9.1. Metrizability and weak^{*} topology

Let $(X, \|\cdot\|_X)$ be a separable normed K-vector space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$). Prove that the weak* topology on the unit ball $B^* := \{\varphi \in X^* : \|\varphi\|_{X^*} \leq 1\}$ of X^* is metrizable.

Solution: Let $(x_n)_{n \in \mathbb{N}} \subseteq X$ be a dense subset of the unit ball $B := \{x \in X : \|x\|_X \leq 1\}$ in X. The fact that $\sup_{n \in \mathbb{N}} \|x_n\|_X \leq 1$ ensures that the mapping $d : B^* \times B^* \to [0, \infty)$, given by

$$d(\varphi, \psi) = \sum_{n=1}^{\infty} 2^{-n} |\varphi(x_n) - \psi(x_n)| \quad \text{for all } \varphi, \psi \in B^*,$$

is well-defined. Indeed:

$$0 \le \sum_{n=1}^{\infty} 2^{-n} |\varphi(x_n) - \psi(x_n)| \le \sum_{n=1}^{\infty} 2^{-n} ||\varphi - \psi||_{X^*} ||x_n||_X$$
$$\le \sum_{n=1}^{\infty} 2^{-n} ||\varphi - \psi||_{X^*} \le ||\varphi - \psi||_{X^*} \quad \text{for all } \varphi, \psi \in B^*.$$

We claim that d is a metric on B^* . For this, note that symmetry is clear. Moreover, for all $\varphi, \psi, \xi \in B^*$, we obtain

$$d(\varphi,\xi) = \sum_{n=1}^{\infty} 2^{-n} |\varphi(x_n) - \xi(x_n)|$$

$$\leq \sum_{n=1}^{\infty} 2^{-n} |\varphi(x_n) - \psi(x_n)| + \sum_{n=1}^{\infty} 2^{-n} |\psi(x_n) - \xi(x_n)|$$

$$= d(\varphi,\psi) + d(\psi,\xi),$$

that is, the triangle inequality holds. Finally, for $\varphi, \psi \in B^*$ we can infer from $d(\varphi, \psi) = 0$ that $\varphi(x_n) = \psi(x_n)$ for all $n \in \mathbb{N}$. Hence, any $\varphi, \psi \in B^*$ with $\underline{d(\varphi, \psi)} = 0$ have to coincide on span $\{x_n \mid n \in \mathbb{N}\}$ because of linearity and even on span $\{x_n \mid n \in \mathbb{N}\}$ because of continuity. As span $\{x_n \mid n \in \mathbb{N}\} = X$ due to $(x_n)_{n \in \mathbb{N}}$ lying dense in the unit ball B of X, we obtain that any $\varphi, \psi \in B^*$ with $d(\varphi, \psi) = 0$ have to be identical.

All of the above is useless if we cannot show that the weak^{*} topology τ_{w^*} on B^* is equal to the topology τ_d on B^* which is induced by the metric d. Next, we are going to show that $\tau_d \subseteq \tau_{w^*}$ and $\tau_{w^*} \subseteq \tau_d$.

 $\frac{ "\tau_{\rm d} \subseteq \tau_{\rm w^*}"}{\text{that } \{\psi \in B^* \mid d(\varphi, \psi) < \varepsilon\} \subseteq O. \text{ With } N \in \mathbb{N} \text{ so that } 2^{-N} < \frac{\varepsilon}{4}, \text{ we get that }$

$$\sum_{n=N+1}^{\infty} 2^{-n} |\varphi(x_n) - \psi(x_n)| \le \sum_{n=N+1}^{\infty} 2^{-n} (\|\varphi\|_{X^*} + \|\psi\|_{X^*})$$
$$\le \sum_{n=N+1}^{\infty} 2^{-n+1} = 2^{-N+1} < \frac{\varepsilon}{2} \quad \text{for all } \psi \in B^*.$$

last update: 28 November 2021

 $1/_{14}$

This implies in particular that

$$\left\{\psi \in B^* \mid \forall n \in \{1, 2, \dots, N\} \colon |\varphi(x_n) - \psi(x_n)| < \frac{\varepsilon}{2}\right\} \subseteq O.$$

As $\varphi \in O$ was arbitrary, this ensures that $O \in \tau_{w^*}$. As $O \in \tau_d$ was arbitrary, we've arrived at showing $\tau_d \subseteq \tau_{w^*}$.

<u>" $\tau_{\mathbf{w}^*} \subseteq \tau_{\mathbf{d}}$ ":</u> Let $O \in \tau_{\mathbf{w}^*}$ and $\varphi \in O$ be arbitrary. Then there exist $N \in \mathbb{N}$, $\varepsilon \in (0, \infty)$ and $y_1, y_2, \ldots, y_N \in X$ satisfying that

$$\{\psi \in B^* \mid \forall \ n \in \{1, 2, \dots, N\} \colon |\psi(y_n) - \varphi(y_n)| < \varepsilon\} \subseteq O.$$

W.l.o.g. we may assume that $\sup_{n \in \mathbb{N}} ||y_n||_X \leq 1$ (otherwise, replace y_n by $\frac{y_n}{||y_n||_X}$ if $||y_n||_X > 1$). Since $(x_n)_{n \in \mathbb{N}} \subseteq B$ is dense in B, there exist $k_1, k_2, \ldots, k_N \in \mathbb{N}$ such that

$$||y_n - x_{k_n}||_X < \frac{\varepsilon}{4}$$
 for all $n \in \{1, 2, \dots, N\}$.

