10.1. Various notions of continuity

Suppose $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are normed K-vector spaces (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$).

(a) A linear map $A: X \to Y$ is bounded if and only if it is $\sigma(X, X^*) - \sigma(Y, Y^*)$ continuous (i.e., continuous with respect to the weak topologies on X and Y).

Solution: "(\Rightarrow)": Assume that A is bounded. Let $O \in \sigma(Y, Y^*)$ be arbitrary but fixed. We need to show that $A^{-1}(O) \in \sigma(X, X^*)$. For this, let $x \in A^{-1}(O)$ be arbitrary but fixed. Then it holds that $Ax \in O$ and - by $O \in \sigma(Y, Y^*)$ – there exist $\varepsilon \in (0, \infty), n \in \mathbb{N}, y_1^*, y_2^*, \ldots, y_n^* \in Y^*$ satisfying that

 $\{y \in Y \mid |y_i^*(y - Ax)| < \varepsilon \text{ for all } i \in \{1, 2, \dots, n\}\} \subseteq O.$

Since $A \in L(X, Y)$, it holds for all $i \in \{1, 2, ..., n\}$ that $y_i^* \circ A \in X^*$ and therefore

$$\{\xi \in X \mid |(y_i^* \circ A)(\xi - x)| < \varepsilon \text{ for all } i \in \{1, 2, \dots, n\}\}$$

= $A^{-1}(\{y \in Y \mid |y_i^*(y - Ax)| < \varepsilon \text{ for all } i \in \{1, 2, \dots, n\}\}) \subseteq A^{-1}(O).$

As $x \in A^{-1}(O)$ was arbitrary, this shows that $A^{-1}(O)$ is open. As $O \in \sigma(Y, Y^*)$ was arbitrary, we proved that A is $\sigma(X, X^*) \cdot \sigma(Y, Y^*)$ -continuous.

"(\Leftarrow)": Assuming that A is $\sigma(X, X^*)$ - $\sigma(Y, Y^*)$ -continuous, we obtain for every $y^* \in Y^*$ that $y^* \circ A$ is $\sigma(X, X^*)$ -continuous. From part (b) in Problem 8.4 (Topologies induced by linear functionals), we know that a linear functional on X is $\sigma(X, X^*)$ continuous if and only if it belongs to X^* . Thus, we obtain that $y^* \circ A \in X^*$ for every $y^* \in Y^*$. In particular, it holds for every $y^* \in Y^*$ that there exists $C \in [0, \infty)$ satisfying $\forall x \in X : |y^*(Ax)| \leq C ||x||_X$. On the other hand, it clearly holds for every $x \in X$ that $\forall y^* \in Y^* : |y^*(Ax)| \leq ||Ax||_Y ||y^*||_{Y^*}$. Hence, the bilinear mapping $Y^* \times X \ni (y^*, x) \mapsto y^*(Ax) \in \mathbb{K}$ satisfies the conditions of part (b) in Problem 5.3 (Continuity of bilinear maps), which in turn guarantees that there exists $C \in [0, \infty)$ such that

$$|y^*(Ax)| \le C ||x||_X ||y^*||_{Y^*}$$
 for all $x \in X, y^* \in Y^*$.

This implies that $||Ax||_Y \leq C||x||_X$ for all $x \in X$. (Alternatively, redo the proof of Problem 5.3 in this special case: since $(Y^*, \|\cdot\|_{Y^*})$ is complete and since for all $y^* \in Y^*$ it holds that $\sup_{x \in X, \|x\|_X \leq 1} |y^*(Ax)| = \sup_{x \in X, \|x\|_X \leq 1} |(y^* \circ A)(x)| = \|y^* \circ A\|_{X^*} < \infty$, the Banach–Steinhaus theorem implies that $\sup_{x \in X, \|x\|_X \leq 1} \|Y^* \ni y^* \mapsto y^*(Ax) \in \mathbb{K}\|_{Y^{**}} < \infty$.)

(b) A linear map $B: Y^* \to X^*$ is $\sigma(Y^*, Y) - \sigma(X^*, X)$ -continuous (i.e., continuous with respect to the weak^{*} topologies on Y^* and X^*) if and only if there is a bounded linear operator $A: X \to Y$ such that $B = A^*$.

last update: 6 December 2021

ETH Zürich	Functional Analysis I	D-MATH
Autumn 2021	Solution to Problem Set 10	Prof. J. Teichmann

"(\Leftarrow)": Assume that $B = A^*$ for some $A \in L(X, Y)$. This implies that $B \in L(Y^*, X^*)$. From now on, the proof is analogous to the corresponding part of the proof of (a). Let $O \in \sigma(X^*, X)$ be arbitrary but fixed. We need to show that $B^{-1}(O) \in \sigma(Y^*, Y)$. For this, let $y^* \in B^{-1}(O)$ be arbitrary but fixed. Then it holds that $By^* \in O$ and – by $O \in \sigma(X^*, X)$ – there exist $\varepsilon \in (0, \infty)$, $n \in \mathbb{N}$, $x_1, x_2, \ldots, x_n \in X$ satisfying that

$$\{x^* \in X^* \mid |(By^* - x^*)(x_i)| < \varepsilon \text{ for all } i \in \{1, 2, \dots, n\}\} \subseteq O.$$

