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9.1. Metrizability and weak* topology

Let (X, ||||x) be a separable normed K-vector space (with K € {R,C}). Prove that
the weak™ topology on the unit ball B* := {¢p € X*: [|¢||x+ < 1} of X* is metrizable.

Solution: Let (z,),eny € X be a dense subset of the unit ball B := {z € X : ||z||x <
1} in X. The fact that sup,cy|zn||x < 1 ensures that the mapping d: B* x B* —
[0, 00), given by

d(p.0) =Y 27" @(xn) — Y(xy)| for all ¢, € B,
n=1
is well-defined. Indeed:

0< 32 () — (e < 302" lp — o)

<N 27l — Yllx- <l — ¥

n=1

X* 13n||X

x+ for all p,9p € B*.

We claim that d is a metric on B*. For this, note that symmetry is clear. Moreover,
for all p,v,& € B*, we obtain

A, ) = i 2 o) — ()]

< 32 p() — blaa)| + i 2 () — £

= d(p.) + d(,€),

that is, the triangle inequality holds. Finally, for ¢, € B* we can infer from d(p,¢) =
0 that ¢(x,) = ¥(x,) for all n € N. Hence, any ¢,¢ € B* with d(¢,v) = 0 have
to coincide on span{z, | n € N} because of linearity and even on span{z, | n € N}
because of continuity. As span{z, | n € N} = X due to (z,)nen lying dense in the
unit ball B of X, we obtain that any ¢, € B* with d(p,1) = 0 have to be identical.

All of the above is useless if we cannot show that the weak* topology 7+ on B* is
equal to the topology 74 on B* which is induced by the metric d. Next, we are going
to show that 74 C 7y« and 7+ C 74.

"Ta € Tyw+ " Let O € 1q and ¢ € O be arbitrary. Then there exists ¢ € (0, 00) such
that {¢) € B* | d(p,¢) <e} CO. With N € N so that 27 < £, we get that

Y. 27Me(@n) —v(@)l < >0 27 (llellxe + 1lx-)
n=N+1 n=N+1
< Y 2t oo N o Z forall € B
n=N+1 2
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This implies in particular that

{¢€B*|Vn€ (1,2, N} [o(an) — ()| < ;} co.

As ¢ € O was arbitrary, this ensures that O € 7,«. As O € 174 was arbitrary, we've
arrived at showing 74 C 7Ty-.

"Twr € 74" Let O € 1y and ¢ € O be arbitrary. Then there exist N € N, € € (0, 00)
and yy,ys,...,yn € X satisfying that

WeB [Vne{l,2,....Np: [d(yn) —¢(yn)| <€} € O.

W.lo.g. we may assume that sup,cy||yn|lx < 1 (otherwise, replace y,, by o i
lynllx > 1). Since (z,)neny € B is dense in B, there exist ki, ks, ..., ky € N such that

| Yn — Tk, || x <Z forall m € {1,2,...,N}.

Thus, with A/ := max;<;<y k; € N, we have

2
§{¢€B*|Vn€{1727-~=]\7}5 |¢(yn>_§0(yn)| <5}

since, if ¢ € B* satisfies [¢(z,) — ¢(x,)| < § for all n € {1,2,..., N}, then it holds
in particular for all n € {1,2,..., N} that
[ (yn) = @(yn)l < [0(yn) — Y@, )| + [(2n,) = @(an, )] + [o(zk,) — £ (yn)

< @l llyn — wn llx + 19 (2n,) = olze)] + el

g
< 2llyn — 2 lx + 5 <&

{ver |vne 1,2, N} 10G) - o)l < 5} @

X* X*

But now we are done since for all 1) € B* with d(¢,¢) < 27V£ it holds that
[V(2y) — p(x)] < 2"d(1, ) < g for all n € {1,2,..., N},

which implies (having (1) in mind) that
{ven dw,e <2V}

C {weB* |Vn e {1,2,... ., N}: [¥(zn) — p(zn)] < ;}

g{d}EB*‘VTLE{l,Q,...,N}Z W(yn)—<ﬁ(yn)| <€}'
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As ¢ € O was arbitrary, we demonstrated that O € 74. As O € T« was arbitrary, we
showed 7y« C 74.

