{m}$ and $g \in L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)$, the goal is weak sequential continuity of the map

$$
\begin{aligned}
V: L^{2}(\Omega, \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto \int_{\Omega} \int_{\Omega} g(x-y) f(x) f(y) d y d x .
\end{aligned}
$$

Claim 1. The linear operator $T: L^{2}(\Omega, \mathbb{R}) \rightarrow L^{2}(\Omega, \mathbb{R})$ mapping $f \mapsto T f$ given by

$$
(T f)(x)=\int_{\Omega} g(x-y) f(y) d y
$$

is well-defined.
Proof. Let $f \in L^{2}(\Omega, \mathbb{R})$. Note that $(T f)(x)$ is well-defined for every $x \in \Omega$ by the Cauchy-Schwarz inequality. Since $\Omega \subseteq \mathbb{R}^{m}$, being a bounded set, has finite volume $|\Omega|<\infty$, we obtain in addition that $T f \in L^{2}(\Omega, \mathbb{R})$:

$$
\begin{aligned}
\|T f\|_{L^{2}(\Omega, \mathbb{R})}^{2} & =\int_{\Omega}|(T f)(x)|^{2} d x=\int_{\Omega}\left|\int_{\Omega} g(x-y) f(y) d y\right|^{2} d x \\
& \leq \int_{\Omega}\left(\int_{\Omega}|g(x-y) f(y)| d y\right)^{2} d x \leq \int_{\Omega}\left(\int_{\Omega}|g(x-y)|^{2} d y\right)\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2} d x \\
& \leq \int_{\Omega}\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}^{2}\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2} d x \leq|\Omega|\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}^{2}\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2}<\infty
\end{aligned}
$$

$C l a i m 2$ 2. Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $L^{2}(\Omega, \mathbb{R})$ such that $f_{k} \xrightarrow{w} f$ in $L^{2}(\Omega, \mathbb{R})$ as $k \rightarrow \infty$. Then, $\left\|T f_{k}-T f\right\|_{L^{2}(\Omega, \mathbb{R})} \rightarrow 0$ as $k \rightarrow \infty$, where T is as in Claim 1.

Proof of 2. Since the sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ is weakly convergent, it is bounded (by BanachSteinhaus): $\exists C \in[0, \infty) \forall k \in \mathbb{N}:\left\|f_{k}\right\|_{L^{2}(\Omega, \mathbb{R})} \leq C$. For every fixed $x_{0} \in \Omega$ and $k \in \mathbb{N}$, there holds

$$
\begin{aligned}
\left|\left(T f_{k}\right)\left(x_{0}\right)\right| & \leq \int_{\Omega}\left|g\left(x_{0}-y\right) f_{k}(y)\right| d y \leq\left(\int_{\Omega}\left|g\left(x_{0}-y\right)\right|^{2} d y\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|f_{k}(y)\right|^{2} d y\right)^{\frac{1}{2}} \\
& \leq\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}\left\|f_{k}\right\|_{L^{2}(\Omega, \mathbb{R})} .
\end{aligned}
$$

In particular, the map $f_{k} \mapsto\left(T f_{k}\right)\left(x_{0}\right)$ is a linear continuous functional $L^{2}(\Omega, \mathbb{R}) \rightarrow \mathbb{R}$. Therefore, weak convergence $f_{k} \xrightarrow{w} f$ implies $\left(T f_{k}\right)\left(x_{0}\right) \rightarrow(T f)\left(x_{0}\right)$ as $k \rightarrow \infty$. In other words, $T f_{k}$ converges pointwise to $T f$. Moreover,

$$
\sup _{k \in \mathbb{N}}\left|\left(T f_{k}\right)\left(x_{0}\right)\right| \leq \sup _{k \in \mathbb{N}}\left(\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}\left\|f_{k}\right\|_{L^{2}(\Omega, \mathbb{R})}\right) \leq C\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}
$$

Since Ω is bounded, the constant $C\|g\|_{L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)}$ on the right right hand side belongs $L^{2}(\Omega, \mathbb{R})$. Hence, the claim follows by Lebesgue's dominated convergence theorem.

Claim 3. Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $L^{2}(\Omega, \mathbb{R})$ such that $f_{k} \xrightarrow{w} f$ in $L^{2}(\Omega, \mathbb{R})$ as $k \rightarrow \infty$. Then, $V\left(f_{k}\right) \rightarrow V(f)$ as $k \rightarrow \infty$, i. e. V is weakly sequentially continuous.