Since $B = A^*$ and $A \in L(X, Y)$, we obtain that

$$\{ v^* \in Y^* \mid |(y^* - v^*)(Ax_i)| < \varepsilon \text{ for all } i \in \{1, 2, \dots, n\} \}$$

= $\{ v^* \in Y^* \mid |(By^* - Bv^*)(x_i)| < \varepsilon \text{ for all } i \in \{1, 2, \dots, n\} \}$
= $B^{-1}(\{x^* \in X^* \mid |(By^* - x^*)(x_i)| < \varepsilon \text{ for all } i \in \{1, 2, \dots, n\}\}) \subseteq B^{-1}(O).$

As $y^* \in B^{-1}(O)$ was arbitrary, this shows that $B^{-1}(O)$ is open. As $O \in \sigma(X^*, X)$ was arbitrary, we proved that B is $\sigma(Y^*, Y) \cdot \sigma(X^*, X)$ -continuous.

"(\Rightarrow)": Assuming that *B* is $\sigma(Y^*, Y) \cdot \sigma(X^*, X)$ -continuous, it holds for every $x \in X$ that $Y^* \ni y^* \mapsto (By^*)(x) \in \mathbb{K}$ is $\sigma(Y^*, Y)$ -continuous. Problem 8.4 (*Topologies induced by linear functionals*) again assures that for every $x \in X$ there exists a unique element of *Y*, called *Ax* from now on, such that

$$(By^*)(x) = y^*(Ax)$$
 for all $x \in X, y^* \in Y^*$.

Clearly, $X \ni x \mapsto Ax \in Y$ is linear (by uniqueness of Ax for $x \in X$ and linearity of everything else). This and the above relation show that $B = A^*$. It remains to show that A is bounded. For this, we note that

• for every $y^* \in Y^*$, it holds that

$$|y^*(Ax)| = |(By^*)(x)| \le ||By^*||_{X^*} ||x||_X$$

and

• for every $x \in X$, it holds that

$$|y^*(Ax)| \le ||Ax||_Y ||y^*||_{Y^*}.$$

Part (b) in Problem 5.3 (*Continuity of bilinear maps*) ensures again that there exists $C \in [0, \infty)$ such that $|y^*(Ax)| \leq C ||x||_X ||y^*||_{Y^*}$ for all $x \in X, y^* \in Y^*$.

(c) A linear operator $A: X \to Y$ is $\sigma(X, X^*) - \|\cdot\|_Y$ -continuous (i.e., weak-norm continuous) if and only if it is bounded and has finite rank (i.e., has finite-dimensional range).

Solution: "(\Rightarrow)": By definition, there exist $\varepsilon \in (0, \infty)$, $n \in \mathbb{N}$ and $x_1^*, x_2^*, \ldots, x_n^* \in X^*$ such that for all $x \in X$ satisfying $|x_i^*(x)| < \varepsilon$ it holds that $||Ax||_Y < 1$. This implies that

$$||Ax||_{Y} \le \frac{1}{\varepsilon} \max_{1 \le k \le n} |x_{k}^{*}(x)| \quad \text{for all} \ x \in X.$$
(1)

In particular, it holds for all $x, y \in X$ with $x_k^*(x) = x_k^*(y)$ for all $k \in \{1, 2, ..., n\}$ that Ax = Ay. Hence, the mapping

$$\{(x_1^*(x), x_2^*(x), \dots, x_n^*(x)) \mid x \in X\} \ni (x_1^*(x), x_2^*(x), \dots, x_n^*(x)) \mapsto Ax \in Y$$

is well-defined and linear. Moreover, with the domain space being finite-dimensional, this map can only have finite-dimensional image. The image, though, is A(X). Hence, A itself has finite-dimensional image. Boundedness of A is clear from (1) (or, as one could say, was clear from the beginning, since A is also $\sigma(X, X^*)$ - $\sigma(Y, Y^*)$ -continuous).

"(\Leftarrow)": Assume that $A \in L(X, Y)$ has finite rank. Let $y_1, y_2, \ldots, y_n \in Y$ be a basis of im(A) and let $y_1^*, y_2^*, \ldots, y_n^* \in Y^*$ be a dual basis, i.e. $y_i^*(y_j) = \delta_{ij}$ for all $i, j \in \{1, 2, \ldots, n\}$. This ensures that

$$Ax = \sum_{i=1}^{n} y_i^*(Ax)y_i \quad \text{for all } x \in X.$$

Let $O \subseteq Y$ be an arbitrary but fixed open set w.r.t. the norm topology. We want to show that $A^{-1}(O) \subseteq X$ is open. For this, let $x \in A^{-1}(O)$ be arbitrary but fixed. Then $Ax \in O$ and – as O is open w.r.t. the norm topology – there exists $\varepsilon \in (0, \infty)$ such that $\{y \in Y \mid ||y - Ax||_Y < \varepsilon\} \subseteq O$. Now, since $y_i^* \in Y^*$ for every $i \in \{1, 2, \ldots, n\}$ and $A \in L(X, Y)$ we have that $y_i^* \circ A \in X^*$ for every $i \in \{1, 2, \ldots, n\}$ and, therefore, the first set below is a $\sigma(X, X^*)$ -neighborhood of x:

$$\left\{ \xi \in X \mid |(y_i^* \circ A)(\xi - x)| < \frac{\varepsilon}{n \|y_i\|_Y} \text{ for all } i \in \{1, 2, \dots, n\} \right\}$$
$$\subseteq \left\{ \xi \in X \mid \sum_{i=1}^n |y_i^*(A\xi - Ax)| \|y_i\|_Y < \varepsilon \right\}$$
$$\subseteq \left\{ \xi \in X \mid \|A\xi - Ax\|_Y < \varepsilon \right\} \subseteq A^{-1}(O).$$