Thus, with $\mathcal{N} := \max_{1 \leq i \leq N} k_i \in \mathbb{N}$, we have

$$\left\{ \psi \in B^* \mid \forall n \in \{1, 2, \dots, \mathcal{N}\} \colon |\psi(x_n) - \varphi(x_n)| < \frac{\varepsilon}{2} \right\}$$

$$\subseteq \left\{ \psi \in B^* \mid \forall n \in \{1, 2, \dots, N\} \colon |\psi(y_n) - \varphi(y_n)| < \varepsilon \right\}$$
 (1)

since, if $\psi \in B^*$ satisfies $|\psi(x_n) - \varphi(x_n)| < \frac{\varepsilon}{2}$ for all $n \in \{1, 2, \dots, \mathcal{N}\}$, then it holds in particular for all $n \in \{1, 2, \dots, N\}$ that

$$\begin{aligned} |\psi(y_n) - \varphi(y_n)| &\leq |\psi(y_n) - \psi(x_{k_n})| + |\psi(x_{k_n}) - \varphi(x_{k_n})| + |\varphi(x_{k_n}) - \varphi(y_n)| \\ &\leq \|\psi\|_{X^*} \|y_n - x_{k_n}\|_X + |\psi(x_{k_n}) - \varphi(x_{k_n})| + \|\varphi\|_{X^*} \|x_{k_n} - y_n\|_X \\ &\leq 2\|y_n - x_{k_n}\|_X + \frac{\varepsilon}{2} < \varepsilon. \end{aligned}$$

But now we are done since for all $\psi \in B^*$ with $d(\psi, \varphi) < 2^{-\mathcal{N}} \frac{\varepsilon}{2}$ it holds that

$$|\psi(x_n) - \varphi(x_n)| \le 2^n d(\psi, \varphi) < \frac{\varepsilon}{2}$$
 for all $n \in \{1, 2, \dots, \mathcal{N}\},\$

which implies (having (1) in mind) that

$$\left\{ \psi \in B^* \mid d(\psi, \varphi) < 2^{-\mathcal{N}} \frac{\varepsilon}{2} \right\}$$

$$\subseteq \left\{ \psi \in B^* \mid \forall n \in \{1, 2, \dots, \mathcal{N}\} \colon |\psi(x_n) - \varphi(x_n)| < \frac{\varepsilon}{2} \right\}$$

$$\subseteq \left\{ \psi \in B^* \mid \forall n \in \{1, 2, \dots, N\} \colon |\psi(y_n) - \varphi(y_n)| < \varepsilon \right\}.$$

last update: 28 November 2021

As $\phi \in O$ was arbitrary, we demonstrated that $O \in \tau_d$. As $O \in \tau_{w^*}$ was arbitrary, we showed $\tau_{w^*} \subseteq \tau_d$.

9.2. Weak convergence in Hilbert spaces

Let $(H, (\cdot, \cdot)_H)$ be an infinite-dimensional K-Hilbert space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$).

(a) Let $(x_n)_{n\in\mathbb{N}} \subseteq H$ and $x_{\infty} \in H$ satisfy that $x_n \xrightarrow{w} x_{\infty}$ in H and $||x_n||_H \to ||x_{\infty}||_H$ in \mathbb{R} as $n \to \infty$. Prove that $x_n \to x_{\infty}$ in H as $n \to \infty$, i. e. $\limsup_{n\to\infty} ||x_n - x_{\infty}||_H = 0$.

Solution: Since $(H \ni y \mapsto (y, x_{\infty})_H \in \mathbb{K}) \in H^*$, the weak convergence of $(x_n)_{n \in \mathbb{N}}$ to x_{∞} implies

$$\lim_{n \to \infty} (x_n, x_\infty)_H = (x_\infty, x_\infty)_H = \|x_\infty\|_H^2 \quad \text{and} \quad \lim_{n \to \infty} \operatorname{Re}(x_n, x_\infty) = \|x_\infty\|^2.$$

Combining this with the assumption that $||x_n||_H \to ||x_\infty||_H$ as $n \to \infty$, we obtain

$$\begin{split} \limsup_{n \to \infty} \|x_n - x_\infty\|_H^2 &= \limsup_{n \to \infty} (x_n - x_\infty, x_n - x_\infty)_H \\ &= \limsup_{n \to \infty} \left[\|x_n\|_H^2 - 2\operatorname{Re}(x_\infty, x_n)_H + \|x_\infty\|_H^2 \right] = 0. \end{split}$$

(b) Suppose $(x_n)_{n\in\mathbb{N}}, (y_n)_{n\in\mathbb{N}} \subseteq H$ and $x_{\infty}, y_{\infty} \in H$ satisfy that $x_n \xrightarrow{w} x_{\infty}$ and $||y_n - y_{\infty}||_H \to 0$ as $n \to \infty$. Prove that $(x_n, y_n)_H \to (x_{\infty}, y_{\infty})_H$ as $n \to \infty$.

Solution: Weak convergence $x_n \xrightarrow{w_{\lambda}} x_{\infty}$ implies in particular that $(x_n, y_{\infty})_H \to (x_{\infty}, y_{\infty})_H$ as $n \to \infty$ and that there exists a finite constant C such that $||x_n||_H \leq C$ for all $n \in \mathbb{N}$. Thus,

$$\begin{split} & \limsup_{n \to \infty} |(x_n, y_n)_H - (x_\infty, y_\infty)_H| \\ &= \limsup_{n \to \infty} |(x_n, y_n - y_\infty)_H + (x_n, y_\infty)_H - (x_\infty, y_\infty)_H| \\ &\leq \limsup_{n \to \infty} \left[C \|y_n - y_\infty\|_H + |(x_n, y_\infty)_H - (x_\infty, y_\infty)_H| \right] = 0. \end{split}$$

(c) Let $(e_n)_{n \in \mathbb{N}}$ be an orthonormal system of $(H, (\cdot, \cdot)_H)$. Prove $e_n \stackrel{w}{\rightharpoonup} 0$ as $n \to \infty$. Solution: Note that Bessel's inequality, i.e.,

$$\sum_{n=0}^{\infty} |(x, e_n)_H|^2 \le ||x||_H^2 \quad \text{for all } x \in H,$$

implies that $(x, e_n)_H \to 0$ as $n \to \infty$ for any $x \in H$. Since by the Riesz representation theorem any $f \in H^*$ satisfies $f(e_n) = (e_n, x)_H$ for a unique $x \in H$, we obtain $e_n \stackrel{w}{\longrightarrow} 0$ as $n \to \infty$.

last update: 28 November 2021

(d) Given any $x_{\infty} \in H$ with $||x_{\infty}||_{H} \leq 1$, prove that there exists a sequence $(x_{n})_{n \in \mathbb{N}}$ in H satisfying $||x_{n}||_{H} = 1$ for all $n \in \mathbb{N}$ and $x_{n} \xrightarrow{w} x_{\infty}$ as $n \to \infty$.

