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10.1. Various notions of continuity

Suppose (X, ‖·‖X) and (Y, ‖·‖Y ) are normed K-vector spaces (with K ∈ {R,C}).

(a) A linear map A : X → Y is bounded if and only if it is σ(X,X∗)-σ(Y, Y ∗)-
continuous (i.e., continuous with respect to the weak topologies on X and Y).

Solution: ”(⇒)”: Assume that A is bounded. Let O ∈ σ(Y, Y ∗) be arbitrary but
fixed. We need to show that A−1(O) ∈ σ(X,X∗). For this, let x ∈ A−1(O) be
arbitrary but fixed. Then it holds that Ax ∈ O and – by O ∈ σ(Y, Y ∗) – there exist
ε ∈ (0,∞), n ∈ N, y∗1, y∗2, . . . , y∗n ∈ Y ∗ satisfying that

{y ∈ Y | |y∗i (y − Ax)| < ε for all i ∈ {1, 2, . . . , n}} ⊆ O.

Since A ∈ L(X, Y ), it holds for all i ∈ {1, 2, . . . , n} that y∗i ◦ A ∈ X∗ and therefore

{ξ ∈ X | |(y∗i ◦ A)(ξ − x)| < ε for all i ∈ {1, 2, . . . , n}}
= A−1({y ∈ Y | |y∗i (y − Ax)| < ε for all i ∈ {1, 2, . . . , n}}) ⊆ A−1(O).

As x ∈ A−1(O) was arbitrary, this shows that A−1(O) is open. As O ∈ σ(Y, Y ∗) was
arbitrary, we proved that A is σ(X,X∗)-σ(Y, Y ∗)-continuous.

”(⇐)”: Assuming that A is σ(X,X∗)-σ(Y, Y ∗)-continuous, we obtain for every y∗ ∈ Y ∗
that y∗ ◦ A is σ(X,X∗)-continuous. From part (b) in Problem 8.4 (Topologies
induced by linear functionals), we know that a linear functional on X is σ(X,X∗)-
continuous if and only if it belongs to X∗. Thus, we obtain that y∗ ◦ A ∈ X∗ for
every y∗ ∈ Y ∗. In particular, it holds for every y∗ ∈ Y ∗ that there exists C ∈ [0,∞)
satisfying ∀x ∈ X : |y∗(Ax)| ≤ C‖x‖X . On the other hand, it clearly holds for
every x ∈ X that ∀y∗ ∈ Y ∗ : |y∗(Ax)| ≤ ‖Ax‖Y ‖y∗‖Y ∗ . Hence, the bilinear mapping
Y ∗ ×X 3 (y∗, x) 7→ y∗(Ax) ∈ K satisfies the conditions of part (b) in Problem 5.3
(Continuity of bilinear maps), which in turn guarantees that there exists C ∈ [0,∞)
such that

|y∗(Ax)| ≤ C‖x‖X‖y∗‖Y ∗ for all x ∈ X, y∗ ∈ Y ∗.

This implies that ‖Ax‖Y ≤ C‖x‖X for all x ∈ X. (Alternatively, redo the proof of
Problem 5.3 in this special case: since (Y ∗, ‖·‖Y ∗) is complete and since for all y∗ ∈ Y ∗
it holds that supx∈X,‖x‖X≤1|y∗(Ax)| = supx∈X,‖x‖X≤1|(y∗ ◦ A)(x)| = ‖y∗ ◦ A‖X∗ <∞,
the Banach–Steinhaus theorem implies that supx∈X,‖x‖X≤1‖Y ∗ 3 y∗ 7→ y∗(Ax) ∈
K‖Y ∗∗ <∞.)