9.2. Weak convergence in Hilbert spaces
Let (H,(+,-)yg) be an infinite-dimensional K-Hilbert space (with K € {R, C}).

(a) Let (z,)neny € H and zo, € H satisfy that z, = 7o in H and ||z, ||z — [|Zeo |5
in R as n — oo. Prove that x,, — x in H asn — oo, i.e. limsup,,_, . ||Tn—Too|lzg = 0.

Solution: Since (H 3y — (y,2o0)n € K) € H*, the weak convergence of (z,)nen to
Too implies

nlgglo(xmeO)H = (Too, Too)H = ||xoo||§'{ and JL%RG (Tn, Too) = HQUOOH2

Combining this with the assumption that ||x,|| g — ||z«|/z as n — oo, we obtain

lim sup 2, — 2o % = 0 SUP (2, — ooy T — Toc)t
n—00 n—0o0

~ limsup llnl? = 2Re (To0, @) + |70 ] = 0.

(b) Suppose (2,)nen, Yn)nen € H and 2., yse € H satisfy that z, = z, and
| — Yoollr — 0 as n — oo. Prove that (z,, yn)g — (Too, Yoo ) aS 1 — 00.

Solution: Weak convergence x, — . implies in particular that (Tn, Yoo ) —
(Zoos Yoo ) @8 n — 00 and that there exists a finite constant C' such that ||z, ||z < C
for all n € N. Thus,

limﬁsup |(Tn, Yn) i — (Too, Yoo ]

= hin_)sogp |($n7 Yn — yoo)H + ($n7 yoo)H - (x007 yoo)H|

< lim sup [Onyn it + 1@ o)t — (@, o)t | = 0.

(c) Let (en)nen be an orthonormal system of (H, (-, +)g). Prove e, — 0 as n — oco.
Solution: Note that Bessel’s inequality, i.e.,

Y@ en)ul? < ||zf|7; forall x € H,

n=0

implies that (x,e,)y — 0 as n — oo for any € H. Since by the Riesz representation
theorem any f € H* satisfies f(e,) = (e, )y for a unique x € H, we obtain e, — 0
as n — oo.
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(d) Given any z € H with ||zo||g < 1, prove that there exists a sequence (z,,)nen
in H satisfying ||z,||z = 1 for all n € N and ,, = 7, as n — oo.

Solution: If z., = 0, then any orthonormal system converges weakly to =, by (c).
If 7o, # 0, then an orthonormal system (e, )nen of H with €; = ||oo|| 7 Too can be
constructed via the Gram—Schmidt algorithm. For n € N, let

Tp = Too + (\/1 — ||xoo||%{)en+1.

Then, since T, L €,41 for every n € N, we have ||z,]|? = ||7ooll? + (1 — [|[2o0]|%) = 1
for every n € N. Moreover, z,, — Z, follows from e,,; — 0 as n — oo by (c).

(e) Let the functions f,,: [0,27] — R be given by f,(t) = sin(nt) for n € N. Prove
the Riemann-Lebesgue Lemma: f,, = 0 in L?([0,27],R) as n — oco.

Solution: Let f,: [0,27] — R be given by f,(t) = sin(nt) for n € N. Then,
(\/g fn)nen is an orthonormal system of L?([0, 27], R), because

/027r sin(mt) sin(nt) dt = ;/0% {cos((m — n)t) — cos((m + n)t)} dt

_{0, if m # n,

m, ifm=n
holds for any m,n € N. By (c) weak convergence f, — 0 as n — oo follows.

Remark. The assumption that H is infinite-dimensional was only used in (c¢) and
(d). As weak and strong convergence are equivalent in finite-dimensional spaces,
adaptions of (c) and (d) to the finite-dimensional situation are necessarily wrong. (a)
and (b), however, hold in any Hilbert space. (b) can even be formulated so that weak
convergence of x, — x,, in a Banach space X and strong convergence of v, — ¢
in the dual space X* imply the convergence @, (z,) = Yoo(Too)-

9.3. Annihilating annihilators
Let X be a normed K-vector space (with K € {R, C}).

o For every set U C X let U+ C X* be defined by U+ = {p € X*: p(u) =
0 for all u € U}.

o For every set ® C X* let 1® C X be defined by 1® = {z € X: p(z) =
0 for all ¢ € ®}.
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Prove for all ) £ U C X and () # ® C X* that +(U+) = span(U) and span(®) C
(to)*.

