10.1. Various notions of continuity

Suppose $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ are normed \mathbb{K}-vector spaces (with $\left.\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}\right)$.
(a) A linear map $A: X \rightarrow Y$ is bounded if and only if it is $\sigma\left(X, X^{*}\right)-\sigma\left(Y, Y^{*}\right)-$ continuous (i.e., continuous with respect to the weak topologies on X and Y).

Solution: " (\Rightarrow) ": Assume that A is bounded. Let $O \in \sigma\left(Y, Y^{*}\right)$ be arbitrary but fixed. We need to show that $A^{-1}(O) \in \sigma\left(X, X^{*}\right)$. For this, let $x \in A^{-1}(O)$ be arbitrary but fixed. Then it holds that $A x \in O$ and - by $O \in \sigma\left(Y, Y^{*}\right)$ - there exist $\varepsilon \in(0, \infty), n \in \mathbb{N}, y_{1}^{*}, y_{2}^{*}, \ldots, y_{n}^{*} \in Y^{*}$ satisfying that

$$
\left\{y \in Y\left|\left|y_{i}^{*}(y-A x)\right|<\varepsilon \text { for all } i \in\{1,2, \ldots, n\}\right\} \subseteq O\right.
$$

Since $A \in L(X, Y)$, it holds for all $i \in\{1,2, \ldots, n\}$ that $y_{i}^{*} \circ A \in X^{*}$ and therefore

$$
\begin{aligned}
& \left\{\xi \in X\left|\left|\left(y_{i}^{*} \circ A\right)(\xi-x)\right|<\varepsilon \text { for all } i \in\{1,2, \ldots, n\}\right\}\right. \\
& =A^{-1}\left(\left\{y \in Y| | y_{i}^{*}(y-A x) \mid<\varepsilon \text { for all } i \in\{1,2, \ldots, n\}\right\}\right) \subseteq A^{-1}(O) .
\end{aligned}
$$

As $x \in A^{-1}(O)$ was arbitrary, this shows that $A^{-1}(O)$ is open. As $O \in \sigma\left(Y, Y^{*}\right)$ was arbitrary, we proved that A is $\sigma\left(X, X^{*}\right)-\sigma\left(Y, Y^{*}\right)$-continuous.
$"(\Leftarrow)$ ": Assuming that A is $\sigma\left(X, X^{*}\right)-\sigma\left(Y, Y^{*}\right)$-continuous, we obtain for every $y^{*} \in Y^{*}$ that $y^{*} \circ A$ is $\sigma\left(X, X^{*}\right)$-continuous. From part (b) in Problem 8.4 (Topologies induced by linear functionals), we know that a linear functional on X is $\sigma\left(X, X^{*}\right)$ continuous if and only if it belongs to X^{*}. Thus, we obtain that $y^{*} \circ A \in X^{*}$ for every $y^{*} \in Y^{*}$. In particular, it holds for every $y^{*} \in Y^{*}$ that there exists $C \in[0, \infty)$ satisfying $\forall x \in X:\left|y^{*}(A x)\right| \leq C\|x\|_{X}$. On the other hand, it clearly holds for every $x \in X$ that $\forall y^{*} \in Y^{*}:\left|y^{*}(A x)\right| \leq\|A x\|_{Y}\left\|y^{*}\right\|_{Y^{*}}$. Hence, the bilinear mapping $Y^{*} \times X \ni\left(y^{*}, x\right) \mapsto y^{*}(A x) \in \mathbb{K}$ satisfies the conditions of part (b) in Problem 5.3 (Continuity of bilinear maps), which in turn guarantees that there exists $C \in[0, \infty)$ such that

$$
\left|y^{*}(A x)\right| \leq C\|x\|_{X}\left\|y^{*}\right\|_{Y^{*}} \quad \text { for all } x \in X, y^{*} \in Y^{*} .
$$

This implies that $\|A x\|_{Y} \leq C\|x\|_{X}$ for all $x \in X$. (Alternatively, redo the proof of Problem 5.3 in this special case: since $\left(Y^{*},\|\cdot\|_{Y^{*}}\right)$ is complete and since for all $y^{*} \in Y^{*}$ it holds that $\sup _{x \in X,\|x\|_{X} \leq 1}\left|y^{*}(A x)\right|=\sup _{x \in X,\|x\|_{X} \leq 1}\left|\left(y^{*} \circ A\right)(x)\right|=\left\|y^{*} \circ A\right\|_{X^{*}}<\infty$, the Banach-Steinhaus theorem implies that $\sup _{x \in X,\|x\|_{X} \leq 1} \| Y^{*} \ni y^{*} \mapsto y^{*}(A x) \in$ $\mathbb{K} \|_{Y^{* *}}<\infty$.)
(b) A linear map $B: Y^{*} \rightarrow X^{*}$ is $\sigma\left(Y^{*}, Y\right)-\sigma\left(X^{*}, X\right)$-continuous (i.e., continuous with respect to the weak ${ }^{*}$ topologies on Y^{*} and X^{*}) if and only if there is a bounded linear operator $A: X \rightarrow Y$ such that $B=A^{*}$.
$"(\Leftarrow) "$: Assume that $B=A^{*}$ for some $A \in L(X, Y)$. This implies that $B \in L\left(Y^{*}, X^{*}\right)$. From now on, the proof is analogous to the corresponding part of the proof of (a). Let $O \in \sigma\left(X^{*}, X\right)$ be arbitrary but fixed. We need to show that $B^{-1}(O) \in \sigma\left(Y^{*}, Y\right)$. For this, let $y^{*} \in B^{-1}(O)$ be arbitrary but fixed. Then it holds that $B y^{*} \in O$ and by $O \in \sigma\left(X^{*}, X\right)$ - there exist $\varepsilon \in(0, \infty), n \in \mathbb{N}, x_{1}, x_{2}, \ldots, x_{n} \in X$ satisfying that

$$
\left\{x^{*} \in X^{*}| |\left(B y^{*}-x^{*}\right)\left(x_{i}\right) \mid<\varepsilon \text { for all } i \in\{1,2, \ldots, n\}\right\} \subseteq O
$$