(b) A linear map B : Y ∗ → X∗ is σ(Y ∗, Y )-σ(X∗, X)-continuous (i.e., continuous
with respect to the weak∗ topologies on Y ∗ and X∗) if and only if there is a bounded
linear operator A : X → Y such that B = A∗.

last update: 6 December 2021 1/11



ETH Zürich
Autumn 2021

Functional Analysis I
Solution to Problem Set 10

d-math
Prof. J. Teichmann

”(⇐)”: Assume that B = A∗ for some A ∈ L(X, Y ). This implies that B ∈ L(Y ∗, X∗).
From now on, the proof is analogous to the corresponding part of the proof of (a).
Let O ∈ σ(X∗, X) be arbitrary but fixed. We need to show that B−1(O) ∈ σ(Y ∗, Y ).
For this, let y∗ ∈ B−1(O) be arbitrary but fixed. Then it holds that By∗ ∈ O and –
by O ∈ σ(X∗, X) – there exist ε ∈ (0,∞), n ∈ N, x1, x2, . . . , xn ∈ X satisfying that

{x∗ ∈ X∗ | |(By∗ − x∗)(xi)| < ε for all i ∈ {1, 2, . . . , n}} ⊆ O.

Since B = A∗ and A ∈ L(X, Y ), we obtain that

{υ∗ ∈ Y ∗ | |(y∗ − υ∗)(Axi)| < ε for all i ∈ {1, 2, . . . , n}}
= {υ∗ ∈ Y ∗ | |(By∗ −Bυ∗)(xi)| < ε for all i ∈ {1, 2, . . . , n}}
= B−1({x∗ ∈ X∗ | |(By∗ − x∗)(xi)| < ε for all i ∈ {1, 2, . . . , n}}) ⊆ B−1(O).

As y∗ ∈ B−1(O) was arbitrary, this shows that B−1(O) is open. As O ∈ σ(X∗, X)
was arbitrary, we proved that B is σ(Y ∗, Y )-σ(X∗, X)-continuous.

”(⇒)”: Assuming that B is σ(Y ∗, Y )-σ(X∗, X)-continuous, it holds for every x ∈ X
that Y ∗ 3 y∗ 7→ (By∗)(x) ∈ K is σ(Y ∗, Y )-continuous. Problem 8.4 (Topologies
induced by linear functionals) again assures that for every x ∈ X there exists a unique
element of Y , called Ax from now on, such that

(By∗)(x) = y∗(Ax) for all x ∈ X, y∗ ∈ Y ∗.

Clearly, X 3 x 7→ Ax ∈ Y is linear (by uniqueness of Ax for x ∈ X and linearity of
everything else). This and the above relation show that B = A∗. It remains to show
that A is bounded. For this, we note that

• for every y∗ ∈ Y ∗, it holds that

|y∗(Ax)| = |(By∗)(x)| ≤ ‖By∗‖X∗‖x‖X

and

• for every x ∈ X, it holds that

|y∗(Ax)| ≤ ‖Ax‖Y ‖y∗‖Y ∗ .

Part (b) in Problem 5.3 (Continuity of bilinear maps) ensures again that there exists
C ∈ [0,∞) such that |y∗(Ax)| ≤ C‖x‖X‖y∗‖Y ∗ for all x ∈ X, y∗ ∈ Y ∗.

(c) A linear operator A : X → Y is σ(X,X∗)-‖·‖Y -continuous (i.e., weak–norm
continuous) if and only if it is bounded and has finite rank (i.e., has finite-dimensional
range).

2/11 last update: 6 December 2021



d-math
Prof. J. Teichmann

Functional Analysis I
Solution to Problem Set 10

ETH Zürich
Autumn 2021

Solution: ”(⇒)”: By definition, there exist ε ∈ (0,∞), n ∈ N and x∗1, x∗2, . . . , x∗n ∈ X∗
such that for all x ∈ X satisfying |x∗i (x)| < ε it holds that ‖Ax‖Y < 1. This implies
that

‖Ax‖Y ≤
1
ε

max
1≤k≤n

|x∗k(x)| for all x ∈ X. (1)

In particular, it holds for all x, y ∈ X with x∗k(x) = x∗k(y) for all k ∈ {1, 2, . . . , n}
that Ax = Ay. Hence, the mapping

{(x∗1(x), x∗2(x), . . . , x∗n(x)) | x ∈ X} 3 (x∗1(x), x∗2(x), . . . , x∗n(x)) 7→ Ax ∈ Y

is well-defined and linear. Moreover, with the domain space being finite-dimensional,
this map can only have finite-dimensional image. The image, though, is A(X). Hence,
A itself has finite-dimensional image. Boundedness of A is clear from (1) (or, as one
could say, was clear from the beginning, since A is also σ(X,X∗)-σ(Y, Y ∗)-continuous).