As $x \in A^{-1}(O)$ was arbitrary, we obtain that $A^{-1}(O) \in \sigma(X, X^*)$. As $O \subseteq Y$ was an arbitrary open set w.r.t. the norm topology, we have that A is $\sigma(X, X^*) - \|\cdot\|_{Y^-}$ continuous.

last update: 6 December 2021

10.2. Elementary properties of dual operators

Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed K-vector spaces (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$). Recall that if $T \in L(X, Y)$, then its dual operator T^* is in $L(Y^*, X^*)$ and it is characterised by the property

$$\langle T^*y^*, x \rangle_{X^* \times X} = \langle y^*, Tx \rangle_{Y^* \times Y}$$
 for every $x \in X$ and $y^* \in Y^*$.

Prove the following facts about dual operators.

(a) $(\mathrm{Id}_X)^* = \mathrm{Id}_{X^*}.$

Solution: Let $x \in X$ and $x^* \in X^*$ be arbitrary. By definition of $(\mathrm{Id}_X)^* \colon X^* \to X^*$, we have

$$\left\langle (\mathrm{Id}_X)^* x^*, x \right\rangle_{X^* \times X} = \left\langle x^*, \mathrm{Id}_X x \right\rangle_{X^* \times X} = \langle x^*, x \rangle_{X^* \times X^*}.$$

Since $x \in X$ is arbitrary, $(\mathrm{Id}_X)^* x^* = x^*$. Since $x^* \in X^*$ is arbitrary, $(\mathrm{Id}_X)^* = \mathrm{Id}_{(X^*)}$. (b) If $T \in L(X, Y)$ and $S \in L(Y, Z)$, then $(S \circ T)^* = T^* \circ S^*$.

Solution: Let $z^* \in Z^*$ and $x \in X$ be arbitrary. Then, $(S \circ T)^* = T^* \circ S^*$ follows from

$$\begin{split} \left\langle (S \circ T)^* z^*, x \right\rangle_{X^* \times X} &= \left\langle z^*, S(Tx) \right\rangle_{Z^* \times Z} \\ &= \left\langle S^* z^*, Tx \right\rangle_{Y^* \times Y} = \left\langle T^*(S^* z^*), x \right\rangle_{X^* \times X}. \end{split}$$

(c) If $T \in L(X, Y)$ is bijective with inverse $T^{-1} \in L(Y, X)$, then $(T^*)^{-1} = (T^{-1})^*$. Solution: To prove $(T^*)^{-1} = (T^{-1})^*$, we apply the results from (a) and (b) and obtain

$$T^* \circ (T^{-1})^* = (T^{-1} \circ T)^* = (\mathrm{Id}_X)^* = \mathrm{Id}_{X^*},$$

$$(T^{-1})^* \circ T^* = (T \circ T^{-1})^* = (\mathrm{Id}_Y)^* = \mathrm{Id}_{Y^*}.$$

(d) Let $\mathcal{I}_X \colon X \hookrightarrow X^{**}$ and $\mathcal{I}_Y \colon Y \hookrightarrow Y^{**}$ be the canonical inclusions. Then,

$$\forall T \in L(X, Y) : \quad \mathcal{I}_Y \circ T = (T^*)^* \circ \mathcal{I}_X.$$

Solution: Let $x \in X$ and $y^* \in Y^*$ be arbitrary. Then, $(\mathcal{I}_Y \circ T) = (T^*)^* \circ \mathcal{I}_X$ follows from

$$\left\langle (\mathcal{I}_Y \circ T)x, y^* \right\rangle_{Y^{**} \times Y^*} = \left\langle y^*, Tx \right\rangle_{Y^* \times Y} = \left\langle T^*y^*, x \right\rangle_{X^* \times X} \\ = \left\langle \mathcal{I}_X x, T^*y^* \right\rangle_{X^{**} \times X^*} = \left\langle (T^*)^* (\mathcal{I}_X x), y^* \right\rangle_{Y^{**} \times Y^*}.$$

last update: 6 December 2021

10.3. Dual operators and invertibility

Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed K-vector spaces (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$) and $T \in L(X, Y)$. Prove the following.

(a) If T is an isomorphism with $T^{-1} \in L(Y, X)$, then T^* is an isomorphism.

Solution: The dual operator T^* of any $T \in L(X, Y)$ with $T^{-1} \in L(Y, X)$ is invertible according to Exercise 10.2(c) and its inverse is $(T^*)^{-1} = (T^{-1})^*$. Moreover, the assumption $T^{-1} \in L(Y, X)$ implies $(T^{-1})^* \in L(X^*, Y^*)$. Hence, T^* is an isomorphism.

(b) If T is an isometric isomorphism, then T^* is an isometric isomorphism.