Since $B=A^{*}$ and $A \in L(X, Y)$, we obtain that

$$
\begin{aligned}
& \left\{v^{*} \in Y^{*}| |\left(y^{*}-v^{*}\right)\left(A x_{i}\right) \mid<\varepsilon \text { for all } i \in\{1,2, \ldots, n\}\right\} \\
& =\left\{v^{*} \in Y^{*}| |\left(B y^{*}-B v^{*}\right)\left(x_{i}\right) \mid<\varepsilon \text { for all } i \in\{1,2, \ldots, n\}\right\} \\
& =B^{-1}\left(\left\{x^{*} \in X^{*}| |\left(B y^{*}-x^{*}\right)\left(x_{i}\right) \mid<\varepsilon \text { for all } i \in\{1,2, \ldots, n\}\right\}\right) \subseteq B^{-1}(O) .
\end{aligned}
$$

As $y^{*} \in B^{-1}(O)$ was arbitrary, this shows that $B^{-1}(O)$ is open. As $O \in \sigma\left(X^{*}, X\right)$ was arbitrary, we proved that B is $\sigma\left(Y^{*}, Y\right)-\sigma\left(X^{*}, X\right)$-continuous.
$"(\Rightarrow) "$: Assuming that B is $\sigma\left(Y^{*}, Y\right)-\sigma\left(X^{*}, X\right)$-continuous, it holds for every $x \in X$ that $Y^{*} \ni y^{*} \mapsto\left(B y^{*}\right)(x) \in \mathbb{K}$ is $\sigma\left(Y^{*}, Y\right)$-continuous. Problem 8.4 (Topologies induced by linear functionals) again assures that for every $x \in X$ there exists a unique element of Y, called $A x$ from now on, such that

$$
\left(B y^{*}\right)(x)=y^{*}(A x) \quad \text { for all } x \in X, y^{*} \in Y^{*} .
$$

Clearly, $X \ni x \mapsto A x \in Y$ is linear (by uniqueness of $A x$ for $x \in X$ and linearity of everything else). This and the above relation show that $B=A^{*}$. It remains to show that A is bounded. For this, we note that

- for every $y^{*} \in Y^{*}$, it holds that

$$
\left|y^{*}(A x)\right|=\left|\left(B y^{*}\right)(x)\right| \leq\left\|B y^{*}\right\|_{X^{*}}\|x\|_{X}
$$

and

- for every $x \in X$, it holds that

$$
\left|y^{*}(A x)\right| \leq\|A x\|_{Y}\left\|y^{*}\right\|_{Y^{*}}
$$

Part (b) in Problem 5.3 (Continuity of bilinear maps) ensures again that there exists $C \in[0, \infty)$ such that $\left|y^{*}(A x)\right| \leq C\|x\|_{X}\left\|y^{*}\right\|_{Y^{*}}$ for all $x \in X, y^{*} \in Y^{*}$.
(c) A linear operator $A: X \rightarrow Y$ is $\sigma\left(X, X^{*}\right)-\|\cdot\|_{Y}$-continuous (i.e., weak-norm continuous) if and only if it is bounded and has finite rank (i.e., has finite-dimensional range).

Solution: " (\Rightarrow) ": By definition, there exist $\varepsilon \in(0, \infty), n \in \mathbb{N}$ and $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*} \in X^{*}$ such that for all $x \in X$ satisfying $\left|x_{i}^{*}(x)\right|<\varepsilon$ it holds that $\|A x\|_{Y}<1$. This implies that

$$
\begin{equation*}
\|A x\|_{Y} \leq \frac{1}{\varepsilon} \max _{1 \leq k \leq n}\left|x_{k}^{*}(x)\right| \quad \text { for all } x \in X \tag{1}
\end{equation*}
$$

In particular, it holds for all $x, y \in X$ with $x_{k}^{*}(x)=x_{k}^{*}(y)$ for all $k \in\{1,2, \ldots, n\}$ that $A x=A y$. Hence, the mapping

$$
\left\{\left(x_{1}^{*}(x), x_{2}^{*}(x), \ldots, x_{n}^{*}(x)\right) \mid x \in X\right\} \ni\left(x_{1}^{*}(x), x_{2}^{*}(x), \ldots, x_{n}^{*}(x)\right) \mapsto A x \in Y
$$

is well-defined and linear. Moreover, with the domain space being finite-dimensional, this map can only have finite-dimensional image. The image, though, is $A(X)$. Hence, A itself has finite-dimensional image. Boundedness of A is clear from (1) (or, as one could say, was clear from the beginning, since A is also $\sigma\left(X, X^{*}\right)-\sigma\left(Y, Y^{*}\right)$-continuous). $"(\Leftarrow) "$: Assume that $A \in L(X, Y)$ has finite rank. Let $y_{1}, y_{2}, \ldots, y_{n} \in Y$ be a basis of $\operatorname{im}(A)$ and let $y_{1}^{*}, y_{2}^{*}, \ldots, y_{n}^{*} \in Y^{*}$ be a dual basis, i.e. $y_{i}^{*}\left(y_{j}\right)=\delta_{i j}$ for all $i, j \in\{1,2, \ldots, n\}$. This ensures that

$$
A x=\sum_{i=1}^{n} y_{i}^{*}(A x) y_{i} \quad \text { for all } x \in X
$$

Let $O \subseteq Y$ be an arbitrary but fixed open set w.r.t. the norm topology. We want to show that $A^{-1}(O) \subseteq X$ is open. For this, let $x \in A^{-1}(O)$ be arbitrary but fixed. Then $A x \in O$ and - as O is open w.r.t. the norm topology - there exists $\varepsilon \in(0, \infty)$ such that $\left\{y \in Y \mid\|y-A x\|_{Y}<\varepsilon\right\} \subseteq O$. Now, since $y_{i}^{*} \in Y^{*}$ for every $i \in\{1,2, \ldots, n\}$ and $A \in L(X, Y)$ we have that $y_{i}^{*} \circ A \in X^{*}$ for every $i \in\{1,2, \ldots, n\}$ and, therefore, the first set below is a $\sigma\left(X, X^{*}\right)$-neighborhood of x :