Solution: If $x_{\infty} = 0$, then any orthonormal system converges weakly to x_{∞} by (c). If $x_{\infty} \neq 0$, then an orthonormal system $(e_n)_{n \in \mathbb{N}}$ of H with $e_1 = ||x_{\infty}||_H^{-1} x_{\infty}$ can be constructed via the Gram–Schmidt algorithm. For $n \in \mathbb{N}$, let

$$x_n := x_{\infty} + \left(\sqrt{1 - \|x_{\infty}\|_H^2}\right) e_{n+1}.$$

Then, since $x_{\infty} \perp e_{n+1}$ for every $n \in \mathbb{N}$, we have $||x_n||^2 = ||x_{\infty}||_H^2 + (1 - ||x_{\infty}||_H^2) = 1$ for every $n \in \mathbb{N}$. Moreover, $x_n \xrightarrow{w} x_{\infty}$ follows from $e_{n+1} \xrightarrow{w} 0$ as $n \to \infty$ by (c).

(e) Let the functions $f_n: [0, 2\pi] \to \mathbb{R}$ be given by $f_n(t) = \sin(nt)$ for $n \in \mathbb{N}$. Prove the Riemann–Lebesgue Lemma: $f_n \stackrel{w}{\longrightarrow} 0$ in $L^2([0, 2\pi], \mathbb{R})$ as $n \to \infty$.

Solution: Let $f_n: [0, 2\pi] \to \mathbb{R}$ be given by $f_n(t) = \sin(nt)$ for $n \in \mathbb{N}$. Then, $(\sqrt{\frac{1}{\pi}}f_n)_{n\in\mathbb{N}}$ is an orthonormal system of $L^2([0, 2\pi], \mathbb{R})$, because

$$\int_{0}^{2\pi} \sin(mt) \sin(nt) dt = \frac{1}{2} \int_{0}^{2\pi} \left[\cos((m-n)t) - \cos((m+n)t) \right] dt$$
$$= \begin{cases} 0, \text{ if } m \neq n, \\ \pi, \text{ if } m = n \end{cases}$$

holds for any $m, n \in \mathbb{N}$. By (c) weak convergence $f_n \stackrel{w}{\rightharpoonup} 0$ as $n \to \infty$ follows.

Remark. The assumption that H is infinite-dimensional was only used in (c) and (d). As weak and strong convergence are equivalent in finite-dimensional spaces, adaptions of (c) and (d) to the finite-dimensional situation are necessarily wrong. (a) and (b), however, hold in any Hilbert space. (b) can even be formulated so that weak convergence of $x_n \to x_\infty$ in a Banach space X and strong convergence of $\varphi_n \to \varphi_\infty$ in the dual space X^* imply the convergence $\varphi_n(x_n) \to \varphi_\infty(x_\infty)$.

9.3. Annihilating annihilators

Let X be a normed K-vector space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$).

- For every set $U \subseteq X$ let $U^{\perp} \subseteq X^*$ be defined by $U^{\perp} = \{\varphi \in X^* : \varphi(u) = 0 \text{ for all } u \in U\}.$
- For every set $\Phi \subseteq X^*$ let ${}^{\perp}\Phi \subseteq X$ be defined by ${}^{\perp}\Phi = \{x \in X : \varphi(x) = 0 \text{ for all } \varphi \in \Phi\}.$

Prove for all $\emptyset \neq U \subseteq X$ and $\emptyset \neq \Phi \subseteq X^*$ that $^{\perp}(U^{\perp}) = \overline{\operatorname{span}(U)}$ and $\overline{\operatorname{span}(\Phi)} \subseteq (^{\perp}\Phi)^{\perp}$.

Solution: Let $\emptyset \neq U \subseteq X$. Then it holds for all $\varphi \in U^{\perp}$ that $\varphi(u) = 0$ for all $u \in U$. By linearity, this extends to $\varphi(u) = 0$ for all $u \in \operatorname{span}(U)$, $\varphi \in U^{\perp}$ and by continuity, we even get $\varphi(u) = 0$ for all $u \in \operatorname{span}(U)$, $\varphi \in U^{\perp}$. Hence, we obtain $\overline{\operatorname{span}(U)} \subseteq {}^{\perp}(U^{\perp})$. For the opposite inclusion, let us consider an arbitrary $u \in {}^{\perp}(U^{\perp}) \setminus \operatorname{span}(U)$ (if existent). Note that $A = \{u\}$ is a non-empty, convex and compact set while $B = \overline{\operatorname{span}(U)}$ is a non-empty, convex and closed set. Since, in addition, $A \cap B = \emptyset$, there exist $\varphi \in X^*$, $\lambda \in \mathbb{R}$ such that $\varphi(u) < \lambda \leq \inf_{b \in B} \varphi(b)$. As B is a linear space, $\inf_{b \in B} \varphi(b)$ can only be 0 (in which case $\varphi|_B \equiv 0$) or $-\infty$, the latter being impossible as $\varphi|_B$ is bounded below by $\varphi(u)$. Long story short, there exists $\varphi \in X^*$ such that $\varphi(u) \neq 0$ but $\varphi|_B \equiv 0$ (and, in particular, $\varphi|_U \equiv 0$). In other words, there exists $\varphi \in U^{\perp}$ with $\varphi(u) \neq 0$, which proves that $u \notin {}^{\perp}(U^{\perp})$. Thus, we have shown that ${}^{\perp}(U^{\perp}) \subseteq \operatorname{span}(U)$, which concludes the proof of ${}^{\perp}(U^{\perp}) = \operatorname{span}(U)$.

For the second claim, let $\emptyset \neq \Phi \subseteq X^*$. Then it holds for all $u \in {}^{\perp}\Phi$ that $\varphi(u) = 0$ for all $\varphi \in \Phi$. By linearity, this extends to $\varphi(\underline{u}) = 0$ for all $\varphi \in \operatorname{span}(\Phi)$ and by continuity, we get $\varphi(u) = 0$ for all $u \in {}^{\perp}\Phi, \varphi \in \operatorname{span}(\Phi)$. Thus, $\operatorname{span}(\Phi) \subseteq ({}^{\perp}\Phi)^{\perp}$.

9.4. Duals and quotient spaces

Let $(X, \|\cdot\|_X)$ be a normed K-vector space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$) and $U \subseteq X$ a closed subspace.

(a) Prove that $(X/U)^*$ is isometrically isomorphic to U^{\perp} .

