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11.1. Compact operators

Let (X, ‖·‖X), (Y, ‖·‖Y ) and (Z, ‖·‖Z) be normed spaces. We denote by

K(X, Y ) = {T ∈ L(X, Y ) | T (B1(0)) ⊆ Y compact}

the set of compact operators between X and Y . Prove the following statements.

(a) T ∈ L(X, Y ) is a compact operator if and only if every bounded sequence (xn)n∈N
in X has a subsequence (xnk

)k∈N such that (Txnk
)k∈N is convergent in Y .

Solution: “(⇒)”: Let T ∈ L(X, Y ) be a compact operator. Let (xn)n∈N be a
bounded sequence in X. Then there exists M ∈ (0,∞) such that ‖xn‖X < M for
all n ∈ N. In particular, 1

M
xn ∈ B1(0) ⊆ X and 1

M
Txn ∈ T (B1(0)) for every n ∈ N.

Since T (B1(0)) ⊆ Y is compact (and, in (Y, ‖·‖Y ), compact ⇔ sequentially compact),
a subsequence ( 1

M
Txnk

)k∈N converges in Y . Hence, (Txnk
)k∈N is also a convergent

sequence.

“(⇐)”: Conversely, let (yn)n∈N be any sequence in T (B1(0)). For every n ∈ N there
exists zn ∈ T (B1(0)) such that ‖yn− zn‖Y ≤ 1

n
. Since there exists a sequence (xn)n∈N

in B1(0) ⊆ X such that Txn = zn, a subsequence (znk
)k∈N converges to some z∞ ∈ Y

as k →∞ by assumption. Since

lim sup
k→∞

‖ynk
− z∞‖Y ≤ lim sup

k→∞
[‖ynk

− znk
‖+ ‖znk

− z∞‖Y ]

≤ lim sup
k→∞

[ 1
nk

+ ‖znk
− z∞‖Y

]
= 0,

we conclude that a subsequence of (yn)n∈N converges. Being closed, T (B1(0)) must
contain the limit z∞ which proves that T (B1(0)) is sequentially compact. By equiva-
lence of compactness and sequential compactness in metric spaces, we obtain that
T (B1(0)) is compact. Hence, T is a compact operator.

(b) If (Y, ‖·‖Y ) is complete, then K(X, Y ) is a closed subspace of L(X, Y ).

Solution: Part (a) and linearity of the limit imply that the set of compact operators
K(X, Y ) ⊆ L(X, Y ) is a linear subspace. To prove that this subspace is closed, let
(Tk)k∈N be a sequence in K(X, Y ) such that ‖Tk−T‖L(X,Y ) → 0 for some T ∈ L(X, Y )
as k →∞. To show T ∈ K(X, Y ), consider a bounded sequence (xn)n∈N in X and
choose the nested, unbounded subsets N ⊇ Λ1 ⊇ Λ2 ⊇ . . . such that (Tkxn)n∈Λk

is
convergent in Y with limit point yk ∈ Y . This is possible by (i) since Tk is a compact
operator for every k ∈ N. Let Λ ⊆ N be the corresponding diagonal sequence (i.e.,
the kth number in Λ is the kth number in Λk). By continuity of ‖·‖Y , we can estimate

‖yk − ym‖Y = lim
Λ3n→∞

‖Tkxn − Tmxn‖Y ≤ ‖Tk − Tm‖L(X,Y ) sup
n∈Λ
‖xn‖X
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for any k,m ∈ N. Since (Tk)k∈N is convergent in L(X, Y ), we conclude that (yk)k∈N
is a Cauchy sequence in Y . Since (Y, ‖·‖Y ) is assumed to be complete, yk → y∞ for
some y∞ ∈ Y as k →∞. It then suffices to prove the following.

Claim. The sequence (Txn)n∈Λ converges to y∞.

Proof. Let ε ∈ (0,∞). Choose a fixed κ ∈ N such that ‖T − Tκ‖L(X,Y ) < ε and
‖yκ − y∞‖Y ≤ ε. Since Tκxn → yκ as Λ 3 n→∞, there exists N ∈ Λ such that for
every Λ 3 n ≥ N it holds that ‖Tκxn − yκ‖ ≤ ε. Finally, the claim follows from the
estimate

‖Txn − y∞‖Y ≤ ‖Txn − Tκxn‖Y + ‖Tκxn − yκ‖Y + ‖yκ − y∞‖Y
≤ ‖T − Tκ‖L(X,Y ) sup

m∈Λ
‖xm‖X + ‖Tκxn − yκ‖Y + ‖yκ − y∞‖Y

< 2ε+ ε sup
m∈Λ
‖xm‖X ,

which holds for every Λ 3 n ≥ N . Since ε ∈ (0,∞) was arbitrary, the claim
follows.