Solution: If T is an isometric isomorphism, then T^* is an isomorphism by (a) and

$$\begin{aligned} \|T^*y^*\|_{X^*} &= \sup_{\|x\|_X \le 1} \left| \langle T^*y^*, x \rangle_{X^* \times X} \right| = \sup_{\|x\|_X \le 1} \left| \langle y^*, Tx \rangle_{Y^* \times Y} \right| \\ &= \sup_{\|y\|_Y \le 1} \left| \langle y^*, y \rangle_{Y^* \times Y} \right| = \|y^*\|_{Y^*} \quad \text{for all } y^* \in Y^*. \end{aligned}$$

(c) If X and Y are both reflexive, then the reverse implications of (a) and (b) hold.

Solution: If X and Y are reflexive, $\mathcal{I}_X : X \to X^{**}$ and $\mathcal{I}_Y : Y \to Y^{**}$ are bijective isometries. If T^* is an (isometric) isomorphism, then Exercise 10.2 and (b) imply that $(T^*)^*$ is an (isometric) isomorphism. Applying Exercise 10.2(d), we see that the same holds for

$$T = \mathcal{I}_Y^{-1} \circ (T^*)^* \circ \mathcal{I}_X.$$

(d) If $(X, \|\cdot\|_X)$ is a reflexive Banach space isomorphic to the normed space $(Y, \|\cdot\|_Y)$, then Y is reflexive.

Solution: Since X is reflexive by assumption, \mathcal{I}_X is an isomorphism. Suppose, $T: X \to Y$ is an isomorphism. Applying part (b) twice, $(T^*)^*$ is an isomorphism. Moreover,

$$\mathcal{I}_Y = (T^*)^* \circ \mathcal{I}_X \circ T^{-1}$$

according to Exercise 10.2(d). Since \mathcal{I}_Y is a composition of isomorphisms, Y is reflexive.

10.4. Invariant measures again

Let (K, d) be a non-empty compact metric space and let $T \in L(C(K, \mathbb{R}), C(K, \mathbb{R}))$ satisfy

last update: 6 December 2021

- $T\mathbf{1} = \mathbf{1}$, where $\mathbf{1} := (K \ni x \mapsto 1 \in \mathbb{R}) \in C(K, \mathbb{R})$ and
- $Tf \ge 0$ for all $f \in C(K, \mathbb{R})$ with $f \ge 0$.

(a) Prove for all $n \in \mathbb{N}$ that the mapping $S_n \colon \mathcal{P}(K) \to \mathcal{P}(K)$, defined via

$$\int_{K} f d(S_n \nu) = \frac{1}{n} \sum_{k=0}^{n-1} \int_{K} T^k f d\nu \quad \text{for all } f \in C(K, \mathbb{R}), \nu \in \mathcal{P}(K),$$

is indeed well-defined.

Solution: Let $n \in \mathbb{N}$, $\nu \in \mathcal{P}(K)$ be fixed. Note that

$$C(K,\mathbb{R}) \ni f \mapsto \frac{1}{n} \sum_{k=0}^{n-1} \int_{K} T^{k} f \, d\nu \in \mathbb{R}$$

is a positive linear functional which maps 1 to 1. The Riesz–Markov–Kakutani theorem thus implies that there exists a Borel probability measure μ such that

$$\int_{K} f \, d\mu = \frac{1}{n} \sum_{k=0}^{n-1} \int_{K} T^{k} f \, d\nu \quad \text{for all } f \in C(K, \mathbb{R}).$$

(Positivity and linearity imply that μ is a positive finite Borel regular measure, the fact that **1** is mapped to 1 implies that μ is a probability measure.)

(b) Show for all $\nu \in \mathcal{P}(K)$ that there exist $(n_k)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ with $n_k \nearrow \infty$ as $k \to \infty$ and $\mu \in \mathcal{P}(K)$ such that

$$\int_{K} f \, d\mu = \lim_{k \to \infty} \int_{K} f \, d(S_{n_{k}}\nu) \quad \text{for all } f \in C(K,\mathbb{R}).$$

Solution: With $\mathcal{M}(K)$ denoting the signed Borel regular measures (equipped with the total variation norm), let $J: \mathcal{M}(K) \to (C(K, \mathbb{R}))^*$ be the isomorphism provided by the Riesz-Markov-Kakutani theorem, that is,

$$[J(\xi)](f) = \int_{K} f \, d\xi \quad \text{for all } f \in C(K, \mathbb{R}), \xi \in \mathcal{M}(K).$$

Let $\nu \in \mathcal{P}(K)$ be fixed. The measures $(S_n\nu)_{n\in\mathbb{N}} \subseteq \mathcal{P}(K)$ constructed in (a) satisfy that $\sup_{n\in\mathbb{N}} \|J(S_n\nu)\|_{C(K,\mathbb{R})^*} = \sup_{n\in\mathbb{N}} \|S_n\nu\|_{\mathcal{M}(K)} = \sup_{n\in\mathbb{N}} (S_n\nu)(K) = 1$. The Banach– Alaoglu theorem (and the fact that $C(K,\mathbb{R})$ is separable) ensure that there exist $(n_k)_{k\in\mathbb{N}} \subseteq \mathbb{N}$ with $n_k \nearrow \infty$ as $k \to \infty$ and a functional $\Phi \in C(K,\mathbb{R})^*$ such that $J(S_{n_k}\nu) \xrightarrow{w^*} \Phi$. The Riesz–Markov–Kakutani theorem thus implies that there exists $\mu \in \mathcal{M}(K)$ such that $\Phi = J(\mu)$, i.e.,

$$\lim_{k \to \infty} \int_{K} f \, d(S_{n_{k}}\nu) = \lim_{k \to \infty} [J(S_{n_{k}}\nu)](f) = \Phi(f) = [J(\mu)](f) = \int_{K} f \, d\mu.$$