$$
\begin{aligned}
& \left\{\xi \in X\left|\left|\left(y_{i}^{*} \circ A\right)(\xi-x)\right|<\frac{\varepsilon}{n\left\|y_{i}\right\|_{Y}} \text { for all } i \in\{1,2, \ldots, n\}\right\}\right. \\
& \subseteq\left\{\xi \in X\left|\sum_{i=1}^{n}\right| y_{i}^{*}(A \xi-A x) \mid\left\|y_{i}\right\|_{Y}<\varepsilon\right\} \\
& \subseteq\left\{\xi \in X \mid\|A \xi-A x\|_{Y}<\varepsilon\right\} \subseteq A^{-1}(O)
\end{aligned}
$$

As $x \in A^{-1}(O)$ was arbitrary, we obtain that $A^{-1}(O) \in \sigma\left(X, X^{*}\right)$. As $O \subseteq Y$ was an arbitrary open set w.r.t. the norm topology, we have that A is $\sigma\left(X, X^{*}\right)-\|\cdot\|_{Y^{-}}$ continuous.

10.2. Elementary properties of dual operators

Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ and $\left(Z,\|\cdot\|_{Z}\right)$ be normed \mathbb{K}-vector spaces (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$). Recall that if $T \in L(X, Y)$, then its dual operator T^{*} is in $L\left(Y^{*}, X^{*}\right)$ and it is characterised by the property

$$
\left\langle T^{*} y^{*}, x\right\rangle_{X^{*} \times X}=\left\langle y^{*}, T x\right\rangle_{Y^{*} \times Y} \quad \text { for every } x \in X \text { and } y^{*} \in Y^{*} .
$$

Prove the following facts about dual operators.
(a) $\left(\operatorname{Id}_{X}\right)^{*}=\operatorname{Id}_{X^{*}}$.

Solution: Let $x \in X$ and $x^{*} \in X^{*}$ be arbitrary. By definition of $\left(\operatorname{Id}_{X}\right)^{*}: X^{*} \rightarrow X^{*}$, we have

$$
\left\langle\left(\operatorname{Id}_{X}\right)^{*} x^{*}, x\right\rangle_{X^{*} \times X}=\left\langle x^{*}, \operatorname{Id}_{X} x\right\rangle_{X^{*} \times X}=\left\langle x^{*}, x\right\rangle_{X^{*} \times X^{*}} .
$$

Since $x \in X$ is arbitrary, $\left(\operatorname{Id}_{X}\right)^{*} x^{*}=x^{*}$. Since $x^{*} \in X^{*}$ is arbitrary, $\left(\operatorname{Id}_{X}\right)^{*}=\operatorname{Id}_{\left(X^{*}\right)}$.
(b) If $T \in L(X, Y)$ and $S \in L(Y, Z)$, then $(S \circ T)^{*}=T^{*} \circ S^{*}$.

Solution: Let $z^{*} \in Z^{*}$ and $x \in X$ be arbitrary. Then, $(S \circ T)^{*}=T^{*} \circ S^{*}$ follows from

$$
\begin{aligned}
\left\langle(S \circ T)^{*} z^{*}, x\right\rangle_{X^{*} \times X} & =\left\langle z^{*}, S(T x)\right\rangle_{Z^{*} \times Z} \\
& =\left\langle S^{*} z^{*}, T x\right\rangle_{Y^{*} \times Y}=\left\langle T^{*}\left(S^{*} z^{*}\right), x\right\rangle_{X^{*} \times X}
\end{aligned}
$$

(c) If $T \in L(X, Y)$ is bijective with inverse $T^{-1} \in L(Y, X)$, then $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.

Solution: To prove $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$, we apply the results from (a) and (b) and obtain

$$
\begin{aligned}
& T^{*} \circ\left(T^{-1}\right)^{*}=\left(T^{-1} \circ T\right)^{*}=\left(\operatorname{Id}_{X}\right)^{*}=\operatorname{Id}_{X^{*}}, \\
& \left(T^{-1}\right)^{*} \circ T^{*}=\left(T \circ T^{-1}\right)^{*}=\left(\operatorname{Id}_{Y}\right)^{*}=\operatorname{Id}_{Y^{*}} .
\end{aligned}
$$

(d) Let $\mathcal{I}_{X}: X \hookrightarrow X^{* *}$ and $\mathcal{I}_{Y}: Y \hookrightarrow Y^{* *}$ be the canonical inclusions. Then,

$$
\forall T \in L(X, Y): \quad \mathcal{I}_{Y} \circ T=\left(T^{*}\right)^{*} \circ \mathcal{I}_{X} .
$$

Solution: Let $x \in X$ and $y^{*} \in Y^{*}$ be arbitrary. Then, $\left(\mathcal{I}_{Y} \circ T\right)=\left(T^{*}\right)^{*} \circ \mathcal{I}_{X}$ follows from

$$
\begin{aligned}
\left\langle\left(\mathcal{I}_{Y} \circ T\right) x, y^{*}\right\rangle_{Y^{* *} \times Y^{*}} & =\left\langle y^{*}, T x\right\rangle_{Y^{*} \times Y}=\left\langle T^{*} y^{*}, x\right\rangle_{X^{*} \times X} \\
& =\left\langle\mathcal{I}_{X} x, T^{*} y^{*}\right\rangle_{X^{* *} \times X^{*}}=\left\langle\left(T^{*}\right)^{*}\left(\mathcal{I}_{X} x\right), y^{*}\right\rangle_{Y^{* *} \times Y^{*}}
\end{aligned}
$$

10.3. Dual operators and invertibility

Let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be normed \mathbb{K}-vector spaces (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$) and $T \in L(X, Y)$. Prove the following.
(a) If T is an isomorphism with $T^{-1} \in L(Y, X)$, then T^{*} is an isomorphism.