Proof. Let T be as in Claim 1. Since $f_{k} \stackrel{w}{\longrightarrow} f$ and $\left\|T f_{k}-T f\right\|_{L^{2}(\Omega, \mathbb{R})} \rightarrow 0$ as $k \rightarrow \infty$ by claim 2, we conclude

$$
V\left(f_{k}\right)=\int_{\Omega} f_{k}(x) \int_{\Omega} g(x-y) f_{k}(y) d y d x=\left\langle f_{k}, T f_{k}\right\rangle_{L^{2}(\Omega)} \xrightarrow{k \rightarrow \infty}\langle f, T f\rangle=V(f),
$$

using the continuity property of scalar products proven in Problem 9.2 (b).
(b) Under the assumption $g \geq 0$ almost everywhere, prove that E restricted to

$$
L_{+}^{2}(\Omega, \mathbb{R}):=\left\{f \in L^{2}(\Omega, \mathbb{R}) \mid f(x) \geq 0 \text { for almost every } x \in \Omega\right\}
$$

attains a global minimum.
Solution: In the case that $0 \leq g \in L^{2}\left(\mathbb{R}^{m}, \mathbb{R}\right)$ and $h \in L^{2}(\Omega, \mathbb{R})$ the claim is that the map

$$
\begin{aligned}
E: L^{2}(\Omega, \mathbb{R}) & \rightarrow \mathbb{R} \\
f & \mapsto\|f-h\|_{L^{2}(\Omega, \mathbb{R})}^{2}+V(f)
\end{aligned}
$$

restricted to $L_{+}^{2}(\Omega, \mathbb{R})$ attains a global minimum. Since $L^{2}(\Omega, \mathbb{R})$ is reflexive (being a Hilbert space), we may invoke the direct method in the calculus of variations if we prove the following claims.

Claim 4. $L_{+}^{2}(\Omega, \mathbb{R})$ is non-empty and weakly sequentially closed.
Proof. Clearly, $L_{+}^{2}(\Omega, \mathbb{R}) \ni 0$ is non-empty. Let $\left(f_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $L_{+}^{2}(\Omega, \mathbb{R})$ such that $f_{k} \stackrel{w}{\sim} f$ for some $f \in L^{2}(\Omega, \mathbb{R})$ as $k \rightarrow \infty$. Suppose $f \notin L_{+}^{2}(\Omega, \mathbb{R})$. Then there exists $U \subseteq \Omega$ with positive measure such that $\left.f\right|_{U}<0$. In particular, we can test the weak convergence with the characteristic function χ_{U} to obtain the contradiction

$$
0>\left\langle f, \chi_{U}\right\rangle_{L^{2}(\Omega, \mathbb{R})}=\lim _{k \rightarrow \infty}\left\langle f_{k}, \chi_{U}\right\rangle \geq 0 .
$$

Claim 5. $E: L_{+}^{2}(\Omega, \mathbb{R}) \rightarrow \mathbb{R}$ is coercive and weakly sequentially lower semi-continuous.
Proof of Claim 5. Since $V(f) \geq 0$ if both $g \geq 0$ and $f \geq 0$ almost everywhere, we have

$$
\begin{aligned}
E(f) \geq\|f-h\|_{L^{2}(\Omega, \mathbb{R})}^{2} & \geq\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2}-2\|f\|_{L^{2}(\Omega, \mathbb{R})}\|h\|_{L^{2}(\Omega, \mathbb{R})}+\|h\|_{L^{2}(\Omega, \mathbb{R})}^{2} \\
& \geq \frac{1}{2}\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2}-\|h\|_{L^{2}(\Omega, \mathbb{R})}^{2}
\end{aligned}
$$

for every $f \in L_{+}^{2}(\Omega, \mathbb{R})$ as we have by Young's inequality that $2 a b \leq \frac{1}{2} a^{2}+2 b^{2}$ for all $a, b \in \mathbb{R}$. Since $h \in L^{2}(\Omega, \mathbb{R})$ is fixed, E is coercive.

By part (a), $L^{2}(\Omega, \mathbb{R}) \ni f \mapsto V(f) \in \mathbb{R}$ is weakly sequentially lower semi-continuous. Moreover, every term on the right hand side of

$$
\|f-h\|_{L^{2}(\Omega, \mathbb{R})}^{2}=\|f\|_{L^{2}(\Omega, \mathbb{R})}^{2}-2\langle f, h\rangle_{L^{2}(\Omega, \mathbb{R})}+\|h\|_{L^{2}(\Omega, \mathbb{R})}^{2}
$$

is weakly sequentially lower semi-continuous in f since h is fixed. This proves the claim.

9.8. A result by Lions-Stampacchia

Let $\left(H,(\cdot, \cdot)_{H}\right)$ be a real Hilbert space and let $a: H \times H \rightarrow \mathbb{R}$ be a bilinear map so that:
(i) $a(x, y)=a(y, x)$ for every $x, y \in H$,
(ii) there exists $\Lambda \in(0, \infty)$ so that $|a(x, y)| \leq \Lambda\|x\|_{H}\|y\|_{H}$ for every $x, y \in H$,
(iii) there exists $\lambda \in(0, \infty)$ so that $a(x, x) \geq \lambda\|x\|_{H}^{2}$ for every $x \in H$.