Solution: Let ) # U C X. Then it holds for all ¢ € U+ that p(u) = 0 for all
u € U. By linearity, this extends to ¢(u) = 0 for all u € span(U), ¢ € UL and
by continuity, we even get ¢(u) = 0 for all u € span(U), ¢ € UL. Hence, we
obtain span(U) C +(U*). For the opposite inclusion, let us consider an arbitrary
u € H(UL) \ span(U) (if existent). Note that A = {u} is a non-empty, convex and
compact set while B = span(U) is a non-empty, convex and closed set. Since, in
addition, AN B = (), there exist ¢ € X* X € R such that ¢(u) < A < inf,ep p(b).
As B is a linear space, inf,cp ¢(b) can only be 0 (in which case ¢|g = 0) or —oo, the
latter being impossible as ¢|p is bounded below by ¢(u). Long story short, there
exists ¢ € X* such that ¢(u) # 0 but ¢|g = 0 (and, in particular, p|y = 0). In other
words, there exists ¢ € UL with ¢(u) # 0, which proves that u ¢ +(U*). Thus, we
have shown that +(U1) C span(U), which concludes the proof of +(U~+) = span(U).

For the second claim, let ) ## ® C X*. Then it holds for all u € +® that p(u) = 0

for all ¢ € ®. By linearity, this extends to ¢(u) = 0 for all ¢ € span(®) and by
continuity, we get ¢(u) = 0 for all u € +®, ¢ € span(®). Thus, span(®) C (+®)*.

9.4. Duals and quotient spaces

Let (X, ||-]|x) be a normed K-vector space (with K € {R,C}) and U C X a closed
subspace.

(a) Prove that (X/U)* is isometrically isomorphic to U~.

Solution: Let 7 := (X 3 x +— 2+ U € X/U) denote the canonical projection. As 7
is a linear and continuous mapping from X to X/U (i.e., 7 € L(X, X/U)), it holds for
every ® € (X/U)* that ® o € X*. Hence, the mapping 7": (X/U)* — X*, defined
by

TP =dor foral ®e (X/U),

is well-defined. 7' is clearly a linear mapping. Moreover, for all ® € (X/U)*, x € X it
holds that

(T®) ()] = [®(m(2))] < 1P (x/0y-

that is, ||T®[x+ < ||®||(x/v)- for all & € (X/U)*. On the other hand, for every
® € (X/U)* we can find (z,,)neny € X such that

()| x/0 < |19l x/vy- 17| x,

. H']T(xn)H(X/U)* =1foralln € N,

o lim, oo @(m(z0)) = || @] (x/0)
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o zallx < ||m(@n)|lx/o) + + for every n € N,

which implies that

(T®)(zn) (7 (zn)) . n
x* > Sup —————= = Tznlggo 1+% (X/U)*-

|70 =
neN ||anX neN 1

Thus, we obtain for all ® € (X/U)* that || T®| x+ = ||®||(x/vy+. In other words, T is
an isometry (and, in particular, injective). In the following we are going to show that
im(7) C U+ and U+ C im(T'), which will complete the proof as it shows that the
range of the isometry 7" is U~.

im(T) C UL”: From 7(u) = 0 for all u € U we get that (T®)(u) = 0 for all
® € (X/U)*, u € U. Hence, T® € U™ for all & € (X/U)*, which shows im(T) C U~.

"U+ Cim(T)”: Define the mapping S: U+ — (X/U)* via

(Se)(x+U) =p(x) forall ze X.

Since for all ¢ € Ut and z,y € X with 2 +U =y + U it holds (as x — y € U) that
o(z — y) = 0, we obtain that, for every p € U+, Sp: (X/U) — R is a well-defined
mapping. Moreover, by linearity of 7, every ¢ € U+ gives rise to a linear function
Sp. Next, since for all x € X it holds that

|(Sp)(m(x))| = inf  [(Se)(m(y))|= inf [p(y)|
yer—1(r(x)) yer—1(r(x))
< inf . = Nl (a -
< it eyl = el @l

we finally get that S: Ut — (X/U)* is indeed well-defined. In addition, for all
¢ € U+, x € X it holds that

(TSp)(x) = (Sp)(7(x)) = ¢(z),
which proves that U+ C im(T).
(b) Prove that U* is isometrically isomorphic to X*/U~.