Solution: The dual operator T^{*} of any $T \in L(X, Y)$ with $T^{-1} \in L(Y, X)$ is invertible according to Exercise $10.2(\mathrm{c})$ and its inverse is $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$. Moreover, the assumption $T^{-1} \in L(Y, X)$ implies $\left(T^{-1}\right)^{*} \in L\left(X^{*}, Y^{*}\right)$. Hence, T^{*} is an isomorphism.
(b) If T is an isometric isomorphism, then T^{*} is an isometric isomorphism.

Solution: If T is an isometric isomorphism, then T^{*} is an isomorphism by (a) and

$$
\begin{aligned}
\left\|T^{*} y^{*}\right\|_{X^{*}} & =\sup _{\|x\|_{X} \leq 1}\left|\left\langle T^{*} y^{*}, x\right\rangle_{X^{*} \times X}\right|=\sup _{\|x\|_{X} \leq 1}\left|\left\langle y^{*}, T x\right\rangle_{Y^{*} \times Y}\right| \\
& =\sup _{\|y\|_{Y} \leq 1}\left|\left\langle y^{*}, y\right\rangle_{Y^{*} \times Y}\right|=\left\|y^{*}\right\|_{Y^{*}} \quad \text { for all } y^{*} \in Y^{*} .
\end{aligned}
$$

(c) If X and Y are both reflexive, then the reverse implications of (a) and (b) hold.

Solution: If X and Y are reflexive, $\mathcal{I}_{X}: X \rightarrow X^{* *}$ and $\mathcal{I}_{Y}: Y \rightarrow Y^{* *}$ are bijective isometries. If T^{*} is an (isometric) isomorphism, then Exercise 10.2 and (b) imply that $\left(T^{*}\right)^{*}$ is an (isometric) isomorphism. Applying Exercise 10.2(d), we see that the same holds for

$$
T=\mathcal{I}_{Y}^{-1} \circ\left(T^{*}\right)^{*} \circ \mathcal{I}_{X}
$$

(d) If $\left(X,\|\cdot\|_{X}\right)$ is a reflexive Banach space isomorphic to the normed space $\left(Y,\|\cdot\|_{Y}\right)$, then Y is reflexive.

Solution: Since X is reflexive by assumption, \mathcal{I}_{X} is an isomorphism. Suppose, $T: X \rightarrow Y$ is an isomorphism. Applying part (b) twice, $\left(T^{*}\right)^{*}$ is an isomorphism. Moreover,

$$
\mathcal{I}_{Y}=\left(T^{*}\right)^{*} \circ \mathcal{I}_{X} \circ T^{-1}
$$

according to Exercise $10.2(\mathrm{~d})$. Since \mathcal{I}_{Y} is a composition of isomorphisms, Y is reflexive.

10.4. Invariant measures again

Let (K, d) be a non-empty compact metric space and let $T \in L(C(K, \mathbb{R}), C(K, \mathbb{R}))$ satisfy

- $T \mathbf{1}=\mathbf{1}$, where $\mathbf{1}:=(K \ni x \mapsto 1 \in \mathbb{R}) \in C(K, \mathbb{R})$ and
- $T f \geq 0$ for all $f \in C(K, \mathbb{R})$ with $f \geq 0$.
(a) Prove for all $n \in \mathbb{N}$ that the mapping $S_{n}: \mathcal{P}(K) \rightarrow \mathcal{P}(K)$, defined via

$$
\int_{K} f d\left(S_{n} \nu\right)=\frac{1}{n} \sum_{k=0}^{n-1} \int_{K} T^{k} f d \nu \quad \text { for all } f \in C(K, \mathbb{R}), \nu \in \mathcal{P}(K)
$$

is indeed well-defined.
Solution: Let $n \in \mathbb{N}, \nu \in \mathcal{P}(K)$ be fixed. Note that

$$
C(K, \mathbb{R}) \ni f \mapsto \frac{1}{n} \sum_{k=0}^{n-1} \int_{K} T^{k} f d \nu \in \mathbb{R}
$$

is a positive linear functional which maps 1 to 1 . The Riesz-Markov-Kakutani theorem thus implies that there exists a Borel probability measure μ such that

$$
\int_{K} f d \mu=\frac{1}{n} \sum_{k=0}^{n-1} \int_{K} T^{k} f d \nu \quad \text { for all } f \in C(K, \mathbb{R})
$$

(Positivity and linearity imply that μ is a positive finite Borel regular measure, the fact that $\mathbf{1}$ is mapped to 1 implies that μ is a probability measure.)
(b) Show for all $\nu \in \mathcal{P}(K)$ that there exist $\left(n_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ with $n_{k} \nearrow \infty$ as $k \rightarrow \infty$ and $\mu \in \mathcal{P}(K)$ such that

$$
\int_{K} f d \mu=\lim _{k \rightarrow \infty} \int_{K} f d\left(S_{n_{k}} \nu\right) \quad \text { for all } f \in C(K, \mathbb{R})
$$

Solution: With $\mathcal{M}(K)$ denoting the signed Borel regular measures (equipped with the total variation norm), let $J: \mathcal{M}(K) \rightarrow(C(K, \mathbb{R}))^{*}$ be the isomorphism provided by the Riesz-Markov-Kakutani theorem, that is,

$$
[J(\xi)](f)=\int_{K} f d \xi \quad \text { for all } f \in C(K, \mathbb{R}), \xi \in \mathcal{M}(K)
$$