”(⇐)”: Assume that A ∈ L(X, Y ) has finite rank. Let y1, y2, . . . , yn ∈ Y be a
basis of im(A) and let y∗1, y∗2, . . . , y∗n ∈ Y ∗ be a dual basis, i.e. y∗i (yj) = δij for all
i, j ∈ {1, 2, . . . , n}. This ensures that

Ax =
n∑

i=1
y∗i (Ax)yi for all x ∈ X.

Let O ⊆ Y be an arbitrary but fixed open set w.r.t. the norm topology. We want to
show that A−1(O) ⊆ X is open. For this, let x ∈ A−1(O) be arbitrary but fixed. Then
Ax ∈ O and – as O is open w.r.t. the norm topology – there exists ε ∈ (0,∞) such
that {y ∈ Y | ‖y − Ax‖Y < ε} ⊆ O. Now, since y∗i ∈ Y ∗ for every i ∈ {1, 2, . . . , n}
and A ∈ L(X, Y ) we have that y∗i ◦ A ∈ X∗ for every i ∈ {1, 2, . . . , n} and, therefore,
the first set below is a σ(X,X∗)-neighborhood of x:{

ξ ∈ X | |(y∗i ◦ A)(ξ − x)| < ε

n‖yi‖Y

for all i ∈ {1, 2, . . . , n}
}

⊆
{
ξ ∈ X |

n∑
i=1
|y∗i (Aξ − Ax)|‖yi‖Y < ε

}
⊆ {ξ ∈ X | ‖Aξ − Ax‖Y < ε} ⊆ A−1(O).

As x ∈ A−1(O) was arbitrary, we obtain that A−1(O) ∈ σ(X,X∗). As O ⊆ Y was
an arbitrary open set w.r.t. the norm topology, we have that A is σ(X,X∗)-‖·‖Y -
continuous.
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10.2. Elementary properties of dual operators

Let (X, ‖·‖X), (Y, ‖·‖Y ) and (Z, ‖·‖Z) be normed K-vector spaces (with K ∈ {R,C}).
Recall that if T ∈ L(X, Y ), then its dual operator T ∗ is in L(Y ∗, X∗) and it is
characterised by the property

〈T ∗y∗, x〉X∗×X = 〈y∗, Tx〉Y ∗×Y for every x ∈ X and y∗ ∈ Y ∗.

Prove the following facts about dual operators.

(a) (IdX)∗ = IdX∗ .

Solution: Let x ∈ X and x∗ ∈ X∗ be arbitrary. By definition of (IdX)∗ : X∗ → X∗,
we have〈

(IdX)∗x∗, x
〉

X∗×X
=
〈
x∗, IdX x

〉
X∗×X

= 〈x∗, x〉X∗×X∗ .

Since x ∈ X is arbitrary, (IdX)∗x∗ = x∗. Since x∗ ∈ X∗ is arbitrary, (IdX)∗ = Id(X∗).

(b) If T ∈ L(X, Y ) and S ∈ L(Y, Z), then (S ◦ T )∗ = T ∗ ◦ S∗.

Solution: Let z∗ ∈ Z∗ and x ∈ X be arbitrary. Then, (S ◦ T )∗ = T ∗ ◦ S∗ follows
from 〈

(S ◦ T )∗z∗, x
〉

X∗×X
=
〈
z∗, S(Tx)

〉
Z∗×Z

=
〈
S∗z∗, Tx

〉
Y ∗×Y

=
〈
T ∗(S∗z∗), x

〉
X∗×X

.

(c) If T ∈ L(X, Y ) is bijective with inverse T−1 ∈ L(Y,X), then (T ∗)−1 = (T−1)∗.

Solution: To prove (T ∗)−1 = (T−1)∗, we apply the results from (a) and (b) and
obtain

T ∗ ◦ (T−1)∗ = (T−1 ◦ T )∗ = (IdX)∗ = IdX∗ ,

(T−1)∗ ◦ T ∗ = (T ◦ T−1)∗ = (IdY )∗ = IdY ∗ .

(d) Let IX : X ↪→ X∗∗ and IY : Y ↪→ Y ∗∗ be the canonical inclusions. Then,

∀T ∈ L(X, Y ) : IY ◦ T = (T ∗)∗ ◦ IX .