Let moreover $f: H \rightarrow \mathbb{R}$ be a continuous linear functional. Consider the map $J: H \rightarrow \mathbb{R}$ given by

$$
J(x)=a(x, x)-2 f(x)
$$

Finally, let $K \subseteq H$ be a non-empty closed convex subset.
(a) Prove that there exists a unique $y_{0} \in K$ such that $J\left(y_{0}\right) \leq J(z)$ for every $z \in K$.

Solution: The special structure of the terms involved allows to give here a solution based on Problem 5.6 (Projections on closed convex sets). A standard argument in the spirit of the direct method of the calculus of variations would of course be possible as well.
Claim 1. Given $f \in H^{*}$, there exists a unique $x_{0} \in H$ such that for all $x \in H$

$$
J(x):=a(x, x)-2 f(x)=a\left(x-x_{0}, x-x_{0}\right)-a\left(x_{0}, x_{0}\right) .
$$

Proof. Since a is bilinear and satisfies (ii) and (iii) the Lax-Milgram theorem applies ((ii) implies continuity of a). In particular, since $f \in H^{*}$, there exists a unique $x_{0} \in H$ satisfying $a\left(x_{0}, x\right)=f(x)$ for all $x \in H$. (The same follows from claim 2 below and the Riesz representation theorem applied in $(H, a(\cdot, \cdot)))$. Moreover,

$$
\begin{aligned}
J(x)=a(x, x)-2 f(x) & =a(x, x)-2 a\left(x_{0}, x\right) \\
& =a\left(x-x_{0}, x\right)-a\left(x_{0}, x\right) \\
& =a\left(x-x_{0}, x-x_{0}\right)+a\left(x-x_{0}, x_{0}\right)-a\left(x, x_{0}\right) \\
& =a\left(x-x_{0}, x-x_{0}\right)-a\left(x_{0}, x_{0}\right)
\end{aligned}
$$

for all $x \in H$, as claimed.

Claim 2. $(H, a(\cdot, \cdot))$ is a Hilbert space.
Proof. By assumption (i) the bilinear map a is symmetric. By (ii) and (iii), we have

$$
\begin{equation*}
\lambda\|x\|_{H}^{2} \leq a(x, x) \leq \Lambda\|x\|_{H}^{2} \tag{*}
\end{equation*}
$$

which shows $a(x, x) \geq 0$ and $a(x, x)=0 \Leftrightarrow x=0$. Therefore, $a(\cdot, \cdot)$ is a scalar product on H. In fact, (*) implies that the induced norm $\|\cdot\|_{a}=\sqrt{a(\cdot, \cdot)}$ is equivalent to $\|\cdot\|_{H}$. It is easy to check that equivalent norms have the same Cauchy-sequences and induce the same notion of convergence. Therefore, $\left(H,\|\cdot\|_{a}\right)$ is complete since $\left(H,\|\cdot\|_{H}\right)$ is complete and the claim follows.

By assumption, the set $\emptyset \neq K \subseteq H$ is convex and closed in $\left(H,\|\cdot\|_{H}\right)$. Since the two norms are equivalent, K is also closed in $\left(H,\|\cdot\|_{a}\right)$ and we can apply the result of part (a) of Problem 5.6 (Projections on closed convex sets) in the \mathbb{R}-Hilbert space $(H, a(\cdot, \cdot))$ with the point x_{0} from claim 1. That is: there exists a unique $y_{0} \in K$ satisfying

$$
\left\|x_{0}-y_{0}\right\|_{a}=\inf _{y \in K}\left\|x_{0}-y\right\|_{a}
$$

By Claim 1 we have for arbitrary $y \in K$

$$
J\left(y_{0}\right)=\left\|y_{0}-x_{0}\right\|_{a}^{2}-\left\|x_{0}\right\|_{a}^{2} \leq\left\|y-x_{0}\right\|_{a}^{2}-\left\|x_{0}\right\|_{a}^{2}=J(y) .
$$

Moreover, since y_{0} is the unique element of K satisfying (\dagger), it is also the unique element of K satisfying $J\left(y_{0}\right) \leq J(y)$ for all $y \in K$.
(b) Prove that the unique minimizer y_{0} from (a) is also the unique element of K satisfying $a\left(y_{0}, z-y_{0}\right) \geq f\left(z-y_{0}\right)$ for every $z \in K$.

Solution: We saw in part (a) that y_{0} is the unique element of K with $\left\|x_{0}-y_{0}\right\|_{a}=$ $\inf _{y \in K}\left\|x_{0}-y\right\|_{a}$. By part (b) of Problem 5.6 (Projections on closed convex sets) y_{0} is therefore the unique element of K which satisfies

$$
a\left(x_{0}-y_{0}, z-y_{0}\right) \leq 0 \quad \text { for all } z \in K
$$

This and the fact that $a\left(x_{0}, x\right)=f(x)$ for all $x \in H$ implies that y_{0} is the unique element of K such that

$$
f\left(z-y_{0}\right)=a\left(x_{0}, z-y_{0}\right) \leq a\left(y_{0}, z-y_{0}\right) \quad \text { for all } z \in K .
$$