(c) Let T ∈ L(X, Y ). If its range T (X) ⊆ Y is finite-dimensional, then T ∈ K(X, Y ).

Solution: The image of B1(0) under T ∈ L(X, Y ) is bounded. If T (X) ⊆ Y is of
finite dimension, then so is T (X) = T (X), and T (B1(0)) is compact as a bounded,
closed subset of T (X).

(d) Let T ∈ L(X, Y ) and S ∈ L(Y, Z). If T or S is a compact operator, then S ◦ T
is a compact operator.

Solution: Suppose T is a compact operator. Then, a subsequence (Txnk
)k∈N is

convergent in Y by (a). Since S is continuous, (STxnk
)k∈N is convergent in Z, which

by (a) proves that S ◦ T is a compact operator.

Suppose S is a compact operator. Since T is continuous, the sequence (Txn)n∈N is
bounded in Y . Then, a subsequence (STxnk

)k∈N is convergent in Z by (a), which
again proves that S ◦ T is a compact operator.

(e) If X is reflexive, then any operator T ∈ L(X, Y ) which maps weakly convergent
sequences to strongly convergent sequences, that is

xn
w−⇀ x in X =⇒ Txn → x in Y,

is a compact operator.

Solution: Let (xn)n∈N be any bounded sequence in X. Since X is reflexive, a
subsequence (xnk

)k∈N converges weakly in X by the Eberlein–Šmulian theorem. Then,

2/10 last update: 14 December 2021



d-math
Prof. J. Teichmann

Functional Analysis I
Solution to Problem Set 11

ETH Zürich
Autumn 2021

(Txnk
)k∈N is norm-convergent in Y by assumption and (a) implies that T is a compact

operator.

11.2. Schauder’s theorem

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces and let T ∈ L(X, Y ) be a bounded
linear operator. Prove that T is compact if and only if T ∗ is compact.

Solution: “(⇒)“: Let T ∈ L(X, Y ) be compact. This implies in particular that
K := T (B) ⊆ Y is compact, where B ⊆ X denotes the closed unit ball. Moreover, let
B∗ ⊆ Y ∗ denote the closed unit ball in Y ∗ and let (x∗n)n∈N ⊆ T ∗(B∗) be an arbitrary
sequence. Our goal is to show that (x∗n)n∈N possesses a converging subsequence. Let
(y∗n)n∈N ⊆ B∗ be a sequence s.t. x∗n = T ∗ny

∗
n for all n ∈ N and let F := {y∗n|K : n ∈

N} ⊆ C(K,R) be the set of those continuous functions on K obtained by restricting
the elements of the sequence (y∗n)n∈N to K. On the one hand, F is bounded since (by
density of T (B) in K)

sup
f∈F
‖f‖C(K,R) = sup

f∈F
‖f‖C(T (B),R) ≤ sup

n∈N,x∈B
[‖y∗n‖Y ∗‖Tx‖Y ] ≤ ‖T‖L(X,Y ) <∞.

On the other hand, F is equi-continuous since, for all y1, y2 ∈ K, it holds that

sup
f∈F
|f(y1)− f(y2)| ≤ sup

y∗∈Y ∗,‖y∗‖Y ∗≤1
|y∗(y1)− y∗(y2)|

≤ sup
y∗∈Y ∗,‖y∗‖Y ∗≤1

‖y∗‖Y ∗‖y1 − y2‖Y = ‖y1 − y2‖Y .

The Arzéla–Ascoli theorem thus ensures that there exists a sequence (nk)k∈N ⊆ N
with nk ↗ ∞ as k → ∞ such that (y∗nk

|K)k∈N ⊆ C(K,R) is uniformly converging.
This implies that

lim sup
N→∞

[
sup
k,l≥N
‖T ∗y∗nk

− T ∗y∗nl
‖X∗

]

≤ lim sup
N→∞

[
sup

k,l≥N,x∈X,‖x‖X≤1
|T ∗y∗nk

(x)− T ∗y∗nl
(x)|

]

= lim sup
N→∞

[
sup

k,l≥N,x∈X,‖x‖X≤1
|y∗nk

(Tx)− y∗nl
(Tx)|

]

≤ lim sup
N→∞

[
sup
k,l≥N
‖y∗nk
|K − y∗nl

|K‖C(K,R)

]
= 0,

i.e., that (T ∗y∗nk
)k∈N ⊆ X∗ is a Cauchy sequence and thus has a limit in X∗.