Since Φ is positive and satisfies $\Phi \mathbf{1} = 1$, we obtain $\mu \in \mathcal{P}(K)$.

last update: 6 December 2021

(c) Let $\nu, \mu \in \mathcal{P}(K)$ and $(n_k)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ satisfy $n_k \nearrow \infty$ and $\int_K f d(S_{n_k}\nu) \to \int_K f d\mu$ as $k \to \infty$. Infer that

$$\int_{K} Tf \, d\mu = \int_{K} f \, d\mu \quad \text{for every } f \in C(K, \mathbb{R}).$$

Solution: Note first that it holds for all $k \in \mathbb{N}$, $f \in C(K, \mathbb{R})$ that

$$\left| \int_{K} Tf \, d(S_{n_{k}}\nu) - \int_{K} f \, d(S_{n_{k}}\nu) \right| = \left| \frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1} \int_{K} T^{j}Tf \, d\nu - \frac{1}{n_{k}} \sum_{j=0}^{n-1} \int_{K} T^{j}f \, d\nu \right|$$
$$= \frac{1}{n_{k}} \left| \int_{K} T^{n_{k}}f \, d\nu - \int_{K} f \, d\nu \right| \le \frac{2}{n_{k}} \|f\|_{C(K,\mathbb{R})}.$$

Passing to the limits as $k \to \infty$, we obtain that $\int_K Tf d\mu = \int_K f d\mu$ for every $f \in C(K, \mathbb{R})$.

(d) Prove for every $f \in C(K, \mathbb{R})$ with Tf = f and $f \neq 0$ that there exists $\mu \in \mathcal{P}(K)$ satisfying

- $\int_K f d\mu \neq 0$ and
- $\int_K Tg \, d\mu = \int_K g \, d\mu$ for all $g \in C(K, \mathbb{R})$

Solution: Let $f \in C(K, \mathbb{R})$ with Tf = f and $f \neq 0$. Then there exists $\nu \in \mathcal{P}(K)$ with $\int_K f \, d\nu \neq 0$ (e.g., $\nu = \delta_x$ for $x \in K$ with $f(x) \neq 0$). According to (b), there exist $(n_k)_{k \in \mathbb{N}} \subseteq \mathbb{N}, \ \mu \in \mathcal{P}(K)$ satisfying $n_k \nearrow \infty$ and $J(S_{n_k}\nu) \xrightarrow{\mathbb{W}^*} J(\mu)$ in $(C(K, \mathbb{R}))^*$ as $k \to \infty$. According to (c), we have that $T_{\#}\mu = \mu$. Finally, note that

$$\int_{K} f d(S_k \nu) = \int_{K} f d\nu \quad \text{for all } k \in \mathbb{N}$$

and therefore $\int_K f \, d\nu = \int_K f \, d\mu$.

(e) Solve Problem 9.5 (Invariant measures à la Krylov-Bogolioubov) again using (d).

Solution: With $\varphi \in C(K, K)$ (formerly called T in Problem 9.5), associate $T \in L(C(K, \mathbb{R}), C(K, \mathbb{R}))$ defined via

 $Tf = f \circ \varphi$ for every $f \in C(K, \mathbb{R})$.

Note that T satisfies $T\mathbf{1} = \mathbf{1}$ and $Tf \ge 0$ for every $f \in C(K, \mathbb{R})$ with $f \ge 0$. Part (d) assures that there exists $\mu \in \mathcal{P}(K)$ satisfying for all $f \in C(K, \mathbb{R})$ that

$$\int_{K} f \, d\mu = \int_{K} Tf \, d\mu = \int_{K} f \circ \varphi \, d\mu.$$

(For the fixed point of T – denoted as f in (d) – we can take $\mathbf{1} \in C(K, \mathbb{R})$.)

last update: 6 December 2021

10.5. Von Neumann's ergodic theorem

Let $(H, \langle \cdot, \cdot \rangle)$ be a K-Hilbert space (with $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$), let T be a continuous linear operator on H with $||T||_{L(H,H)} \leq 1$, let $U := \ker(I - T)$ (with $I = (H \ni x \mapsto x \in H) \in L(H, H)$ being the identity operator), let P_U denote the orthogonal projection onto U and let $S_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$ for every $n \in \mathbb{N}$. Our goal is to show that

 $\limsup_{n \to \infty} \|S_n x - P_U x\|_H = 0 \quad \text{for all } x \in H.$

For this, we recommend to proceed along the following steps:

(a) For all $x \in H$, we have Tx = x if and only if $T^*x = x$.