Solution: Let $\pi := (X \ni x \mapsto x + U \in X/U)$ denote the canonical projection. As π is a linear and continuous mapping from X to X/U (i.e., $\pi \in L(X, X/U)$), it holds for every $\Phi \in (X/U)^*$ that $\Phi \circ \pi \in X^*$. Hence, the mapping $T : (X/U)^* \to X^*$, defined by

 $T\Phi = \Phi \circ \pi$ for all $\Phi \in (X/U)^*$,

is well-defined. T is clearly a linear mapping. Moreover, for all $\Phi \in (X/U)^*, \, x \in X$ it holds that

$$|(T\Phi)(x)| = |\Phi(\pi(x))| \le \|\Phi\|_{(X/U)^*} \|\pi(x)\|_{X/U} \le \|\Phi\|_{(X/U)^*} \|x\|_X,$$

that is, $||T\Phi||_{X^*} \leq ||\Phi||_{(X/U)^*}$ for all $\Phi \in (X/U)^*$. On the other hand, for every $\Phi \in (X/U)^*$ we can find $(x_n)_{n \in \mathbb{N}} \subseteq X$ such that

- $\|\pi(x_n)\|_{(X/U)^*} = 1$ for all $n \in \mathbb{N}$,
- $\lim_{n \to \infty} \Phi(\pi(x_n)) = \|\Phi\|_{(X/U)*},$

last update: 28 November 2021

• $||x_n||_X < ||\pi(x_n)||_{(X/U)^*} + \frac{1}{n}$ for every $n \in \mathbb{N}$,

which implies that

$$\|T\Phi\|_{X^*} \ge \sup_{n \in \mathbb{N}} \frac{(T\Phi)(x_n)}{\|x_n\|_X} = \sup_{n \in \mathbb{N}} \frac{\Phi(\pi(x_n))}{1 + \frac{1}{n}} \ge \lim_{n \to \infty} \frac{\Phi(\pi(x_n))}{1 + \frac{1}{n}} = \|\Phi\|_{(X/U)^*}.$$

Thus, we obtain for all $\Phi \in (X/U)^*$ that $||T\Phi||_{X^*} = ||\Phi||_{(X/U)^*}$. In other words, T is an isometry (and, in particular, injective). In the following we are going to show that $\operatorname{im}(T) \subseteq U^{\perp}$ and $U^{\perp} \subseteq \operatorname{im}(T)$, which will complete the proof as it shows that the range of the isometry T is U^{\perp} .

 $\overset{\text{"im}(T) \subseteq U^{\perp}\text{":}}{\Phi \in (X/U)^*, u \in U} \text{ From } \pi(u) = 0 \text{ for all } u \in U \text{ we get that } (T\Phi)(u) = 0 \text{ for all } \Phi \in (X/U)^*, u \in U. \text{ Hence, } T\Phi \in U^{\perp} \text{ for all } \Phi \in (X/U)^*, \text{ which shows im}(T) \subseteq U^{\perp}.$

$$(S\varphi)(x+U) = \varphi(x)$$
 for all $x \in X$.

Since for all $\varphi \in U^{\perp}$ and $x, y \in X$ with x + U = y + U it holds (as $x - y \in U$) that $\varphi(x - y) = 0$, we obtain that, for every $\varphi \in U^{\perp}$, $S\varphi \colon (X/U) \to \mathbb{R}$ is a well-defined mapping. Moreover, by linearity of π , every $\varphi \in U^{\perp}$ gives rise to a linear function $S\varphi$. Next, since for all $x \in X$ it holds that

$$|(S\varphi)(\pi(x))| = \inf_{y \in \pi^{-1}(\pi(x))} |(S\varphi)(\pi(y))| = \inf_{y \in \pi^{-1}(\pi(x))} |\varphi(y)|$$

$$\leq \inf_{y \in \pi^{-1}(\pi(x))} ||\varphi||_{X^*} ||y||_X = ||\varphi||_{X^*} ||\pi(x)||_{(X/U)^*},$$

we finally get that $S: U^{\perp} \to (X/U)^*$ is indeed well-defined. In addition, for all $\varphi \in U^{\perp}, x \in X$ it holds that

$$(TS\varphi)(x) = (S\varphi)(\pi(x)) = \varphi(x),$$

which proves that $U^{\perp} \subseteq \operatorname{im}(T)$.

(b) Prove that U^* is isometrically isomorphic to X^*/U^{\perp} .

Solution: Let $\Pi := X^* \ni x^* \mapsto x^* + U^{\perp} \in X^*/U^{\perp}$ be the canonical projection. Define the mapping $T: X^*/U^{\perp} \to U^*$ by

$$T(x^* + U^{\perp}) = x^*|_U \quad \text{for all } x^* \in X^*.$$

T is well-defined as for all $x^*, y^* \in X^*$ with $x^* + U^{\perp} = y^* + U^{\perp}$ it holds that $x^* - y^* \in U^{\perp}$ and therefore $(x^* - y^*)|_U \equiv 0$. Also, T is clearly a linear mapping.

Moreover, $x^*|_U$ belongs clearly to U^* if $x^* \in X^*$. Next, note that for all $x^* \in X^*$ it holds that

$$||T(x^* + U^{\perp})||_{U^*} = ||x^*|_U||_{U^*} \le ||x^*||_{X^*}.$$

Hence,

$$\|T(x^* + U^{\perp})\|_{U^*} \le \inf_{y^* \in x^* + U^{\perp}} \|y^*\|_{X^*} = \|x^* + U^{\perp}\|_{X^*/U^{\perp}} \quad \text{for all } x^* \in X^*.$$

Note that, according to the Hahn–Banach theorem, for every $u^* \in U^*$, there exists $x^* \in X^*$ with $x^*|_U = u^*$ and $||x^*||_{X^*} = ||u^*||_{U^*}$. This implies that T is surjective and that

$$||T(x^* + U^{\perp})||_{U^*} = ||x^*|_U||_{U^*} \ge ||x^* + U^*||_{X^* \setminus U^{\perp}}$$
 for every $x^* \in X^*$.

Putting everything together, we have that T is a surjective isometry, which completes our proof.

(c) Prove that reflexivity of X implies reflexivity of U (in other words, closed subspaces of reflexive spaces are reflexive).

Solution: Let $u^{**} \in U^{**}$ be arbitrary but fixed. The map $X^* \ni x^* \mapsto u^{**}(x^*|_U) \in \mathbb{K}$ is clearly linear and bounded and therefore belongs to X^{**} . By the reflexivity of X, there exists $x \in X$ such that

$$x^*(x) = u^{**}(x^*|_U)$$
 for all $x^* \in X^*$.

In particular, it holds for all $x^* \in U^{\perp}$ that $x^*(x) = 0$. Therefore, $x \in {}^{\perp}(U^{\perp}) = \overline{U} = U$ by Problem 9.3 (Annihilating annihilators). Since for every $u^* \in U^*$ there exists $x^* \in X^*$ with $x^*|_U = u^*$ by the Hahn–Banach theorem, we have that

$$u^*(x) = u^{**}(u^*)$$
 for all $u^* \in U^*$.