Let $\nu \in \mathcal{P}(K)$ be fixed. The measures $\left(S_{n} \nu\right)_{n \in \mathbb{N}} \subseteq \mathcal{P}(K)$ constructed in (a) satisfy that $\sup _{n \in \mathbb{N}}\left\|J\left(S_{n} \nu\right)\right\|_{C(K, \mathbb{R})^{*}}=\sup _{n \in \mathbb{N}}\left\|S_{n} \nu\right\|_{\mathcal{M}(K)}=\sup _{n \in \mathbb{N}}\left(S_{n} \nu\right)(K)=1$. The BanachAlaoglu theorem (and the fact that $C(K, \mathbb{R})$ is separable) ensure that there exist $\left(n_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ with $n_{k} \nearrow \infty$ as $k \rightarrow \infty$ and a functional $\Phi \in C(K, \mathbb{R})^{*}$ such that $J\left(S_{n_{k}} \nu\right) \xrightarrow{\mathrm{w}^{*}} \Phi$. The Riesz-Markov-Kakutani theorem thus implies that there exists $\mu \in \mathcal{M}(K)$ such that $\Phi=J(\mu)$, i.e.,

$$
\lim _{k \rightarrow \infty} \int_{K} f d\left(S_{n_{k}} \nu\right)=\lim _{k \rightarrow \infty}\left[J\left(S_{n_{k}} \nu\right)\right](f)=\Phi(f)=[J(\mu)](f)=\int_{K} f d \mu
$$

Since Φ is positive and satisfies $\Phi \mathbf{1}=1$, we obtain $\mu \in \mathcal{P}(K)$.
(c) Let $\nu, \mu \in \mathcal{P}(K)$ and $\left(n_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ satisfy $n_{k} \nearrow \infty$ and $\int_{K} f d\left(S_{n_{k}} \nu\right) \rightarrow \int_{K} f d \mu$ as $k \rightarrow \infty$. Infer that

$$
\int_{K} T f d \mu=\int_{K} f d \mu \quad \text { for every } f \in C(K, \mathbb{R})
$$

Solution: Note first that it holds for all $k \in \mathbb{N}, f \in C(K, \mathbb{R})$ that

$$
\begin{aligned}
\left|\int_{K} T f d\left(S_{n_{k}} \nu\right)-\int_{K} f d\left(S_{n_{k}} \nu\right)\right| & =\left|\frac{1}{n_{k}} \sum_{j=0}^{n_{k}-1} \int_{K} T^{j} T f d \nu-\frac{1}{n_{k}} \sum_{j=0}^{n-1} \int_{K} T^{j} f d \nu\right| \\
& =\frac{1}{n_{k}}\left|\int_{K} T^{n_{k}} f d \nu-\int_{K} f d \nu\right| \leq \frac{2}{n_{k}}\|f\|_{C(K, \mathbb{R})} .
\end{aligned}
$$

Passing to the limits as $k \rightarrow \infty$, we obtain that $\int_{K} T f d \mu=\int_{K} f d \mu$ for every $f \in C(K, \mathbb{R})$.
(d) Prove for every $f \in C(K, \mathbb{R})$ with $T f=f$ and $f \neq 0$ that there exists $\mu \in \mathcal{P}(K)$ satisfying

- $\int_{K} f d \mu \neq 0$ and
- $\int_{K} T g d \mu=\int_{K} g d \mu$ for all $g \in C(K, \mathbb{R})$

Solution: Let $f \in C(K, \mathbb{R})$ with $T f=f$ and $f \neq 0$. Then there exists $\nu \in \mathcal{P}(K)$ with $\int_{K} f d \nu \neq 0$ (e.g., $\nu=\delta_{x}$ for $x \in K$ with $f(x) \neq 0$). According to (b), there exist $\left(n_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}, \mu \in \mathcal{P}(K)$ satisfying $n_{k} \nearrow \infty$ and $J\left(S_{n_{k}} \nu\right) \xrightarrow{\mathrm{w}^{*}} J(\mu)$ in $(C(K, \mathbb{R}))^{*}$ as $k \rightarrow \infty$. According to (c), we have that $T_{\#} \mu=\mu$. Finally, note that

$$
\int_{K} f d\left(S_{k} \nu\right)=\int_{K} f d \nu \quad \text { for all } k \in \mathbb{N}
$$

and therefore $\int_{K} f d \nu=\int_{K} f d \mu$.
(e) Solve Problem 9.5 (Invariant measures à la Krylov-Bogolioubov) again using (d).

Solution: With $\varphi \in C(K, K)$ (formerly called T in Problem 9.5), associate $T \in$ $L(C(K, \mathbb{R}), C(K, \mathbb{R}))$ defined via

$$
T f=f \circ \varphi \quad \text { for every } f \in C(K, \mathbb{R})
$$

Note that T satisfies $T \mathbf{1}=\mathbf{1}$ and $T f \geq 0$ for every $f \in C(K, \mathbb{R})$ with $f \geq 0$. Part (d) assures that there exists $\mu \in \mathcal{P}(K)$ satisfying for all $f \in C(K, \mathbb{R})$ that

$$
\int_{K} f d \mu=\int_{K} T f d \mu=\int_{K} f \circ \varphi d \mu .
$$

(For the fixed point of T - denoted as f in (d) - we can take $\mathbf{1} \in C(K, \mathbb{R})$.)

10.5. Von Neumann's ergodic theorem

Let $(H,\langle\cdot, \cdot\rangle)$ be a \mathbb{K}-Hilbert space (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$), let T be a continuous linear operator on H with $\|T\|_{L(H, H)} \leq 1$, let $U:=\operatorname{ker}(I-T)$ (with $I=(H \ni x \mapsto x \in$ $H) \in L(H, H)$ being the identity operator), let P_{U} denote the orthogonal projection onto U and let $S_{n}:=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}$ for every $n \in \mathbb{N}$. Our goal is to show that

$$
\limsup _{n \rightarrow \infty}\left\|S_{n} x-P_{U} x\right\|_{H}=0 \quad \text { for all } x \in H
$$

For this, we recommend to proceed along the following steps:
(a) For all $x \in H$, we have $T x=x$ if and only if $T^{*} x=x$.