Solution: "(\Rightarrow)": Since $||T^*||_{L(H,H)} = ||T||_{L(H,H)} \le 1$, we have for all $x \in U$ (i.e., $x \in H$ with Tx = x) that

$$||x||_{H}||T^{*}x||_{H} \ge \langle x, T^{*}x \rangle = \langle Tx, x \rangle = ||x||_{H}^{2} \ge ||x||_{H} ||T^{*}x||_{H},$$
(2)

which implies that $||T^*x||_H = ||x||_H$ for all $x \in U$ (as well as $\langle Tx, x \rangle = \langle x, T^*x \rangle = ||x||_H^2$ for all $x \in U$). Hence, we have for all $x \in U$ that

$$||T^*x - x||_H^2 = ||T^*x||_H^2 - 2\operatorname{Re}\langle x, T^*x \rangle + ||x||_H^2 = ||x||_H^2 - 2||x||_H^2 + ||x||_H^2 = 0.$$

Thus, $\ker(I - T) \subseteq \ker(I - T^*)$.

"(\Leftarrow)": As $T^* \in L(H, H)$ also satisfies $||T^*||_{L(H,H)} \leq 1$, the argument above shows for all $x \in \ker(I - T^*)$ that $T^{**}x = x$. Since $T^{**} = T$ for every bounded linear operator on a Hilbert space, we have that $\ker(I - T) \supseteq \ker(I - T^*)$.

(b)
$$U^{\perp} = \overline{\operatorname{im}(I-T)}$$
.

Solution: We know from (a) that $U = \ker(I - T) = \ker(I - T^*)$. Hence, it holds that

$$U^{\perp} = (\ker(I - T^*))^{\perp} = (\operatorname{im}(I - T)^{\perp})^{\perp} = \overline{\operatorname{im}(I - T)}.$$

(c) $\lim_{n\to\infty} S_n x = x$ for all $x \in U$ and $\lim_{n\to\infty} S_n x = 0$ for all $x \in U^{\perp}$.

Solution: For every $x \in U$, we have Tx = x, hence $S_n x = x$ for all $n \in \mathbb{N}$ and therefore $\limsup_{n\to\infty} ||S_n x - x||_H = 0$. For every $x \in \operatorname{im}(I - T)$, there exists $y \in H$ such that x = (I - T)y. Hence, it holds for all $n \in \mathbb{N}$ that

$$\limsup_{n \to \infty} \|S_n x\|_H = \limsup_{n \to \infty} \left\| \frac{1}{n} \sum_{k=0}^{n-1} T^k (y - Ty) \right\|_H$$
$$= \limsup_{n \to \infty} \left\| \frac{1}{n} (y - T^n y) \right\|_H \le \limsup_{n \to \infty} \frac{2\|y\|_H}{n} = 0.$$

last update: 6 December 2021

For every $x \in \overline{\mathrm{im}(I-T)}$, there is a sequence $(z_n)_{n \in \mathbb{N}} \subseteq \mathrm{im}(I-T)$ converging to x as $n \to \infty$ and since $S_n y_k \to 0$ as $n \to \infty$ for every $k \in \mathbb{N}$, we get that

$$\limsup_{n \to \infty} \|S_n x\|_H \le \limsup_{n \to \infty} \left[\|S_n x - S_n y_k\|_H + \|S_n y_k\|_H \right]$$
$$= \limsup_{n \to \infty} \|S_n x - S_n y_k\|_H \le \limsup_{n \to \infty} \left[\|S_n\|_{L(H,H)} \|x - y_k\|_H \right]$$
$$\le \|x - y_k\|_H \quad \text{for all } k \in \mathbb{N}.$$

Hence, $\limsup_{n\to\infty} \|S_n x\|_H = 0$ for every $x \in \overline{\operatorname{im}(I-T)} = U^{\perp}$. To come full circle, note that every $x \in H$ can be written as $x = (x - P_U x) + P_U x$, where $x - P_U x \in U^{\perp}$ and $P_U x \in U$, and therefore, we obtain for every $x \in H$ that $S_n x \to P_U x$ as $n \to \infty$ because $S_n(x - P_U x) \to 0$ and $S_n P_U x \to P_U x$ as $n \to \infty$.

10.6. Von Neumann again

Let $(X, \|\cdot\|_X)$ be a reflexive space, let $T: X \to X$ be a continuous linear operator satisfying $\sup_{n \in \mathbb{N}_0} \|T^n\|_{L(X,X)} < \infty$, let $U := \ker(I - T)$ and let $S_n := \frac{1}{n} \sum_{k=0}^{n-1} T^k$ for every $n \in \mathbb{N}$.

(a) Show that $Y := \{x \in X \mid \lim_{n \to \infty} S_n x \text{ exists}\}$ is a closed subspace of X.