Solution: Let x ∈ X and y∗ ∈ Y ∗ be arbitrary. Then, (IY ◦ T ) = (T ∗)∗ ◦ IX follows
from 〈

(IY ◦ T )x, y∗
〉

Y ∗∗×Y ∗
=
〈
y∗, Tx

〉
Y ∗×Y

=
〈
T ∗y∗, x

〉
X∗×X

=
〈
IXx, T

∗y∗
〉

X∗∗×X∗
=
〈
(T ∗)∗(IXx), y∗

〉
Y ∗∗×Y ∗

.
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10.3. Dual operators and invertibility

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be normed K-vector spaces (with K ∈ {R,C}) and
T ∈ L(X, Y ). Prove the following.

(a) If T is an isomorphism with T−1 ∈ L(Y,X), then T ∗ is an isomorphism.

Solution: The dual operator T ∗ of any T ∈ L(X, Y ) with T−1 ∈ L(Y,X) is invertible
according to Exercise 10.2(c) and its inverse is (T ∗)−1 = (T−1)∗. Moreover, the
assumption T−1 ∈ L(Y,X) implies (T−1)∗ ∈ L(X∗, Y ∗). Hence, T ∗ is an isomorphism.

(b) If T is an isometric isomorphism, then T ∗ is an isometric isomorphism.

Solution: If T is an isometric isomorphism, then T ∗ is an isomorphism by (a) and

‖T ∗y∗‖X∗ = sup
‖x‖X≤1

∣∣∣〈T ∗y∗, x〉X∗×X

∣∣∣ = sup
‖x‖X≤1

∣∣∣〈y∗, Tx〉Y ∗×Y

∣∣∣
= sup
‖y‖Y ≤1

|〈y∗, y〉Y ∗×Y | = ‖y∗‖Y ∗ for all y∗ ∈ Y ∗.

(c) If X and Y are both reflexive, then the reverse implications of (a) and (b) hold.

Solution: If X and Y are reflexive, IX : X → X∗∗ and IY : Y → Y ∗∗ are bijective
isometries. If T ∗ is an (isometric) isomorphism, then Exercise 10.2 and (b) imply that
(T ∗)∗ is an (isometric) isomorphism. Applying Exercise 10.2(d), we see that the same
holds for

T = I−1
Y ◦ (T ∗)∗ ◦ IX .

(d) If (X, ‖·‖X) is a reflexive Banach space isomorphic to the normed space (Y, ‖·‖Y ),
then Y is reflexive.

Solution: Since X is reflexive by assumption, IX is an isomorphism. Suppose,
T : X → Y is an isomorphism. Applying part (b) twice, (T ∗)∗ is an isomorphism.
Moreover,

IY = (T ∗)∗ ◦ IX ◦ T−1

according to Exercise 10.2(d). Since IY is a composition of isomorphisms, Y is
reflexive.

10.4. Invariant measures again

Let (K, d) be a non-empty compact metric space and let T ∈ L(C(K,R), C(K,R))
satisfy
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• T1 = 1, where 1 := (K 3 x 7→ 1 ∈ R) ∈ C(K,R) and

• Tf ≥ 0 for all f ∈ C(K,R) with f ≥ 0.

(a) Prove for all n ∈ N that the mapping Sn : P(K)→ P(K), defined via∫
K
f d(Snν) = 1

n

n−1∑
k=0

∫
K
T kf dν for all f ∈ C(K,R), ν ∈ P(K),

is indeed well-defined.

Solution: Let n ∈ N, ν ∈ P(K) be fixed. Note that

C(K,R) 3 f 7→ 1
n

n−1∑
k=0

∫
K
T kf dν ∈ R

is a positive linear functional which maps 1 to 1. The Riesz–Markov–Kakutani
theorem thus implies that there exists a Borel probability measure µ such that∫

K
f dµ = 1

n

n−1∑
k=0

∫
K
T kf dν for all f ∈ C(K,R).

(Positivity and linearity imply that µ is a positive finite Borel regular measure, the
fact that 1 is mapped to 1 implies that µ is a probability measure.)