Solution: " $\left(\Rightarrow\right.$)": Since $\left\|T^{*}\right\|_{L(H, H)}=\|T\|_{L(H, H)} \leq 1$, we have for all $x \in U$ (i.e., $x \in H$ with $T x=x$) that

$$
\begin{equation*}
\|x\|_{H}\left\|T^{*} x\right\|_{H} \geq\left\langle x, T^{*} x\right\rangle=\langle T x, x\rangle=\|x\|_{H}^{2} \geq\|x\|_{H}\left\|T^{*} x\right\|_{H}, \tag{2}
\end{equation*}
$$

which implies that $\left\|T^{*} x\right\|_{H}=\|x\|_{H}$ for all $x \in U$ (as well as $\langle T x, x\rangle=\left\langle x, T^{*} x\right\rangle=\|x\|_{H}^{2}$ for all $x \in U$). Hence, we have for all $x \in U$ that

$$
\left\|T^{*} x-x\right\|_{H}^{2}=\left\|T^{*} x\right\|_{H}^{2}-2 \operatorname{Re}\left\langle x, T^{*} x\right\rangle+\|x\|_{H}^{2}=\|x\|_{H}^{2}-2\|x\|_{H}^{2}+\|x\|_{H}^{2}=0 .
$$

Thus, $\operatorname{ker}(I-T) \subseteq \operatorname{ker}\left(I-T^{*}\right)$.
$"(\Leftarrow)$ ": As $T^{*} \in L(H, H)$ also satisfies $\left\|T^{*}\right\|_{L(H, H)} \leq 1$, the argument above shows for all $x \in \operatorname{ker}\left(I-T^{*}\right)$ that $T^{* *} x=x$. Since $T^{* *}=T$ for every bounded linear operator on a Hilbert space, we have that $\operatorname{ker}(I-T) \supseteq \operatorname{ker}\left(I-T^{*}\right)$.
(b) $U^{\perp}=\overline{\operatorname{im}(I-T)}$.

Solution: We know from (a) that $U=\operatorname{ker}(I-T)=\operatorname{ker}\left(I-T^{*}\right)$. Hence, it holds that

$$
U^{\perp}=\left(\operatorname{ker}\left(I-T^{*}\right)\right)^{\perp}=\left(\operatorname{im}(I-T)^{\perp}\right)^{\perp}=\overline{\operatorname{im}(I-T)} .
$$

(c) $\lim _{n \rightarrow \infty} S_{n} x=x$ for all $x \in U$ and $\lim _{n \rightarrow \infty} S_{n} x=0$ for all $x \in U^{\perp}$.

Solution: For every $x \in U$, we have $T x=x$, hence $S_{n} x=x$ for all $n \in \mathbb{N}$ and therefore $\lim \sup _{n \rightarrow \infty}\left\|S_{n} x-x\right\|_{H}=0$. For every $x \in \operatorname{im}(I-T)$, there exists $y \in H$ such that $x=(I-T) y$. Hence, it holds for all $n \in \mathbb{N}$ that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|S_{n} x\right\|_{H} & =\limsup _{n \rightarrow \infty}\left\|\frac{1}{n} \sum_{k=0}^{n-1} T^{k}(y-T y)\right\|_{H} \\
& =\limsup _{n \rightarrow \infty}\left\|\frac{1}{n}\left(y-T^{n} y\right)\right\|_{H} \leq \limsup _{n \rightarrow \infty} \frac{2\|y\|_{H}}{n}=0 .
\end{aligned}
$$

For every $x \in \overline{\operatorname{im}(I-T)}$, there is a sequence $\left(z_{n}\right)_{n \in \mathbb{N}} \subseteq \operatorname{im}(I-T)$ converging to x as $n \rightarrow \infty$ and since $S_{n} y_{k} \rightarrow 0$ as $n \rightarrow \infty$ for every $k \in \mathbb{N}$, we get that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left\|S_{n} x\right\|_{H} & \leq \limsup _{n \rightarrow \infty}\left[\left\|S_{n} x-S_{n} y_{k}\right\|_{H}+\left\|S_{n} y_{k}\right\|_{H}\right] \\
& =\limsup _{n \rightarrow \infty}\left\|S_{n} x-S_{n} y_{k}\right\|_{H} \leq \limsup _{n \rightarrow \infty}\left[\left\|S_{n}\right\|_{L(H, H)}\left\|x-y_{k}\right\|_{H}\right] \\
& \leq\left\|x-y_{k}\right\|_{H} \quad \text { for all } k \in \mathbb{N} .
\end{aligned}
$$

Hence, $\lim \sup _{n \rightarrow \infty}\left\|S_{n} x\right\|_{H}=0$ for every $x \in \overline{\operatorname{im}(I-T)}=U^{\perp}$. To come full circle, note that every $x \in H$ can be written as $x=\left(x-P_{U} x\right)+P_{U} x$, where $x-P_{U} x \in U^{\perp}$ and $P_{U} x \in U$, and therefore, we obtain for every $x \in H$ that $S_{n} x \rightarrow P_{U} x$ as $n \rightarrow \infty$ because $S_{n}\left(x-P_{U} x\right) \rightarrow 0$ and $S_{n} P_{U} x \rightarrow P_{U} x$ as $n \rightarrow \infty$.

10.6. Von Neumann again

Let $\left(X,\|\cdot\|_{X}\right)$ be a reflexive space, let $T: X \rightarrow X$ be a continuous linear operator satisfying $\sup _{n \in \mathbb{N}_{0}}\left\|T^{n}\right\|_{L(X, X)}<\infty$, let $U:=\operatorname{ker}(I-T)$ and let $S_{n}:=\frac{1}{n} \sum_{k=0}^{n-1} T^{k}$ for every $n \in \mathbb{N}$.
(a) Show that $Y:=\left\{x \in X \mid \lim _{n \rightarrow \infty} S_{n} x\right.$ exists $\}$ is a closed subspace of X.