Solution: Let II := X* > z* +— 2* + U* € X*/U* be the canonical projection.
Define the mapping T': X*/U+ — U* by

T(z*+U*) =%y forall z* € X*.

T is well-defined as for all o*,y* € X* with #* + U+ = y* + U+ it holds that
x* —y* € Ut and therefore (2* — y*)|y = 0. Also, T is clearly a linear mapping.
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Moreover, x*| belongs clearly to U* if 2* € X*. Next, note that for all z* € X* it
holds that

IT(=" +U™))

ve <[]

U*x — HQ;‘*|U| X*.

Hence,

172"+ U™)) xo = |l2" + U]

v < inf |y

* *
< x+pL  forall x* € X™.
y*cx*+UL /

Note that, according to the Hahn—Banach theorem, for every u* € U*, there exists
r* € X* with 2*|y = v* and ||z*||x+ = ||u*||y~. This implies that T" is surjective and
that

IT(2" + U™

v > |la* + U™

v- = [lz*|v] xnwt for every z* € X*.

Putting everything together, we have that 1" is a surjective isometry, which completes

our proof.

(c) Prove that reflexivity of X implies reflexivity of U (in other words, closed
subspaces of reflexive spaces are reflexive).

Solution: Let u** € U** be arbitrary but fixed. The map X* 5 2* — u**(2*|y) € K
is clearly linear and bounded and therefore belongs to X**. By the reflexivity of X,
there exists x € X such that

z*(z) = u(z%|y) forall z* € X™.

In particular, it holds for all * € Ut that x*(x) = 0. Therefore, x € (U+) =U =U
by Problem 9.3 (Annihilating annihilators). Since for every u* € U* there exists
r* € X* with 2*|y = v* by the Hahn-Banach theorem, we have that

u(z) = u(u*) for all u* € U™.

Thus, the canonical embedding (y := (U 3 u — (U* 3 u* — u*(u) € K) € U™) is
surjective. This proves that U is reflexive.

9.5. Invariant measures a la Krylov—Bogolioubov

Let (K, d) be a non-empty compact metric space and let 7: K — K be continuous.
Prove that there exists a Borel probability measure p € P(K) on K satisfying for all
Borel sets A C K that u(T1(A)) = u(A).

Hint: Use Problem 7.3 (Banach limits) to show that there exists ¢ € (C(K,R))*
satisfying ¢ > 0, ||¢||(cxry» = 1 and ¢(f) = ¢(foT) for all f € C(K,R). Conclude
recalling Riesz’s representation theorem:
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With (K, d) being a compact metric space and with M (K) denoting the set of Borel
regular finite signed measures on K, M(K) is isometrically isomorphic to (C'(K,R))*
via the mapping ®: M(K) — (C(K,R))*, defined by

(/) = [ fdu forall p € M(K), f € C(K,R).

In particular, the positive regular Borel measures correspond to the positive continuous
linear functionals.

Solution: Let 7: ¢>* — (> denote the left shift, i.e., Tx = (2,41)nen for all
T = (Tp)neny € £>°. From Problem 7.3 (Banach limits) we know that there exists
L € (£°°)* such that

o [Lllgey =1,
o Lz >0 forall x = (x,)nen € € satisfying x,, > 0 for all n € N,
o Lz = L(Tx) for all (x,)ney € °°.
Now, fix an arbitrary # € K and define the mapping S: C(K,R) — (> by

S(f) = ((foT")(z))nen for all f € C(K,R).

Note that S is well-defined because [|S(f)|lre < sup,cx|f(x)| < oo for every f €
C(K,R) by compactness of K. Moreover, S is clearly linear and — by ||.S(f)[r~ <
sup,ex|f(z)| for all f € C(K,R) — bounded. Thus, ¢ := Lo S € (C(K,R))*. In
addition, for all f € C(K,R) with f > 0 it holds that S(f) > 0 in £* and therefore
also ¢(f) > 0. Riesz‘s representation theorem therefore ensures that there exists a
finite positive Borel regular measure p on K such that for all f € C'(K,R) it holds

that o(f) = [ f dp. Since
W) = [ dp=g(K 521 €R) = L((Laer) = 1,

we obtain that p is a probability measure. Furthermore, it holds for all f € C(K,R)
that

p(foT) = L(S(foT)) = L(TS(f)) = L(5(f)) = ¢(f).
This implies that
[ fdn=[ foTdu forall f e C(K.R).