“(⇐)“: Let T ∈ L(X, Y ) and assume that T ∗ is compact. Since T ∗ ∈ L(Y ∗, X∗), the
previous argument implies that T ∗∗ ∈ L(X∗∗, Y ∗∗) is compact. Let (xn)n∈N ⊆ X be
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an arbitrary sequence satisfying supn∈N ‖xn‖X ≤ 1. With ιX : X → X∗∗ denoting the
canonical embedding, we obtain that (ιX(xn))n∈N ⊆ X∗∗ is a sequence with norms
bounded by 1. Since T ∗∗ is compact, there exists a sequence (nk)k∈N ⊆ N with
nk ↗∞ as k →∞ such that (T ∗∗ιX(xnk

))k∈N ⊆ Y ∗∗ is a converging sequence. The
fact that T ∗∗ιX = ιY T and the fact that ιY is an isometry imply that (Txnk

)k∈N is a
converging sequence in Y .

11.3. Various notions of continuity – continued

Suppose (X, ‖·‖X) and (Y, ‖·‖Y ) are K-Banach spaces (with K ∈ {R,C}).

(a) Let B∗ be the closed unit ball in Y ∗, equipped with the weak∗ topology. Prove
that a bounded linear operator A : X → Y is compact if and only if A∗|B∗ : B∗ → X∗

is σ(B∗, Y )-‖·‖X∗-continuous (i.e., weak∗-norm continuous).

Solution: If A is compact then so is A∗ by Problem 11.2 (Schauder’s theorem).
Since A∗ is σ(Y ∗, Y )-σ(X∗, X)-continuous and B∗ is weak∗-compact (more precisely,
compact w.r.t. the topology σ(Y ∗, Y )), the set A∗(B∗) is weak∗-compact in X∗.
As such, it is norm-closed and by compactness of A∗, it is also norm-compact.
Let O ⊆ X∗ be an arbitrary but fixed norm-open set. We need to show that
(A∗|B∗)−1(O) ∈ σ(B∗, Y ). For this, let y∗ ∈ B∗ with A∗y∗ ∈ O be arbitrary but fixed.
There exists χ : A∗(B∗) \ O → X such that for every x∗ ∈ A∗(B∗) \ O it holds that
|x∗(χ(x∗)) − (A∗y∗)(χ(x∗))| > 1. Thus, A∗(B∗) \ O can be covered by a union of
elements of σ(X∗, X):

A∗(B∗) \O ⊆
⋃

x∗∈A∗(B∗)\O

{
ξ∗ ∈ X∗ : |ξ∗(χ(x∗))− x∗(χ(x∗))| < 1

2

}
.

Since A∗(B∗) \O is – as norm-closed subset of a norm-compact set – norm-compact,
there exist n ∈ N, x∗1, . . . , x∗n ∈ X∗ (and x1 = χ(x∗1), x2 = χ(x∗2), . . . , xn = χ(x∗n) ∈ X)
such that

A∗(B∗) \O ⊆
n⋃
i=1

{
ξ∗ ∈ X∗ : |x∗i (xi)− ξ∗(xi)| <

1
2

}
.

Since |(A∗y∗)(xi)− x∗i (xi)| > 1 for every i ∈ {1, 2, . . . , n}, the above assures that

A∗(B∗) ∩O ⊇
n⋂
i=1

{
ξ∗ ∈ A∗(B∗) : |x∗i (xi)− ξ∗(xi)| ≥

1
2

}

⊇
n⋂
i=1

{
ξ∗ ∈ A∗(B∗) : |ξ∗(xi)− (A∗y∗)(xi)| <

1
2

}
.
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This leads to
n⋂
i=1

{
υ∗ ∈ B∗ : |υ∗(Axi)− y∗(Axi)| <

1
2

}

=
n⋂
i=1

{
υ∗ ∈ B∗ : |(A∗υ∗)(xi)− (A∗y∗)(xi)| <

1
2

}
⊆ (A∗|B∗)−1(O).

Thus, (A∗|B∗)−1(O) ∈ σ(B∗, Y ).