Solution: Clearly, $0 \in Y$ and for all $\alpha \in \mathbb{K}, x_{1}, x_{2} \in Y$ it holds that $\alpha x_{1}+x_{2} \in Y$ since $\lim _{n \rightarrow \infty} S_{n}\left(\alpha x_{1}+x_{2}\right)=\alpha \lim _{n \rightarrow \infty} S_{n} x_{1}+\lim _{n \rightarrow \infty} S_{n} x_{2}$. The only issue left is the closedness of Y. For this, let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq Y$ be a sequence converging to $x_{\infty} \in X$, i.e., $\lim \sup _{n \rightarrow \infty}\left\|x_{n}-x_{\infty}\right\|_{X}=0$, and let $\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq X$ denote the limits, i.e., $y_{n}=\lim _{k \rightarrow \infty} S_{k} x_{n}$ for every $n \in \mathbb{N}$. We are going to show that $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence. Note that for all $m, n \in \mathbb{N}$, it holds that

$$
\begin{aligned}
& \left\|y_{m}-y_{n}\right\|_{X} \leq \limsup _{k \rightarrow \infty}\left[\left\|y_{m}-S_{k} x_{m}\right\|_{X}+\left\|S_{k} x_{m}-S_{k} x_{n}\right\|_{X}+\left\|S_{k} x_{n}-y_{n}\right\|_{X}\right] \\
& \leq \limsup _{k \rightarrow \infty}\left\|y_{m}-S_{k} x_{m}\right\|_{X}+\sup _{l \in \mathbb{N}_{0}}\left\|T^{l}\right\|_{L(X, X)}\left\|x_{m}-x_{n}\right\|_{X}+\limsup _{k \rightarrow \infty}\left\|S_{k} x_{n}-y_{n}\right\|_{X} \\
& \leq \sup _{l \in \mathbb{N}_{0}}\left\|T^{l}\right\|_{L(X, X)}\left\|x_{m}-x_{n}\right\|_{X} .
\end{aligned}
$$

Since $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ is a Cauchy sequence, it follows that $\left(y_{n}\right)_{n \in \mathbb{N}}$ is Cauchy, too. Denoting $y_{\infty}=\lim _{n \rightarrow \infty} y_{n}$, it just remains to show that $\lim _{n \rightarrow \infty} S_{n} x_{\infty}=y_{\infty}$. For this, note that for all $n, k \in \mathbb{N}$ it holds that

$$
\begin{aligned}
\left\|S_{n} x_{\infty}-y_{\infty}\right\|_{X} & \leq\left\|S_{n} x_{\infty}-S_{n} x_{k}\right\|_{X}+\left\|S_{n} x_{k}-y_{k}\right\|_{X}+\left\|y_{k}-y_{\infty}\right\|_{X} \\
& \leq \sup _{l \in \mathbb{N}_{0}}\left\|T^{l}\right\|_{L(X, X)}\left\|x_{\infty}-x_{k}\right\|_{X}+\left\|S_{n} x_{k}-y_{k}\right\|_{X}+\left\|y_{k}-y_{\infty}\right\|_{X} .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we obtain for every $k \in \mathbb{N}$ that

$$
\limsup _{n \rightarrow \infty}\left\|S_{n} x_{\infty}-y_{\infty}\right\|_{X} \leq \sup _{l \in \mathbb{N}_{0}}\left\|T^{l}\right\|_{L(X, X)}\left\|x_{\infty}-x_{k}\right\|_{X}+\left\|y_{k}-y_{\infty}\right\|_{X} .
$$

As we let $k \rightarrow \infty$, we obtain $\lim \sup _{n \rightarrow \infty}\left\|S_{n} x_{\infty}-y_{\infty}\right\|_{X}=0$. Hence, $x_{\infty} \in Y$ and Y is closed.
(b) Show that $P: Y \rightarrow X$, defined by $P x=\lim _{n \rightarrow \infty} S_{n} x$ is a continuous linear map satisfying $\operatorname{im}(P)=U \subseteq Y, \operatorname{ker}(P)=\overline{\operatorname{im}(I-T)}$, and $P^{2}=P$. In particular, deduce that $Y=\operatorname{ker}(I-T) \oplus \overline{\mathrm{im}(I-T)}$.

Solution: P is clearly linear on Y. For all $x \in X, n \in \mathbb{N}$ it holds that

$$
\left\|\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x\right\|_{X} \leq \sup _{k \in \mathbb{N}_{0}}\left\|T^{k}\right\|_{L(X, X)}\|x\|_{X} .
$$

It follows that $\|P x\|_{X} \leq \sup _{k \in \mathbb{N}_{0}}\left\|T^{k}\right\|_{L(X, X)}\|x\|_{X}$ for all $x \in Y$. Hence, P is continuous. Moreover, note that for all $n \in \mathbb{N}$ it holds that $(I-T) S_{n}=\frac{1}{n}\left(I-T^{n}\right)=S_{n}(I-T)$. Hence, for all $x \in Y$ we have that

$$
(I-T) P x=\lim _{n \rightarrow \infty}(I-T) S_{n} x=\lim _{n \rightarrow \infty} \frac{1}{n}\left(x-T^{n} x\right)=0
$$

by $\sup _{k \in \mathbb{N}_{0}}\left\|T^{k}\right\|_{L(X, X)}<\infty$. Thus, $\operatorname{im}(P) \subseteq U$. On the other hand, for every $x \in U$, it holds $S_{n} x=x$ for all $n \in \mathbb{N}$ and therefore $x \in Y, P x=x$. Hence, $P(U)=\operatorname{im}(P)$ and $P^{2} x=P x$ for all $x \in Y$. Finally, for every $x \in \operatorname{im}(I-T)$, there exists $y \in X$ with $x=y-T y$. Hence, for every $x \in \operatorname{im}(I-T)$, we have

$$
S_{n} x=S_{n}(I-T) y=\frac{1}{n}\left(y-T^{n} y\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

that is, $x \in Y$ and $P x=0$. As Y is closed and P is continuous, $\overline{\operatorname{im}(I-T)} \subseteq \operatorname{ker}(P)$. On the other hand, if $x \in \operatorname{ker}(P)$, then

$$
x-\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x=\frac{1}{n} \sum_{k=0}^{n-1}\left(x-T^{k} x\right) \in \operatorname{im}(I-T) \quad \text { for all } n \in \mathbb{N},
$$

and since the left hand side tends to x as $n \rightarrow \infty$, it follows that $x \in \overline{\operatorname{im}(I-T)}$. Since $U=\operatorname{im}(P)$ and $\overline{\operatorname{im}(I-T)}=\operatorname{ker}(P)$ and since $P^{2} x=P x$ for all $x \in Y$, the mapping

$$
Y \ni x \mapsto(P x, x-P x) \in \operatorname{im}(P) \times \operatorname{ker}(P)
$$

is a (linear) isomorphism (of Banach spaces), cp. also the solution of Problem 6.1. In other words, $Y=\operatorname{im}(P) \oplus \operatorname{ker}(P)=\operatorname{ker}(I-T) \oplus \overline{\operatorname{im}(I-T)}$.
(c) Show for every $x^{*} \in Y^{\perp}$ that $T^{*} x^{*}=x^{*}$ and $x^{*} \in U^{\perp}$.