Thus, the canonical embedding $\iota_U := (U \ni u \mapsto (U^* \ni u^* \mapsto u^*(u) \in \mathbb{K}) \in U^{**})$ is surjective. This proves that U is reflexive.

9.5. Invariant measures à la Krylov–Bogolioubov

Let (K, d) be a non-empty compact metric space and let $T: K \to K$ be continuous. Prove that there exists a Borel probability measure $\mu \in \mathcal{P}(K)$ on K satisfying for all Borel sets $A \subseteq K$ that $\mu(T^{-1}(A)) = \mu(A)$.

Hint: Use Problem 7.3 (*Banach limits*) to show that there exists $\varphi \in (C(K, \mathbb{R}))^*$ satisfying $\varphi \geq 0$, $\|\varphi\|_{(C(K,\mathbb{R}))^*} = 1$ and $\varphi(f) = \varphi(f \circ T)$ for all $f \in C(K, \mathbb{R})$. Conclude recalling **Riesz's representation theorem**:

With (K, d) being a compact metric space and with $\mathcal{M}(K)$ denoting the set of Borel regular finite signed measures on K, $\mathcal{M}(K)$ is isometrically isomorphic to $(C(K, \mathbb{R}))^*$ via the mapping $\Phi \colon \mathcal{M}(K) \to (C(K, \mathbb{R}))^*$, defined by

$$[\Phi(\mu)](f) = \int_{K} f \, d\mu \quad \text{for all } \mu \in \mathcal{M}(K), f \in C(K, \mathbb{R}).$$

In particular, the positive regular Borel measures correspond to the positive continuous linear functionals.

Solution: Let $\mathcal{T}: \ell^{\infty} \to \ell^{\infty}$ denote the left shift, i.e., $\mathcal{T}x = (x_{n+1})_{n \in \mathbb{N}}$ for all $x = (x_n)_{n \in \mathbb{N}} \in \ell^{\infty}$. From Problem 7.3 (*Banach limits*) we know that there exists $L \in (\ell^{\infty})^*$ such that

- $||L||_{(\ell^{\infty})^*} = 1,$
- $Lx \ge 0$ for all $x = (x_n)_{n \in \mathbb{N}} \in \ell^{\infty}$ satisfying $x_n \ge 0$ for all $n \in \mathbb{N}$,
- $Lx = L(\mathcal{T}x)$ for all $(x_n)_{n \in \mathbb{N}} \in \ell^{\infty}$.

Now, fix an arbitrary $x \in K$ and define the mapping $S: C(K, \mathbb{R}) \to \ell^{\infty}$ by

$$S(f) = ((f \circ T^n)(x))_{n \in \mathbb{N}}$$
 for all $f \in C(K, \mathbb{R})$.

Note that S is well-defined because $||S(f)||_{\ell^{\infty}} \leq \sup_{x \in K} |f(x)| < \infty$ for every $f \in C(K, \mathbb{R})$ by compactness of K. Moreover, S is clearly linear and - by $||S(f)||_{\ell^{\infty}} \leq \sup_{x \in K} |f(x)|$ for all $f \in C(K, \mathbb{R})$ – bounded. Thus, $\varphi := L \circ S \in (C(K, \mathbb{R}))^*$. In addition, for all $f \in C(K, \mathbb{R})$ with $f \geq 0$ it holds that $S(f) \geq 0$ in ℓ^{∞} and therefore also $\varphi(f) \geq 0$. Riesz's representation theorem therefore ensures that there exists a finite positive Borel regular measure μ on K such that for all $f \in C(K, \mathbb{R})$ it holds that $\varphi(f) = \int_K f d\mu$. Since

$$\mu(K) = \int_K 1 \, d\mu = \varphi(K \ni x \mapsto 1 \in \mathbb{R}) = L((1)_{n \in \mathbb{N}}) = 1,$$

we obtain that μ is a probability measure. Furthermore, it holds for all $f \in C(K, \mathbb{R})$ that

$$\varphi(f \circ T) = L(S(f \circ T)) = L(\mathcal{T}S(f)) = L(S(f)) = \varphi(f).$$

This implies that

$$\int_{K} f \, d\mu = \int_{K} f \circ T \, d\mu \quad \text{for all } f \in C(K, \mathbb{R}).$$

It follows by standard measure-theoretic arguments that $\int_K f \, d\mu = \int_K f \circ T \, d\mu$ for all bounded Borel measurable $f: K \to \mathbb{R}$. In particular, for all Borel sets $A \subseteq K$, we get $\mu(A) = \mu(T^{-1}(A))$.

9.6. Optimal transport à la Kantorovich

Let (X, d_X) and (Y, d_Y) be non-empty compact metric spaces, let $c: X \times Y \to \mathbb{R} \cup \{\infty\}$ be lower semi-continuous, and let $\mu \in \mathcal{P}(X)$ and $\nu \in \mathcal{P}(Y)$ be probability measures on X and Y, respectively. We denote by $\Gamma(\mu, \nu)$ the set of probability measures on $X \times Y$ with first marginal μ and second marginal ν , i.e.,

$$\Gamma(\mu,\nu) = \left\{ \gamma \in \mathcal{P}(X \times Y) : \begin{array}{c} \gamma(A \times Y) = \mu(A), \gamma(X \times B) = \nu(B) \\ \text{for all Borel sets } A \subseteq X, B \subseteq Y \end{array} \right\}.$$

Prove that there exists $\gamma \in \Gamma(\mu, \nu)$ satisfying that

$$\int_{X \times Y} c(x, y) \, d\gamma(x, y) = \inf_{\eta \in \Gamma(\mu, \nu)} \int_{X \times Y} c(x, y) \, d\eta(x, y).$$

Hint: Assume first that c is continuous. For general lower semi-continuous c, use that c can be written as pointwise limit of an increasing sequence $(f_k)_{k \in \mathbb{N}} \subseteq C(X \times Y, \mathbb{R})$.