It follows by standard measure-theoretic arguments that [, fdu = [ f o1 dp for all
bounded Borel measurable f: K — R. In particular, for all Borel sets A C K, we get

p(A) = p(T71(A)).
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9.6. Optimal transport a la Kantorovich

Let (X, dx) and (Y, dy) be non-empty compact metric spaces, let c: X xY — RU{oo}
be lower semi-continuous, and let © € P(X) and v € P(Y') be probability measures
on X and Y, respectively. We denote by I'(u, ) the set of probability measures on
X x Y with first marginal x4 and second marginal v, i.e.,

- . WA XY) = p(A),y(X x B) = v(B)
I(p,v) = {7 € P(X xY): for all Borel sets AC X,BCY '

Prove that there exists v € I'(u, v) satisfying that

/)(XyC(x,y)dv(fC,y)z inf c(x,y) dn(x,y).

nel(pu,v) JX XY

Hint: Assume first that ¢ is continuous. For general lower semi-continuous ¢, use that
¢ can be written as pointwise limit of an increasing sequence (fx)reny € C(X X Y, R).

Solution: Since p® v € T'(u, V), we know that I'(u, ) # (0. Since X x Y is compact
and ¢ is lower semi-continuous, inf(, e xxy ¢(,y) > —oo. Consequentially, we obtain
for all n € I'(p, v) that

. . . B
/XWC(x,y)dn(%y)_ oy 0 cdn(z,y) = jnf > —oo.

Let (vn)nen C I'(i, v) be a sequence satisfying

lim c(@,y) dyn(z,y) = inf c(z,y) dn(z,y).
n—=00 JX xY nel(uy) J X xY

Since I'(p, v) CP(X xY) — (C(X x Y,R))* and C(X x Y,R) is separable, we may

*

w

by the Banach—Alaoglu theorem assume w.l.o.g. that 7, — 7 € (C(K,R))*. By

the Riesz representation theorem we may (and will) interpret v, as an element of
M(X xY). Due to

/X><Y f(z,y) dyso(z,y) = lim fz,y)dy(z,y) forall feC(X xY,R)

n—0 Jxxy

we get (by applying the above with f > 0 and with f = (X xY 3 (z,y) = 1 € R)
respectively) that v, € P(X x Y). Moreover, for all f € C'(X,R) and all g € C(Y,R)
we have that

Jo f@ ey = lim [ @) dvey) = [ f@) (o)

n—oo XxY

and

Jo, 9O drey) = Jim [ g dr(ey) = [ g(w)dv(y)

n—o0 XxY

last update: 28 November 2021 9/14



ETH Ziirich Functional Analysis | D-MATH
Autumn 2021 Solution to Problem Set 9 Prof. J. Teichmann

i.e., Yoo € I'(i,v). In the case that ¢: X x Y — R was continuous (and not only lower
semi—continuous), we obtain

/ c(x,y) dyoo(,y) = lim c(x,y) dy(x,y) = inf c(x,y) dn(z, y).
XxY n—=oo JXxY nel(u,v) J X xY

In the general case, there exist (Lipschitz) continuous functions (f,,)nen € C(X XY, R)
with f,, > inf(,yexxy ¢(x,y) for all n € N and with c(z,y) = sup,,cy fo(x,y) for all
(x,y) € X x Y. With this, we obtain for every m € N that

/ fm(xay> d'yoo(xay) = lim fm(x7y) d%(m,y)
XxY

n—o0 XxY

< lim sup y c(z,y) dy.(z,y)

n—oo X x
= inf c(x,y) dn(x,y)
nel(uv) JXXY

Lebesgue’s monotone convergence theorem implies that the left hand side converges
t0 [xxy (2, y) dVoo(,y) as m — oo.

9.7. Minimal Energy

Let m € N and let Q C R™ be a bounded measurable set with |2] > 0. For
g € L*(R™,R), we define the map

V:L*Q,R) =R
fo [ ] oo =) f@)f () dydo
and given h € L?(Q,R), we define the map

E: L*(Q,R) =R
f=f = hH%Q(Q,R) +V(f)

(a) Prove that V is weakly sequentially continuous.