Solution: For every $x^{*} \in Y^{\perp}$ it holds - since $U \subseteq Y$ and $\operatorname{im}(I-T) \subseteq Y$ according to (b) - in particular that $x^{*} \in U^{\perp}$ and $x^{*} \in \operatorname{im}(I-T)^{\perp}$. The latter implies for all $x \in X, x^{*} \in Y^{\perp}$ that $x^{*}(x-T x)=0$, i.e., $\left(T^{*} x^{*}\right)(x)=x^{*}(T x)=x^{*}(x)$, resulting in $T^{*} x^{*}=x^{*}$.
(d) Show for every $x \in X$ that $U \cap \overline{\operatorname{conv}}\left(\left\{T^{k} x: k \in \mathbb{N}_{0}\right\}\right) \neq \emptyset$.

Solution: For every $x \in X$ it holds that $\left(S_{n} x\right)_{n \in \mathbb{N}} \subseteq X$ is a bounded sequence. Since X is assumed to be reflexive, there exist $\left(n_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ with $n_{k} \nearrow \infty$ as $k \rightarrow \infty$ and $y_{\infty} \in X$ such that $S_{n_{k}} x \xrightarrow{\mathrm{w}} y_{\infty}$ as $k \rightarrow \infty$. The Banach-Mazur theorem (or, eventually, the Hahn-Banach theorem) ensures that $y_{\infty} \in \overline{\operatorname{conv}}\left(\left\{S_{n} x: n \in \mathbb{N}\right\}\right)$ which - as $S_{n} x \in \operatorname{conv}\left(\left\{T^{k} x: k \in \mathbb{N}_{0}\right\}\right)$ for every $n \in \mathbb{N}$ - implies that $y_{\infty} \in \overline{\operatorname{conv}}\left(\left\{T^{k} x: k \in\right.\right.$ $\left.\mathbb{N}_{0}\right\}$). Moreover, for all $x^{*} \in X^{*}$ it holds that

$$
\begin{aligned}
\left|\left\langle x^{*},(I-T) y_{\infty}\right\rangle_{X^{*} \times X}\right| & =\left|\left\langle x^{*}-T^{*} x^{*}, y_{\infty}\right\rangle_{X^{*} \times X}\right| \\
& =\lim _{k \rightarrow \infty}\left|\left\langle x^{*}-T^{*} x^{*}, S_{n_{k}} x\right\rangle_{X^{*} \times X}\right| \\
& =\lim _{k \rightarrow \infty}\left|\left\langle x^{*},(I-T) S_{n_{k}} x\right\rangle_{X^{*} \times X}\right| \\
& =\lim _{k \rightarrow \infty}\left|\left\langle x^{*}, \frac{1}{n_{k}}\left(x-T^{n_{k}} x\right)\right\rangle_{X^{*} \times X}\right| \\
& \leq \limsup _{k \rightarrow \infty}\left[\frac{2}{n_{k}}\left\|x^{*}\right\|\left\|_{X^{*}}\right\| x\left\|_{X} \sup _{l \in \mathbb{N}_{0}}\right\| T^{l} \|_{L(X, X)}\right]=0,
\end{aligned}
$$

which implies that $(I-T) y_{\infty}=0$, i.e., $y_{\infty} \in \operatorname{ker}(I-T)=U$.
(e) Show that $Y=X$.

Solution: Assume that there exists $x \in X \backslash Y=X \backslash \bar{Y}$. By the Hahn-Banach theorem, there exists $x^{*} \in Y^{\perp}$ with $x^{*}(x)=1$. According to (c), $T^{*} x^{*}=x^{*}$ and $x^{*} \in U^{\perp}$. On the other hand, for all $n \in \mathbb{N}_{0}, \lambda_{0}, \lambda_{1}, \ldots, \lambda_{n} \in[0,1]$ with $\sum_{i=0}^{n} \lambda_{i}=1$ it holds that

$$
\left\langle x^{*}, \sum_{i=0}^{n} \lambda_{i} T^{i} x\right\rangle_{X^{*} \times X}=\sum_{i=0}^{n} \lambda_{i}\left\langle\left(T^{*}\right)^{i} x^{*}, x\right\rangle_{X^{*} \times X}=\sum_{i=0}^{n} \lambda_{i}\left\langle x^{*}, x\right\rangle_{X^{*} \times X}=\sum_{i=0}^{n} \lambda_{i}=1 .
$$

Hence, x^{*} is constantly equal to 1 on the set $\operatorname{conv}\left(\left\{T^{k} x: k \in \mathbb{N}_{0}\right\}\right)$, and - by continuity - also on the set $\overline{\operatorname{conv}}\left(\left\{T^{k} x: k \in \mathbb{N}_{0}\right\}\right)$. Therefore, as $U \cap \overline{\operatorname{conv}}\left(\left\{T^{k} x: k \in \mathbb{N}_{0}\right\}\right) \neq \emptyset$ by (d), there exists $y \in U$ with $x^{*}(y)=1$. This contradicts $x^{*} \in U^{\perp}$. Thus, $X=Y$. By definition of Y, we obtain for every $x \in X$ that $S_{n} x$ converges (strongly) as $n \rightarrow \infty$. Moreover, P, the mapping associating to $x \in X$ the limit of $S_{n} x$ as $n \rightarrow \infty$, is a projection.