Solution: Since $\mu \otimes \nu \in \Gamma(\mu, \nu)$, we know that $\Gamma(\mu, \nu) \neq \emptyset$. Since $X \times Y$ is compact and c is lower semi-continuous, $\inf_{(x,y)\in X\times Y} c(x,y) > -\infty$. Consequentially, we obtain for all $\eta \in \Gamma(\mu, \nu)$ that

$$\int_{X \times Y} c(x, y) \, d\eta(x, y) \ge \int_{X \times Y} \inf_{X \times Y} c \, d\eta(x, y) = \inf_{X \times Y} c > -\infty.$$

Let $(\gamma_n)_{n \in \mathbb{N}} \subseteq \Gamma(\mu, \nu)$ be a sequence satisfying

$$\lim_{n \to \infty} \int_{X \times Y} c(x, y) \, d\gamma_n(x, y) = \inf_{\eta \in \Gamma(\mu, \nu)} \int_{X \times Y} c(x, y) \, d\eta(x, y).$$

Since $\Gamma(\mu, \nu) \subseteq \mathcal{P}(X \times Y) \hookrightarrow (C(X \times Y, \mathbb{R}))^*$ and $C(X \times Y, \mathbb{R})$ is separable, we may by the Banach–Alaoglu theorem assume w.l.o.g. that $\gamma_n \xrightarrow{w^*} \gamma_\infty \in (C(K, \mathbb{R}))^*$. By the Riesz representation theorem we may (and will) interpret γ_∞ as an element of $\mathcal{M}(X \times Y)$. Due to

$$\int_{X \times Y} f(x, y) \, d\gamma_{\infty}(x, y) = \lim_{n \to \infty} \int_{X \times Y} f(x, y) \, d\gamma_n(x, y) \quad \text{for all } f \in C(X \times Y, \mathbb{R})$$

we get (by applying the above with $f \ge 0$ and with $f = (X \times Y \ni (x, y) \mapsto 1 \in \mathbb{R})$ respectively) that $\gamma_{\infty} \in \mathcal{P}(X \times Y)$. Moreover, for all $f \in C(X, \mathbb{R})$ and all $g \in C(Y, \mathbb{R})$ we have that

$$\int_{X \times Y} f(x) \, d\gamma_{\infty}(x, y) = \lim_{n \to \infty} \int_{X \times Y} f(x) \, d\gamma_n(x, y) = \int_X f(x) \, d\mu(x)$$

and

$$\int_{X \times Y} g(y) \, d\gamma_{\infty}(x, y) = \lim_{n \to \infty} \int_{X \times Y} g(y) \, d\gamma_n(x, y) = \int_Y g(y) \, d\nu(y),$$

last update: 28 November 2021

$$\int_{X \times Y} c(x, y) \, d\gamma_{\infty}(x, y) = \lim_{n \to \infty} \int_{X \times Y} c(x, y) \, d\gamma_n(x, y) = \inf_{\eta \in \Gamma(\mu, \nu)} \int_{X \times Y} c(x, y) \, d\eta(x, y).$$

In the general case, there exist (Lipschitz) continuous functions $(f_n)_{n \in \mathbb{N}} \subseteq C(X \times Y, \mathbb{R})$ with $f_n \ge \inf_{(x,y) \in X \times Y} c(x,y)$ for all $n \in \mathbb{N}$ and with $c(x,y) = \sup_{n \in \mathbb{N}} f_n(x,y)$ for all $(x,y) \in X \times Y$. With this, we obtain for every $m \in \mathbb{N}$ that

$$\int_{X \times Y} f_m(x, y) \, d\gamma_\infty(x, y) = \lim_{n \to \infty} \int_{X \times Y} f_m(x, y) \, d\gamma_n(x, y)$$
$$\leq \limsup_{n \to \infty} \int_{X \times Y} c(x, y) \, d\gamma_n(x, y)$$
$$= \inf_{\eta \in \Gamma(\mu, \nu)} \int_{X \times Y} c(x, y) \, d\eta(x, y)$$

Lebesgue's monotone convergence theorem implies that the left hand side converges to $\int_{X \times Y} c(x, y) d\gamma_{\infty}(x, y)$ as $m \to \infty$.

9.7. Minimal Energy

Let $m \in \mathbb{N}$ and let $\Omega \subseteq \mathbb{R}^m$ be a bounded measurable set with $|\Omega| > 0$. For $g \in L^2(\mathbb{R}^m, \mathbb{R})$, we define the map

$$\begin{split} V \colon L^2(\Omega,\mathbb{R}) &\to \mathbb{R} \\ f \mapsto \int_\Omega \int_\Omega g(x-y) f(x) f(y) \, dy \, dx \end{split}$$

and given $h \in L^2(\Omega, \mathbb{R})$, we define the map

$$E: L^{2}(\Omega, \mathbb{R}) \to \mathbb{R}$$
$$f \mapsto \|f - h\|_{L^{2}(\Omega, \mathbb{R})}^{2} + V(f).$$

(a) Prove that V is weakly sequentially continuous.

Solution: Given a bounded measurable $\Omega \subseteq \mathbb{R}^m$ and $g \in L^2(\mathbb{R}^m, \mathbb{R})$, the goal is weak sequential continuity of the map

$$V \colon L^{2}(\Omega, \mathbb{R}) \to \mathbb{R}$$
$$f \mapsto \int_{\Omega} \int_{\Omega} g(x - y) f(x) f(y) \, dy \, dx.$$

last update: 28 November 2021

Claim 1. The linear operator $T: L^2(\Omega, \mathbb{R}) \to L^2(\Omega, \mathbb{R})$ mapping $f \mapsto Tf$ given by

$$(Tf)(x) = \int_{\Omega} g(x-y)f(y) \, dy$$

is well-defined.

Proof. Let $f \in L^2(\Omega, \mathbb{R})$. Note that (Tf)(x) is well-defined for every $x \in \Omega$ by the Cauchy–Schwarz inequality. Since $\Omega \subseteq \mathbb{R}^m$, being a bounded set, has finite volume $|\Omega| < \infty$, we obtain in addition that $Tf \in L^2(\Omega, \mathbb{R})$:

$$\begin{split} \|Tf\|_{L^{2}(\Omega,\mathbb{R})}^{2} &= \int_{\Omega} |(Tf)(x)|^{2} \, dx = \int_{\Omega} \left| \int_{\Omega} g(x-y)f(y) \, dy \right|^{2} \, dx \\ &\leq \int_{\Omega} \left(\int_{\Omega} |g(x-y)f(y)| \, dy \right)^{2} \, dx \leq \int_{\Omega} \left(\int_{\Omega} |g(x-y)|^{2} \, dy \right) \|f\|_{L^{2}(\Omega,\mathbb{R})}^{2} \, dx \\ &\leq \int_{\Omega} \|g\|_{L^{2}(\mathbb{R}^{m},\mathbb{R})}^{2} \|f\|_{L^{2}(\Omega,\mathbb{R})}^{2} \, dx \leq |\Omega| \|g\|_{L^{2}(\mathbb{R}^{m},\mathbb{R})}^{2} \|f\|_{L^{2}(\Omega,\mathbb{R})}^{2} \, dx \\ &\leq \int_{\Omega} \|g\|_{L^{2}(\mathbb{R}^{m},\mathbb{R})}^{2} \|f\|_{L^{2}(\Omega,\mathbb{R})}^{2} \, dx \leq |\Omega| \|g\|_{L^{2}(\mathbb{R}^{m},\mathbb{R})}^{2} \|f\|_{L^{2}(\Omega,\mathbb{R})}^{2} \, <\infty. \quad \Box$$