Conversely, if A∗|B∗ is weak∗-norm continuous, then – since B∗ is weak∗-compact –
A∗(B∗) is norm-compact. Thus, A∗ is compact and by Problem 11.2 (Schauder’s
theorem), so is A.

(b) Suppose (X, ‖·‖X) and (Y, ‖·‖Y ) are reflexive. A linear operator A : X → Y is
compact if and only if A|B : B → Y is σ(B,X∗)-‖·‖Y -continuous (i.e., weak–norm
continuous).

Solution: Schauder’s theorem implies that A is compact if and only if A∗ ∈ L(Y ∗, X∗)
is compact. Part (a) implies on the other hand that this is equivalent toA∗∗|B∗∗ : B∗∗ →
Y ∗∗ being σ(B∗∗, X∗)-‖·‖Y ∗∗-continuous. The reflexivity of (X, ‖·‖X) and (Y, ‖·‖Y )
implies that A|B : B → Y is σ(B,X∗)-‖·‖Y -continuous if and only if A∗∗|B∗∗ : B∗∗ →
Y ∗∗ is σ(B∗∗, X∗)-‖·‖Y ∗∗-continuous.

11.4. Ehrling’s lemma

Let (X, ‖·‖X), (Y, ‖·‖Y ) and (Z, ‖·‖Z) be Banach spaces, let T ∈ L(X, Y ) be compact
and let J ∈ L(Y, Z) be injective. Prove that for every ε ∈ (0,∞), there exists
C ∈ [0,∞) such that

‖Tx‖Y ≤ ε‖x‖X + C‖JTx‖Z for all x ∈ X.

Solution: Assume for a contradiction that the claim is not true. Then there exist
ε ∈ (0,∞) and (xn)n∈N ⊆ X such that

‖Txn‖Y > ε‖xn‖X + n‖JTxn‖Z for all n ∈ N.

In particular, it holds for every n ∈ N that Txn 6= 0 so that the sequence (x′n)n∈N ⊆ X,
given by x′n = xn

‖Txn‖Y
for all n ∈ N, is well-defined and satisfies

1 = ‖Tx′n‖Y > ε‖x′n‖X + n‖JTx′n‖Z for all n ∈ N.

This implies that, on the one hand, (x′n)n∈N ⊆ X is bounded and, on the other hand,
that JTx′n → 0 in Z as n→∞. The boundedness of (x′n)n∈N ⊆ X and the assumption
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that T is compact imply – based on part (a) of Problem 11.1 (Compact operators) –
that there exists a subsequence (x′nk

)k∈N such that (Tx′nk
)k∈N ⊆ Y converges to some

limit y ∈ Y as k → ∞. The fact that ‖Tx′n‖Y = 1 for every n ∈ N implies that
‖y‖Y = 1. The assumed continuity of J , on the other hand, implies that JTx′nk

→ Jy
in Z as k →∞. Since JTx′n → 0 as n→∞, we conclude that Jy = 0. By injectivity
of J , we obtain y = 0. This, however, contradicts ‖y‖Y = 1, which we had already
deduced above.

11.5. Integral operators

Let m ∈ N and let ∅ 6= Ω ⊆ Rm be a bounded open set. Given k ∈ L2(Ω × Ω,C),
consider the linear operator K : L2(Ω,C)→ L2(Ω,C) defined by

(Kf)(x) =
∫

Ω
k(x, y)f(y) dy.

(a) Prove that K is well-defined, i.e., Kf ∈ L2(Ω,C) for any f ∈ L2(Ω,C).

Solution: Let f ∈ L2(Ω,C). Then Hölder’s inequality and Tonelli’s theorem imply∫
Ω
|(Kf)(x)|2 dx =

∫
Ω

∣∣∣∣∫
Ω
k(x, y)f(y) dy

∣∣∣∣2 dx ≤ ∫
Ω

(∫
Ω
|k(x, y)f(y)| dy

)2
dx

≤
∫

Ω

(∫
Ω
|k(x, y)|2 dy

)
‖f‖2

L2(Ω) dx = ‖k‖2
L2(Ω×Ω)‖f‖2

L2(Ω).

Since k ∈ L2(Ω × Ω,C) by assumption, ‖Kf‖L2(Ω,C) ≤ ‖k‖L2(Ω×Ω,C)‖f‖L2(Ω,C) < ∞
follows.

(b) Prove that K is a compact operator.