Solution: Given a bounded measurable Q C R™ and g € L*(R™, R), the goal is weak
sequential continuity of the map

V. LQ(QjR) SR
I /Q/Qg(x —y)f (@) f(y) dy du.
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Claim 1. The linear operator T: L?*(Q,R) — L?(Q, R) mapping f ~ Tf given by

(Th)@) = [ glx =y ) dy
is well-defined.
Proof. Let f € L*(Q,R). Note that (T'f)(z) is well-defined for every x € Q by the

Cauchy—Schwarz inequality. Since 2 C R™, being a bounded set, has finite volume
|©2] < oo, we obtain in addition that T'f € L*(2, R):

17 ey = [NTD@P e = [[| [ o~ )r) o] da
< [([lst-ns |@>dx</(/Wx— ) dy )1 2 do
< /QHQH%Q(IRW,R)||f||%2(Q,R) dx < |Q|||g||%2(Rm,R)Hf”%Q(Q,R) < 0. [

Claim 2. Let (fr)ren be a sequence in L*(Q,R) such that f;, = f in L?*(,R) as
k — oo. Then, [|Tfy — T f||L2(or) — 0 as k — oo, where 7' is as in Claim 1.

Proof of 2. Since the sequence ( f;)ren is weakly convergent, it is bounded (by Banach—
Steinhaus): 3C € [0,00) Vk € N : || fi|lr2(or) < C. For every fixed zy €  and
k € N, there holds

TR0l < [Jota 0 il dv < ([l —Fas)* ([ 1hFar)’

< gl L2 m oyl frll 2(.r)-

In particular, the map fi — (T'f)(xo) is a linear continuous functional L?(2, R) — R.
Therefore, weak convergence f, — f implies (T'f)(xo) — (Tf)(z0) as k — co. In
other words, T'f), converges pointwise to T'f. Moreover,

sup |(T'fi)(z0)| < sup ([lgl| 2@zl fill 20m)) < Cllgllz2@m z)-
keN keN

Since €2 is bounded, the constant C||g|| 2@ r) on the right right hand side belongs
L?(Q,R). Hence, the claim follows by Lebesgue’s dominated convergence theorem. [

Claim 3. Let (fi)ren be a sequence in L*(Q,R) such that f;, = f in L?*(,R) as
k — oo. Then, V(fi) = V(f) as k — oo, i.e. V is weakly sequentially continuous.
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Proof. Let T be as in Claim 1. Since fr = f and ||T'fi — T f||12(r) — 0 as k — oo
by claim 2, we conclude

VIR = | £@) [ 9o =) fiy) dyde = (fu Thwe) == (LTF) = V(F),
using the continuity property of scalar products proven in Problem 9.2 (b). O]
(b) Under the assumption g > 0 almost everywhere, prove that E restricted to

L2 (QR) = {f € L*(,R) | f(x) > 0 for almost every x € 2}

attains a global minimum.

Solution: In the case that 0 < g € L*(R™,R) and h € L*(,R) the claim is that
the map

E: LQ,R) = R
[ lf = h”%%Q,R) +V(f)

restricted to L2 (€2, R) attains a global minimum. Since L?(€2, R) is reflexive (being a
Hilbert space), we may invoke the direct method in the calculus of variations if we
prove the following claims.

Claim 4. L3 (©,R) is non-empty and weakly sequentially closed.

Proof. Clearly, L% (2,R) 5 0 is non-empty. Let (fy)ren be a sequence in L2 (2, R)
such that f, = f for some f € L*(Q,R) as k — oo. Suppose f ¢ L2 (£, R). Then
there exists U C Q with positive measure such that f|y < 0. In particular, we can test
the weak convergence with the characteristic function ¢ to obtain the contradiction

0> (f,Xv)r2(0r) = kh_)rgo<fk>XU> > 0. O

Claim 5. E: L% (Q,R) — R is coercive and weakly sequentially lower semi-continuous.