Claim 2. Let $(f_k)_{k\in\mathbb{N}}$ be a sequence in $L^2(\Omega,\mathbb{R})$ such that $f_k \xrightarrow{w} f$ in $L^2(\Omega,\mathbb{R})$ as $k \to \infty$. Then, $\|Tf_k - Tf\|_{L^2(\Omega,\mathbb{R})} \to 0$ as $k \to \infty$, where T is as in Claim 1.

Proof of 2. Since the sequence $(f_k)_{k\in\mathbb{N}}$ is weakly convergent, it is bounded (by Banach– Steinhaus): $\exists C \in [0,\infty) \ \forall k \in \mathbb{N} : \|f_k\|_{L^2(\Omega,\mathbb{R})} \leq C$. For every fixed $x_0 \in \Omega$ and $k \in \mathbb{N}$, there holds

$$\begin{aligned} |(Tf_k)(x_0)| &\leq \int_{\Omega} |g(x_0 - y)f_k(y)| \, dy \leq \left(\int_{\Omega} |g(x_0 - y)|^2 \, dy\right)^{\frac{1}{2}} \left(\int_{\Omega} |f_k(y)|^2 \, dy\right)^{\frac{1}{2}} \\ &\leq \|g\|_{L^2(\mathbb{R}^m,\mathbb{R})} \|f_k\|_{L^2(\Omega,\mathbb{R})}. \end{aligned}$$

In particular, the map $f_k \mapsto (Tf_k)(x_0)$ is a linear continuous functional $L^2(\Omega, \mathbb{R}) \to \mathbb{R}$. Therefore, weak convergence $f_k \xrightarrow{w} f$ implies $(Tf_k)(x_0) \to (Tf)(x_0)$ as $k \to \infty$. In other words, Tf_k converges pointwise to Tf. Moreover,

$$\sup_{k \in \mathbb{N}} |(Tf_k)(x_0)| \le \sup_{k \in \mathbb{N}} \left(||g||_{L^2(\mathbb{R}^m, \mathbb{R})} ||f_k||_{L^2(\Omega, \mathbb{R})} \right) \le C ||g||_{L^2(\mathbb{R}^m, \mathbb{R})}.$$

Since Ω is bounded, the constant $C \|g\|_{L^2(\mathbb{R}^m,\mathbb{R})}$ on the right right hand side belongs $L^2(\Omega,\mathbb{R})$. Hence, the claim follows by Lebesgue's dominated convergence theorem. \Box

Claim 3. Let $(f_k)_{k\in\mathbb{N}}$ be a sequence in $L^2(\Omega, \mathbb{R})$ such that $f_k \stackrel{w}{\rightharpoonup} f$ in $L^2(\Omega, \mathbb{R})$ as $k \to \infty$. Then, $V(f_k) \to V(f)$ as $k \to \infty$, i.e. V is weakly sequentially continuous.

last update: 28 November 2021

Proof. Let T be as in Claim 1. Since $f_k \xrightarrow{w} f$ and $||Tf_k - Tf||_{L^2(\Omega,\mathbb{R})} \to 0$ as $k \to \infty$ by claim 2, we conclude

$$V(f_k) = \int_{\Omega} f_k(x) \int_{\Omega} g(x - y) f_k(y) \, dy \, dx = \langle f_k, Tf_k \rangle_{L^2(\Omega)} \xrightarrow{k \to \infty} \langle f, Tf \rangle = V(f),$$

using the continuity property of scalar products proven in Problem 9.2 (b).

(b) Under the assumption $g \ge 0$ almost everywhere, prove that E restricted to

$$L^2_+(\Omega, \mathbb{R}) := \{ f \in L^2(\Omega, \mathbb{R}) \mid f(x) \ge 0 \text{ for almost every } x \in \Omega \}$$

attains a global minimum.

Solution: In the case that $0 \leq g \in L^2(\mathbb{R}^m, \mathbb{R})$ and $h \in L^2(\Omega, \mathbb{R})$ the claim is that the map

$$E: L^{2}(\Omega, \mathbb{R}) \to \mathbb{R}$$
$$f \mapsto \|f - h\|_{L^{2}(\Omega, \mathbb{R})}^{2} + V(f)$$

restricted to $L^2_+(\Omega, \mathbb{R})$ attains a global minimum. Since $L^2(\Omega, \mathbb{R})$ is reflexive (being a Hilbert space), we may invoke the direct method in the calculus of variations if we prove the following claims.

Claim 4. $L^2_+(\Omega, \mathbb{R})$ is non-empty and weakly sequentially closed.

Proof. Clearly, $L^2_+(\Omega, \mathbb{R}) \ni 0$ is non-empty. Let $(f_k)_{k \in \mathbb{N}}$ be a sequence in $L^2_+(\Omega, \mathbb{R})$ such that $f_k \xrightarrow{w} f$ for some $f \in L^2(\Omega, \mathbb{R})$ as $k \to \infty$. Suppose $f \notin L^2_+(\Omega, \mathbb{R})$. Then there exists $U \subseteq \Omega$ with positive measure such that $f|_U < 0$. In particular, we can test the weak convergence with the characteristic function χ_U to obtain the contradiction

$$0 > \langle f, \chi_U \rangle_{L^2(\Omega, \mathbb{R})} = \lim_{k \to \infty} \langle f_k, \chi_U \rangle \ge 0.$$

Claim 5. $E: L^2_+(\Omega, \mathbb{R}) \to \mathbb{R}$ is coercive and weakly sequentially lower semi-continuous.