Solution: Clearly, $0 \in Y$ and for all $\alpha \in \mathbb{K}$, $x_1, x_2 \in Y$ it holds that $\alpha x_1 + x_2 \in Y$ since $\lim_{n\to\infty} S_n(\alpha x_1 + x_2) = \alpha \lim_{n\to\infty} S_n x_1 + \lim_{n\to\infty} S_n x_2$. The only issue left is the closedness of Y. For this, let $(x_n)_{n\in\mathbb{N}} \subseteq Y$ be a sequence converging to $x_{\infty} \in X$, i.e., $\limsup_{n\to\infty} \|x_n - x_{\infty}\|_X = 0$, and let $(y_n)_{n\in\mathbb{N}} \subseteq X$ denote the limits, i.e., $y_n = \lim_{k\to\infty} S_k x_n$ for every $n \in \mathbb{N}$. We are going to show that $(y_n)_{n\in\mathbb{N}}$ is a Cauchy sequence. Note that for all $m, n \in \mathbb{N}$, it holds that

$$\begin{aligned} \|y_m - y_n\|_X &\leq \limsup_{k \to \infty} \left[\|y_m - S_k x_m\|_X + \|S_k x_m - S_k x_n\|_X + \|S_k x_n - y_n\|_X \right] \\ &\leq \limsup_{k \to \infty} \|y_m - S_k x_m\|_X + \sup_{l \in \mathbb{N}_0} \|T^l\|_{L(X,X)} \|x_m - x_n\|_X + \limsup_{k \to \infty} \|S_k x_n - y_n\|_X \\ &\leq \sup_{l \in \mathbb{N}_0} \|T^l\|_{L(X,X)} \|x_m - x_n\|_X. \end{aligned}$$

Since $(x_n)_{n\in\mathbb{N}} \subseteq X$ is a Cauchy sequence, it follows that $(y_n)_{n\in\mathbb{N}}$ is Cauchy, too. Denoting $y_{\infty} = \lim_{n\to\infty} y_n$, it just remains to show that $\lim_{n\to\infty} S_n x_{\infty} = y_{\infty}$. For this, note that for all $n, k \in \mathbb{N}$ it holds that

$$||S_n x_{\infty} - y_{\infty}||_X \le ||S_n x_{\infty} - S_n x_k||_X + ||S_n x_k - y_k||_X + ||y_k - y_{\infty}||_X$$

$$\le \sup_{l \in \mathbb{N}_0} ||T^l||_{L(X,X)} ||x_{\infty} - x_k||_X + ||S_n x_k - y_k||_X + ||y_k - y_{\infty}||_X.$$

last update: 6 December 2021

Letting $n \to \infty$, we obtain for every $k \in \mathbb{N}$ that

$$\limsup_{n \to \infty} \|S_n x_{\infty} - y_{\infty}\|_X \le \sup_{l \in \mathbb{N}_0} \|T^l\|_{L(X,X)} \|x_{\infty} - x_k\|_X + \|y_k - y_{\infty}\|_X.$$

As we let $k \to \infty$, we obtain $\limsup_{n \to \infty} ||S_n x_\infty - y_\infty||_X = 0$. Hence, $x_\infty \in Y$ and Y is closed.

(b) Show that $P: Y \to X$, defined by $Px = \lim_{n \to \infty} S_n x$ is a continuous linear map satisfying $\operatorname{im}(P) = U \subseteq Y$, $\operatorname{ker}(P) = \operatorname{im}(I - T)$, and $P^2 = P$. In particular, deduce that $Y = \operatorname{ker}(I - T) \oplus \operatorname{im}(I - T)$.

Solution: P is clearly linear on Y. For all $x \in X$, $n \in \mathbb{N}$ it holds that

$$\left\|\frac{1}{n}\sum_{k=0}^{n-1}T^{k}x\right\|_{X} \leq \sup_{k\in\mathbb{N}_{0}}\|T^{k}\|_{L(X,X)}\|x\|_{X}$$

It follows that $||Px||_X \leq \sup_{k \in \mathbb{N}_0} ||T^k||_{L(X,X)} ||x||_X$ for all $x \in Y$. Hence, P is continuous. Moreover, note that for all $n \in \mathbb{N}$ it holds that $(I - T)S_n = \frac{1}{n}(I - T^n) = S_n(I - T)$. Hence, for all $x \in Y$ we have that

$$(I - T)Px = \lim_{n \to \infty} (I - T)S_n x = \lim_{n \to \infty} \frac{1}{n}(x - T^n x) = 0$$

by $\sup_{k \in \mathbb{N}_0} ||T^k||_{L(X,X)} < \infty$. Thus, $\operatorname{im}(P) \subseteq U$. On the other hand, for every $x \in U$, it holds $S_n x = x$ for all $n \in \mathbb{N}$ and therefore $x \in Y$, Px = x. Hence, $P(U) = \operatorname{im}(P)$ and $P^2 x = Px$ for all $x \in Y$. Finally, for every $x \in \operatorname{im}(I - T)$, there exists $y \in X$ with x = y - Ty. Hence, for every $x \in \operatorname{im}(I - T)$, we have

$$S_n x = S_n (I - T) y = \frac{1}{n} (y - T^n y) \to 0 \text{ as } n \to \infty,$$

that is, $x \in Y$ and Px = 0. As Y is closed and P is continuous, $\overline{\operatorname{im}(I-T)} \subseteq \operatorname{ker}(P)$. On the other hand, if $x \in \operatorname{ker}(P)$, then

$$x - \frac{1}{n} \sum_{k=0}^{n-1} T^k x = \frac{1}{n} \sum_{k=0}^{n-1} (x - T^k x) \in \operatorname{im}(I - T) \quad \text{for all } n \in \mathbb{N},$$

and since the left hand side tends to x as $n \to \infty$, it follows that $x \in \overline{\operatorname{im}(I-T)}$. Since $U = \operatorname{im}(P)$ and $\overline{\operatorname{im}(I-T)} = \operatorname{ker}(P)$ and since $P^2x = Px$ for all $x \in Y$, the mapping

$$Y \ni x \mapsto (Px, x - Px) \in \operatorname{im}(P) \times \ker(P)$$

is a (linear) isomorphism (of Banach spaces), cp. also the solution of Problem 6.1. In other words, $Y = im(P) \oplus ker(P) = ker(I - T) \oplus \overline{im(I - T)}$.

last update: 6 December 2021

(c) Show for every $x^* \in Y^{\perp}$ that $T^*x^* = x^*$ and $x^* \in U^{\perp}$.