(b) Show for all ν ∈ P(K) that there exist (nk)k∈N ⊆ N with nk ↗ ∞ as k → ∞
and µ ∈ P(K) such that∫

K
f dµ = lim

k→∞

∫
K
f d(Snk

ν) for all f ∈ C(K,R).

Solution: WithM(K) denoting the signed Borel regular measures (equipped with
the total variation norm), let J : M(K)→ (C(K,R))∗ be the isomorphism provided
by the Riesz–Markov–Kakutani theorem, that is,

[J(ξ)](f) =
∫

K
f dξ for all f ∈ C(K,R), ξ ∈M(K).

Let ν ∈ P(K) be fixed. The measures (Snν)n∈N ⊆ P(K) constructed in (a) satisfy that
supn∈N‖J(Snν)‖C(K,R)∗ = supn∈N‖Snν‖M(K) = supn∈N(Snν)(K) = 1. The Banach–
Alaoglu theorem (and the fact that C(K,R) is separable) ensure that there exist
(nk)k∈N ⊆ N with nk ↗ ∞ as k → ∞ and a functional Φ ∈ C(K,R)∗ such that
J(Snk

ν) w∗
−⇀ Φ. The Riesz–Markov–Kakutani theorem thus implies that there exists

µ ∈M(K) such that Φ = J(µ), i.e.,

lim
k→∞

∫
K
f d(Snk

ν) = lim
k→∞

[J(Snk
ν)](f) = Φ(f) = [J(µ)](f) =

∫
K
f dµ.

Since Φ is positive and satisfies Φ1 = 1, we obtain µ ∈ P(K).
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(c) Let ν, µ ∈ P(K) and (nk)k∈N ⊆ N satisfy nk ↗ ∞ and
∫

K f d(Snk
ν) →

∫
K f dµ

as k →∞. Infer that∫
K
Tf dµ =

∫
K
f dµ for every f ∈ C(K,R).

Solution: Note first that it holds for all k ∈ N, f ∈ C(K,R) that
∣∣∣∣∫

K
Tf d(Snk

ν)−
∫

K
f d(Snk

ν)
∣∣∣∣ =

∣∣∣∣∣∣ 1
nk

nk−1∑
j=0

∫
K
T jTf dν − 1

nk

n−1∑
j=0

∫
K
T jf dν

∣∣∣∣∣∣
= 1
nk

∣∣∣∣∫
K
T nkf dν −

∫
K
f dν

∣∣∣∣ ≤ 2
nk

‖f‖C(K,R).

Passing to the limits as k → ∞, we obtain that
∫

K Tf dµ =
∫

K f dµ for every
f ∈ C(K,R).

(d) Prove for every f ∈ C(K,R) with Tf = f and f 6= 0 that there exists µ ∈ P(K)
satisfying

•
∫

K f dµ 6= 0 and

•
∫

K Tg dµ =
∫

K g dµ for all g ∈ C(K,R)

Solution: Let f ∈ C(K,R) with Tf = f and f 6= 0. Then there exists ν ∈ P(K)
with

∫
K f dν 6= 0 (e.g., ν = δx for x ∈ K with f(x) 6= 0). According to (b), there exist

(nk)k∈N ⊆ N, µ ∈ P(K) satisfying nk ↗ ∞ and J(Snk
ν) w∗
−⇀ J(µ) in (C(K,R))∗ as

k →∞. According to (c), we have that T#µ = µ. Finally, note that∫
K
f d(Skν) =

∫
K
f dν for all k ∈ N

and therefore
∫

K f dν =
∫

K f dµ.

(e) Solve Problem 9.5 (Invariant measures à la Krylov–Bogolioubov) again using (d).

Solution: With ϕ ∈ C(K,K) (formerly called T in Problem 9.5), associate T ∈
L(C(K,R), C(K,R)) defined via

Tf = f ◦ ϕ for every f ∈ C(K,R).

Note that T satisfies T1 = 1 and Tf ≥ 0 for every f ∈ C(K,R) with f ≥ 0. Part (d)
assures that there exists µ ∈ P(K) satisfying for all f ∈ C(K,R) that∫

K
f dµ =

∫
K
Tf dµ =

∫
K
f ◦ ϕdµ.