Proof of Claim 5. Since $V(f) \ge 0$ if both $g \ge 0$ and $f \ge 0$ almost everywhere, we have

$$E(f) \ge \|f - h\|_{L^{2}(\Omega,\mathbb{R})}^{2} \ge \|f\|_{L^{2}(\Omega,\mathbb{R})}^{2} - 2\|f\|_{L^{2}(\Omega,\mathbb{R})}\|h\|_{L^{2}(\Omega,\mathbb{R})} + \|h\|_{L^{2}(\Omega,\mathbb{R})}^{2}$$
$$\ge \frac{1}{2}\|f\|_{L^{2}(\Omega,\mathbb{R})}^{2} - \|h\|_{L^{2}(\Omega,\mathbb{R})}^{2}$$

for every $f \in L^2_+(\Omega, \mathbb{R})$ as we have by Young's inequality that $2ab \leq \frac{1}{2}a^2 + 2b^2$ for all $a, b \in \mathbb{R}$. Since $h \in L^2(\Omega, \mathbb{R})$ is fixed, E is coercive.

last update: 28 November 2021

By part (a), $L^2(\Omega, \mathbb{R}) \ni f \mapsto V(f) \in \mathbb{R}$ is weakly sequentially lower semi-continuous. Moreover, every term on the right hand side of

$$||f - h||_{L^{2}(\Omega,\mathbb{R})}^{2} = ||f||_{L^{2}(\Omega,\mathbb{R})}^{2} - 2\langle f, h \rangle_{L^{2}(\Omega,\mathbb{R})} + ||h||_{L^{2}(\Omega,\mathbb{R})}^{2}$$

is weakly sequentially lower semi-continuous in f since h is fixed. This proves the claim.

9.8. A result by Lions-Stampacchia

Let $(H, (\cdot, \cdot)_H)$ be a real Hilbert space and let $a: H \times H \to \mathbb{R}$ be a bilinear map so that:

- (i) a(x, y) = a(y, x) for every $x, y \in H$,
- (ii) there exists $\Lambda \in (0,\infty)$ so that $|a(x,y)| \leq \Lambda ||x||_H ||y||_H$ for every $x, y \in H$,
- (iii) there exists $\lambda \in (0, \infty)$ so that $a(x, x) \ge \lambda \|x\|_{H}^{2}$ for every $x \in H$.

Let moreover $f: H \to \mathbb{R}$ be a continuous linear functional. Consider the map $J: H \to \mathbb{R}$ given by

J(x) = a(x, x) - 2f(x).

Finally, let $K \subseteq H$ be a non-empty closed convex subset.

(a) Prove that there exists a unique $y_0 \in K$ such that $J(y_0) \leq J(z)$ for every $z \in K$.

Solution: The special structure of the terms involved allows to give here a solution based on Problem 5.6 (*Projections on closed convex sets*). A standard argument in the spirit of the direct method of the calculus of variations would of course be possible as well.

Claim 1. Given $f \in H^*$, there exists a unique $x_0 \in H$ such that for all $x \in H$

$$J(x) := a(x, x) - 2f(x) = a(x - x_0, x - x_0) - a(x_0, x_0).$$

Proof. Since a is bilinear and satisfies (ii) and (iii) the Lax–Milgram theorem applies ((ii) implies continuity of a). In particular, since $f \in H^*$, there exists a unique $x_0 \in H$ satisfying $a(x_0, x) = f(x)$ for all $x \in H$. (The same follows from claim 2 below and the Riesz representation theorem applied in $(H, a(\cdot, \cdot))$). Moreover,

$$J(x) = a(x, x) - 2f(x) = a(x, x) - 2a(x_0, x)$$

= $a(x - x_0, x) - a(x_0, x)$
= $a(x - x_0, x - x_0) + a(x - x_0, x_0) - a(x, x_0)$
= $a(x - x_0, x - x_0) - a(x_0, x_0)$

for all $x \in H$, as claimed.

last update: 28 November 2021

Claim 2. $(H, a(\cdot, \cdot))$ is a Hilbert space.

Proof. By assumption (i) the bilinear map a is symmetric. By (ii) and (iii), we have

$$\lambda \|x\|_H^2 \le a(x,x) \le \Lambda \|x\|_H^2 \tag{(*)}$$

which shows $a(x, x) \ge 0$ and $a(x, x) = 0 \Leftrightarrow x = 0$. Therefore, $a(\cdot, \cdot)$ is a scalar product on H. In fact, (*) implies that the induced norm $\|\cdot\|_a = \sqrt{a(\cdot, \cdot)}$ is equivalent to $\|\cdot\|_H$. It is easy to check that equivalent norms have the same Cauchy-sequences and induce the same notion of convergence. Therefore, $(H, \|\cdot\|_a)$ is complete since $(H, \|\cdot\|_H)$ is complete and the claim follows.

By assumption, the set $\emptyset \neq K \subseteq H$ is convex and closed in $(H, \|\cdot\|_H)$. Since the two norms are equivalent, K is also closed in $(H, \|\cdot\|_a)$ and we can apply the result of part (a) of Problem 5.6 (*Projections on closed convex sets*) in the \mathbb{R} -Hilbert space $(H, a(\cdot, \cdot))$ with the point x_0 from claim 1. That is: there exists a unique $y_0 \in K$ satisfying

$$\|x_0 - y_0\|_a = \inf_{y \in K} \|x_0 - y\|_a.$$
(†)

By Claim 1 we have for arbitrary $y \in K$

$$J(y_0) = \|y_0 - x_0\|_a^2 - \|x_0\|_a^2 \le \|y - x_0\|_a^2 - \|x_0\|_a^2 = J(y).$$

Moreover, since y_0 is the unique element of K satisfying (†), it is also the unique element of K satisfying $J(y_0) \leq J(y)$ for all $y \in K$.

(b) Prove that the unique minimizer y_0 from (a) is also the unique element of K satisfying $a(y_0, z - y_0) \ge f(z - y_0)$ for every $z \in K$.

Solution: We saw in part (a) that y_0 is the unique element of K with $||x_0 - y_0||_a = \inf_{y \in K} ||x_0 - y||_a$. By part (b) of Problem 5.6 (*Projections on closed convex sets*) y_0 is therefore the unique element of K which satisfies

 $a(x_0 - y_0, z - y_0) \le 0 \quad \text{for all } z \in K.$

This and the fact that $a(x_0, x) = f(x)$ for all $x \in H$ implies that y_0 is the unique element of K such that

$$f(z - y_0) = a(x_0, z - y_0) \le a(y_0, z - y_0)$$
 for all $z \in K$.