Proof of Claim 5. Since V(f) > 0 if both ¢ > 0 and f > 0 almost everywhere, we
have

E(f) = 1 = Mizqor = 1f1220m — 20 l2@p 1Rl 2@p) + 1217208
1
2 §HfH%2(Q,R) — 12172 0m)

for every f € L3 (€, R) as we have by Young’s inequality that 2ab < 1a? + 2b* for all
a,b € R. Since h € L*(Q,R) is fixed, E is coercive.
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By part (a), L*(,R) > f — V(f) € R is weakly sequentially lower semi-continuous.
Moreover, every term on the right hand side of

1f = h”L2 QR) = Hf”L2 ar) — 2(f, W) r2@r) + HhHL2 (2,R)

is weakly sequentially lower semi-continuous in f since h is fixed. This proves the
claim. O

9.8. A result by Lions-Stampacchia

Let (H,(+,)g) be a real Hilbert space and let a: H x H — R be a bilinear map so
that:

(i) a(x,y) = a(y,x) for every x,y € H,
(ii) there exists A € (0,00) so that |a(z,y)| < Al|lz||g||y||x for every z,y € H,
(iii) there exists A € (0,00) so that a(z,z) > M|z||% for every x € H.

Let moreover f: H — R be a continuous linear functional. Consider the map
J: H — R given by

J(z) =a(x,z) — 2f(z).
Finally, let K C H be a non-empty closed convex subset.
(a) Prove that there exists a unique yo € K such that J(yo) < J(z) for every z € K.

Solution: The special structure of the terms involved allows to give here a solution
based on Problem 5.6 (Projections on closed convex sets). A standard argument in
the spirit of the direct method of the calculus of variations would of course be possible
as well.

Claim 1. Given f € H*, there exists a unique xg € H such that for all xt € H
J(x) =a(x,z) — 2f(x) = alr — xo,x — o) — a(zo, o).

Proof. Since a is bilinear and satisfies (ii) and (iii) the Lax-Milgram theorem applies
((ii) implies continuity of a). In particular, since f € H*, there exists a unique xy € H
satisfying a(zg, x) = f(x) for all x € H. (The same follows from claim 2 below and
the Riesz representation theorem applied in (H,a(-,-))). Moreover,

J(z) =a(z,z) — 2f(x) = a(z,z) — 2a(xg, )
= a(x — xg,x) — a(xg, x)
= a(z — xg,x — x9) + a(x — x0, To) — a(x, xg)
= a(r — xg,x — z9) — a(xg, To) O

for all x € H, as claimed.
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Claim 2. (H,a(-,-)) is a Hilbert space.
Proof. By assumption (i) the bilinear map a is symmetric. By (ii) and (iii), we have
Mlzllf < a(z,2) < Allz|l% ()

which shows a(z,z) > 0 and a(z,z) = 0 < x = 0. Therefore, a(-,-) is a scalar product

on H. In fact, (%) implies that the induced norm ||-||, = y/a(-,) is equivalent to ||-||x.
It is easy to check that equivalent norms have the same Cauchy-sequences and induce
the same notion of convergence. Therefore, (H, ||-||.) is complete since (H, ||-||x) is
complete and the claim follows. O

By assumption, the set ) # K C H is convex and closed in (H, ||-||z). Since the two
norms are equivalent, K is also closed in (H,|:|l,) and we can apply the result of
part (a) of Problem 5.6 (Projections on closed convez sets) in the R-Hilbert space
(H,a(-,-)) with the point zy from claim 1. That is: there exists a unique yy € K
satisfying

lzo = yolla = infflzo — ylla. (1)
By Claim 1 we have for arbitrary y € K

J(yo) = llyo — zoll2 — lzoll2 < lly — moll2 = [|zolls = J(y).

Moreover, since ¥, is the unique element of K satisfying (), it is also the unique
element of K satisfying J(yo) < J(y) for all y € K.

(b) Prove that the unique minimizer y, from (a) is also the unique element of K
satisfying a(yo, z — yo) > f(z — yo) for every z € K.

Solution: We saw in part (a) that yg is the unique element of K with ||z — yo||la =
inf e ||zo — yllo. By part (b) of Problem 5.6 (Projections on closed convex sets) yo is
therefore the unique element of K which satisfies

a(xg — Yo,z —yo) <0 forall z € K.

This and the fact that a(zo,x) = f(x) for all x € H implies that y, is the unique
element of K such that

f(z—=1vo0) = alxg,z —yo) < alyo,z — yo) forall z € K.
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