(For the fixed point of T – denoted as f in (d) – we can take 1 ∈ C(K,R).)
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10.5. Von Neumann’s ergodic theorem

Let (H, 〈·, ·〉) be a K-Hilbert space (with K ∈ {R,C}), let T be a continuous linear
operator on H with ‖T‖L(H,H) ≤ 1, let U := ker(I − T ) (with I = (H 3 x 7→ x ∈
H) ∈ L(H,H) being the identity operator), let PU denote the orthogonal projection
onto U and let Sn := 1

n

∑n−1
k=0 T

k for every n ∈ N. Our goal is to show that

lim sup
n→∞

‖Snx− PUx‖H = 0 for all x ∈ H.

For this, we recommend to proceed along the following steps:

(a) For all x ∈ H, we have Tx = x if and only if T ∗x = x.

Solution: “(⇒)“: Since ‖T ∗‖L(H,H) = ‖T‖L(H,H) ≤ 1, we have for all x ∈ U (i.e.,
x ∈ H with Tx = x) that

‖x‖H‖T ∗x‖H ≥ 〈x, T ∗x〉 = 〈Tx, x〉 = ‖x‖2
H ≥ ‖x‖H‖T ∗x‖H , (2)

which implies that ‖T ∗x‖H = ‖x‖H for all x ∈ U (as well as 〈Tx, x〉 = 〈x, T ∗x〉 = ‖x‖2
H

for all x ∈ U). Hence, we have for all x ∈ U that

‖T ∗x− x‖2
H = ‖T ∗x‖2

H − 2 Re〈x, T ∗x〉+ ‖x‖2
H = ‖x‖2

H − 2‖x‖2
H + ‖x‖2

H = 0.

Thus, ker(I − T ) ⊆ ker(I − T ∗).

“(⇐)“: As T ∗ ∈ L(H,H) also satisfies ‖T ∗‖L(H,H) ≤ 1, the argument above shows for
all x ∈ ker(I − T ∗) that T ∗∗x = x. Since T ∗∗ = T for every bounded linear operator
on a Hilbert space, we have that ker(I − T ) ⊇ ker(I − T ∗).

(b) U⊥ = im(I − T ).

Solution: We know from (a) that U = ker(I − T ) = ker(I − T ∗). Hence, it holds
that

U⊥ = (ker(I − T ∗))⊥ = (im(I − T )⊥)⊥ = im(I − T ).

(c) limn→∞ Snx = x for all x ∈ U and limn→∞ Snx = 0 for all x ∈ U⊥.

Solution: For every x ∈ U , we have Tx = x, hence Snx = x for all n ∈ N and
therefore lim supn→∞‖Snx− x‖H = 0. For every x ∈ im(I − T ), there exists y ∈ H
such that x = (I − T )y. Hence, it holds for all n ∈ N that

lim sup
n→∞

‖Snx‖H = lim sup
n→∞

∥∥∥∥∥ 1
n

n−1∑
k=0

T k(y − Ty)
∥∥∥∥∥

H

= lim sup
n→∞

∥∥∥∥ 1
n

(y − T ny)
∥∥∥∥

H
≤ lim sup

n→∞

2‖y‖H

n
= 0.

8/11 last update: 6 December 2021



d-math
Prof. J. Teichmann

Functional Analysis I
Solution to Problem Set 10

ETH Zürich
Autumn 2021

For every x ∈ im(I − T ), there is a sequence (zn)n∈N ⊆ im(I − T ) converging to x as
n→∞ and since Snyk → 0 as n→∞ for every k ∈ N, we get that

lim sup
n→∞

‖Snx‖H ≤ lim sup
n→∞

[‖Snx− Snyk‖H + ‖Snyk‖H ]

= lim sup
n→∞

‖Snx− Snyk‖H ≤ lim sup
n→∞

[
‖Sn‖L(H,H)‖x− yk‖H

]
≤ ‖x− yk‖H for all k ∈ N.

Hence, lim supn→∞ ‖Snx‖H = 0 for every x ∈ im(I − T ) = U⊥. To come full circle,
note that every x ∈ H can be written as x = (x− PUx) + PUx, where x− PUx ∈ U⊥
and PUx ∈ U , and therefore, we obtain for every x ∈ H that Snx→ PUx as n→∞
because Sn(x− PUx)→ 0 and SnPUx→ PUx as n→∞.