Solution: For every $x^* \in Y^{\perp}$ it holds – since $U \subseteq Y$ and $\operatorname{im}(I - T) \subseteq Y$ according to (b) – in particular that $x^* \in U^{\perp}$ and $x^* \in \operatorname{im}(I - T)^{\perp}$. The latter implies for all $x \in X, x^* \in Y^{\perp}$ that $x^*(x - Tx) = 0$, i.e., $(T^*x^*)(x) = x^*(Tx) = x^*(x)$, resulting in $T^*x^* = x^*$.

(d) Show for every $x \in X$ that $U \cap \overline{\operatorname{conv}}(\{T^k x \colon k \in \mathbb{N}_0\}) \neq \emptyset$.

Solution: For every $x \in X$ it holds that $(S_n x)_{n \in \mathbb{N}} \subseteq X$ is a bounded sequence. Since X is assumed to be reflexive, there exist $(n_k)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ with $n_k \nearrow \infty$ as $k \to \infty$ and $y_{\infty} \in X$ such that $S_{n_k} x \xrightarrow{w} y_{\infty}$ as $k \to \infty$. The Banach-Mazur theorem (or, eventually, the Hahn-Banach theorem) ensures that $y_{\infty} \in \overline{\operatorname{conv}}(\{S_n x : n \in \mathbb{N}\})$ which $- \operatorname{as} S_n x \in \operatorname{conv}(\{T^k x : k \in \mathbb{N}_0\})$ for every $n \in \mathbb{N}$ - implies that $y_{\infty} \in \overline{\operatorname{conv}}(\{T^k x : k \in \mathbb{N}_0\})$ for every $n \in \mathbb{N}$ - implies that $y_{\infty} \in \overline{\operatorname{conv}}(\{T^k x : k \in \mathbb{N}_0\})$. Moreover, for all $x^* \in X^*$ it holds that

$$\begin{aligned} |\langle x^*, (I-T)y_{\infty} \rangle_{X^* \times X}| &= |\langle x^* - T^* x^*, y_{\infty} \rangle_{X^* \times X}| \\ &= \lim_{k \to \infty} |\langle x^* - T^* x^*, S_{n_k} x \rangle_{X^* \times X}| \\ &= \lim_{k \to \infty} |\langle x^*, (I-T)S_{n_k} x \rangle_{X^* \times X}| \\ &= \lim_{k \to \infty} \left| \left\langle x^*, \frac{1}{n_k} (x - T^{n_k} x) \right\rangle_{X^* \times X} \right| \\ &\leq \limsup_{k \to \infty} \left[\frac{2}{n_k} \|x^*\|_{X^*} \|x\|_X \sup_{l \in \mathbb{N}_0} \|T^l\|_{L(X,X)} \right] = 0, \end{aligned}$$

which implies that $(I - T)y_{\infty} = 0$, i.e., $y_{\infty} \in \ker(I - T) = U$.

(e) Show that Y = X.

Solution: Assume that there exists $x \in X \setminus Y = X \setminus \overline{Y}$. By the Hahn–Banach theorem, there exists $x^* \in Y^{\perp}$ with $x^*(x) = 1$. According to (c), $T^*x^* = x^*$ and $x^* \in U^{\perp}$. On the other hand, for all $n \in \mathbb{N}_0, \lambda_0, \lambda_1, \ldots, \lambda_n \in [0, 1]$ with $\sum_{i=0}^n \lambda_i = 1$ it holds that

$$\left\langle x^*, \sum_{i=0}^n \lambda_i T^i x \right\rangle_{X^* \times X} = \sum_{i=0}^n \lambda_i \langle (T^*)^i x^*, x \rangle_{X^* \times X} = \sum_{i=0}^n \lambda_i \langle x^*, x \rangle_{X^* \times X} = \sum_{i=0}^n \lambda_i = 1.$$

Hence, x^* is constantly equal to 1 on the set $\operatorname{conv}(\{T^k x \colon k \in \mathbb{N}_0\})$, and – by continuity – also on the set $\overline{\operatorname{conv}}(\{T^k x \colon k \in \mathbb{N}_0\})$. Therefore, as $U \cap \overline{\operatorname{conv}}(\{T^k x \colon k \in \mathbb{N}_0\}) \neq \emptyset$ by (d), there exists $y \in U$ with $x^*(y) = 1$. This contradicts $x^* \in U^{\perp}$. Thus, X = Y. By definition of Y, we obtain for every $x \in X$ that $S_n x$ converges (strongly) as $n \to \infty$. Moreover, P, the mapping associating to $x \in X$ the limit of $S_n x$ as $n \to \infty$, is a projection.

last update: 6 December 2021