10.6. Von Neumann again

Let (X, ‖·‖X) be a reflexive space, let T : X → X be a continuous linear operator
satisfying supn∈N0‖T

n‖L(X,X) <∞, let U := ker(I − T ) and let Sn := 1
n

∑n−1
k=0 T

k for
every n ∈ N.

(a) Show that Y := {x ∈ X | limn→∞ Snx exists} is a closed subspace of X.

Solution: Clearly, 0 ∈ Y and for all α ∈ K, x1, x2 ∈ Y it holds that αx1 + x2 ∈ Y
since limn→∞ Sn(αx1 + x2) = α limn→∞ Snx1 + limn→∞ Snx2. The only issue left
is the closedness of Y . For this, let (xn)n∈N ⊆ Y be a sequence converging to
x∞ ∈ X, i.e., lim supn→∞‖xn−x∞‖X = 0, and let (yn)n∈N ⊆ X denote the limits, i.e.,
yn = limk→∞ Skxn for every n ∈ N. We are going to show that (yn)n∈N is a Cauchy
sequence. Note that for all m,n ∈ N, it holds that

‖ym − yn‖X ≤ lim sup
k→∞

[
‖ym − Skxm‖X + ‖Skxm − Skxn‖X + ‖Skxn − yn‖X

]
≤ lim sup

k→∞
‖ym − Skxm‖X + sup

l∈N0

‖T l‖L(X,X)‖xm − xn‖X + lim sup
k→∞

‖Skxn − yn‖X

≤ sup
l∈N0

‖T l‖L(X,X)‖xm − xn‖X .

Since (xn)n∈N ⊆ X is a Cauchy sequence, it follows that (yn)n∈N is Cauchy, too.
Denoting y∞ = limn→∞ yn, it just remains to show that limn→∞ Snx∞ = y∞. For this,
note that for all n, k ∈ N it holds that

‖Snx∞ − y∞‖X ≤ ‖Snx∞ − Snxk‖X + ‖Snxk − yk‖X + ‖yk − y∞‖X

≤ sup
l∈N0

‖T l‖L(X,X)‖x∞ − xk‖X + ‖Snxk − yk‖X + ‖yk − y∞‖X .
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Letting n→∞, we obtain for every k ∈ N that

lim sup
n→∞

‖Snx∞ − y∞‖X ≤ sup
l∈N0

‖T l‖L(X,X)‖x∞ − xk‖X + ‖yk − y∞‖X .

As we let k →∞, we obtain lim supn→∞‖Snx∞ − y∞‖X = 0. Hence, x∞ ∈ Y and Y
is closed.

(b) Show that P : Y → X, defined by Px = limn→∞ Snx is a continuous linear map
satisfying im(P ) = U ⊆ Y , ker(P ) = im(I − T ), and P 2 = P . In particular, deduce
that Y = ker(I − T )⊕ im(I − T ).

Solution: P is clearly linear on Y . For all x ∈ X, n ∈ N it holds that∥∥∥∥∥ 1
n

n−1∑
k=0

T kx

∥∥∥∥∥
X

≤ sup
k∈N0

‖T k‖L(X,X)‖x‖X .

It follows that ‖Px‖X ≤ supk∈N0‖T
k‖L(X,X)‖x‖X for all x ∈ Y . Hence, P is continuous.

Moreover, note that for all n ∈ N it holds that (I − T )Sn = 1
n
(I − T n) = Sn(I − T ).

Hence, for all x ∈ Y we have that

(I − T )Px = lim
n→∞

(I − T )Snx = lim
n→∞

1
n

(x− T nx) = 0

by supk∈N0‖T
k‖L(X,X) <∞. Thus, im(P ) ⊆ U . On the other hand, for every x ∈ U ,

it holds Snx = x for all n ∈ N and therefore x ∈ Y , Px = x. Hence, P (U) = im(P )
and P 2x = Px for all x ∈ Y . Finally, for every x ∈ im(I − T ), there exists y ∈ X
with x = y − Ty. Hence, for every x ∈ im(I − T ), we have

Snx = Sn(I − T )y = 1
n

(y − T ny)→ 0 as n→∞,

that is, x ∈ Y and Px = 0. As Y is closed and P is continuous, im(I − T ) ⊆ ker(P ).
On the other hand, if x ∈ ker(P ), then

x− 1
n

n−1∑
k=0

T kx = 1
n

n−1∑
k=0

(x− T kx) ∈ im(I − T ) for all n ∈ N,

and since the left hand side tends to x as n → ∞, it follows that x ∈ im(I − T ).
Since U = im(P ) and im(I − T ) = ker(P ) and since P 2x = Px for all x ∈ Y , the
mapping

Y 3 x 7→ (Px, x− Px) ∈ im(P )× ker(P )

is a (linear) isomorphism (of Banach spaces), cp. also the solution of Problem 6.1. In
other words, Y = im(P )⊕ ker(P ) = ker(I − T )⊕ im(I − T ).
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(c) Show for every x∗ ∈ Y ⊥ that T ∗x∗ = x∗ and x∗ ∈ U⊥.

Solution: For every x∗ ∈ Y ⊥ it holds – since U ⊆ Y and im(I − T ) ⊆ Y according
to (b) – in particular that x∗ ∈ U⊥ and x∗ ∈ im(I − T )⊥. The latter implies for all
x ∈ X, x∗ ∈ Y ⊥ that x∗(x− Tx) = 0, i.e., (T ∗x∗)(x) = x∗(Tx) = x∗(x), resulting in
T ∗x∗ = x∗.

(d) Show for every x ∈ X that U ∩ conv({T kx : k ∈ N0}) 6= ∅.

Solution: For every x ∈ X it holds that (Snx)n∈N ⊆ X is a bounded sequence. Since
X is assumed to be reflexive, there exist (nk)k∈N ⊆ N with nk ↗ ∞ as k → ∞
and y∞ ∈ X such that Snk

x
w−⇀ y∞ as k → ∞. The Banach–Mazur theorem (or,

eventually, the Hahn–Banach theorem) ensures that y∞ ∈ conv({Snx : n ∈ N}) which
– as Snx ∈ conv({T kx : k ∈ N0}) for every n ∈ N – implies that y∞ ∈ conv({T kx : k ∈
N0}). Moreover, for all x∗ ∈ X∗ it holds that

|〈x∗, (I − T )y∞〉X∗×X | = |〈x∗ − T ∗x∗, y∞〉X∗×X |

= lim
k→∞
|〈x∗ − T ∗x∗, Snk

x〉X∗×X |

= lim
k→∞
|〈x∗, (I − T )Snk

x〉X∗×X |

= lim
k→∞

∣∣∣∣∣
〈
x∗,

1
nk

(x− T nkx)
〉

X∗×X

∣∣∣∣∣
≤ lim sup

k→∞

[
2
nk

‖x∗‖X∗‖x‖X sup
l∈N0

‖T l‖L(X,X)

]
= 0,

which implies that (I − T )y∞ = 0, i.e., y∞ ∈ ker(I − T ) = U .

(e) Show that Y = X.

Solution: Assume that there exists x ∈ X \ Y = X \ Y . By the Hahn–Banach
theorem, there exists x∗ ∈ Y ⊥ with x∗(x) = 1. According to (c), T ∗x∗ = x∗ and
x∗ ∈ U⊥. On the other hand, for all n ∈ N0, λ0, λ1, . . . , λn ∈ [0, 1] with ∑n

i=0 λi = 1
it holds that〈

x∗,
n∑

i=0
λiT

ix

〉
X∗×X

=
n∑

i=0
λi〈(T ∗)ix∗, x〉X∗×X =

n∑
i=0

λi〈x∗, x〉X∗×X =
n∑

i=0
λi = 1.

Hence, x∗ is constantly equal to 1 on the set conv({T kx : k ∈ N0}), and – by continuity
– also on the set conv({T kx : k ∈ N0}). Therefore, as U ∩conv({T kx : k ∈ N0}) 6= ∅ by
(d), there exists y ∈ U with x∗(y) = 1. This contradicts x∗ ∈ U⊥. Thus, X = Y . By
definition of Y , we obtain for every x ∈ X that Snx converges (strongly) as n→∞.
Moreover, P , the mapping associating to x ∈ X the limit of Snx as n → ∞, is a
projection.
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