Solution: Being a Hilbert space, L2(Ω,C) is reflexive. Part (e) of Problem 11.1
(Compact operators) implies that K : L2(Ω,C)→ L2(Ω,C) is a compact operator if
K maps weakly convergent sequences to norm-convergent sequences.

Let (fn)n∈N be a sequence in L2(Ω,C) such that fn w−⇀ f as n → ∞ for some
f ∈ L2(Ω,C). Since k ∈ L2(Ω×Ω,C), Fubini’s theorem implies that k(x, ·) ∈ L2(Ω,C)
for almost every x ∈ Ω. Weak convergence therefore implies

(Kfn)(x) =
〈
k(x, ·), fn

〉
L2(Ω,C)

n→∞−−−→
〈
k(x, ·), f

〉
L2(Ω,C)

= (Kf)(x)

for almost every x ∈ Ω. As weakly convergent sequence, (fn)n∈N is bounded: there
exists C ∈ R such that ‖fn‖L2(Ω,C) ≤ C for every n ∈ N. By Hölder’s inequality,

|(Kfn)(x)| ≤
∫

Ω
|k(x, y)fn(y)| dy ≤ ‖k(x, ·)‖L2(Ω)‖fn‖L2(Ω) ≤ C‖k(x, ·)‖L2(Ω).
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The assumption k ∈ L2(Ω× Ω,C) and Fubini’s theorem imply that (the equivalence
class of) the function x 7→ C‖k(x, ·)‖L2(Ω,C) is in L2(Ω,C). Thus, (Kfn)(x) is domi-
nated by a function in L2(Ω,C). Since (Kfn)(x) converges pointwise for almost every
x ∈ Ω and since (Kfn) is dominated by a function in L2(Ω,C), Lebesgue’s dominated
convergence theorem implies L2-convergence ‖Kfn −Kf‖L2(Ω,C) → 0 as n→∞.

(c) If, in addition, the kernel k satisfies k(x, y) = k(y, x) for almost every (x, y) ∈
Ω× Ω, prove that the operator A : L2(Ω,C)→ L2(Ω,C), defined by

Af = f −Kf,

is surjective if and only if it is injective.

Solution: For f, g ∈ L2(Ω,C) using repeatedly Fubini’s theorem we compute:

(Kf, g)L2 =
∫

Ω
Kf(x)g(x) dx

=
∫

Ω

(∫
Ω
k(x, y)f(y) dy

)
g(x) dx

=
∫

Ω×Ω
k(x, y)g(x)f(y) dx dy

=
∫

Ω
f(y)

(∫
Ω
k(x, y)g(x) dx

)
dy

=
∫

Ω
f(y)

(∫
Ω
k(x, y)g(x) dx

)
dy = (f,K∗g)L2 ,

that is,

(K∗g)(x) =
∫

Ω
k(y, x)g(y)dy.

Hence, under the additional assumption that k(x, y) = k(y, x) for a.a. x, y ∈ Ω, the
bounded operator K is self-adjoint. Therefore, the operator A = (1−K) : L2(Ω)→
L2(Ω) is also self-adjoint.

According to (b), K is a compact operator, which implies that the operator A = (1−K)
has closed image im(A) ⊆ H. According to Banach’s closed range theorem, this is
equivalent to im(A) = ker(A∗)⊥. Since A∗ = A, we conclude in our setting that

A surjective ⇔ H = im(A) = ker(A)⊥ ⇔ ker(A) = {0} ⇔ A injective.

11.6. Integral operators again
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Let m ∈ N and let ∅ 6= K ⊆ Rm be a non-empty compact set. Given k ∈ C(K×K,R),
consider the linear operator T : C(K,R)→ C(K,R) defined by

(Tf)(x) =
∫
K
k(x, y)f(y) dy for all f ∈ C(K,R).

(a) Prove that T is well-defined, i.e., Tf ∈ C(K,R) for every f ∈ C(K,R).

Solution: Clearly, for every x ∈ K, f ∈ C(K,R),∫
K
|k(x, y)||f(y)| dy ≤ ‖k‖C(K×K,R)‖f‖C(K,R)|K| <∞

Moreover, for all (xn)n∈N ⊆ K, x∞ ∈ K with xn → x∞ in K as n→∞, it holds by
Lebesgue’s dominated convergence theorem that

lim sup
n→∞

∫
K
|(k(xn, y)− k(x∞, y))f(y)| dy = 0.

Hence, Tf ∈ C(K,R) for every f ∈ C(K,R).

(b) Prove that T is a compact operator.

Solution: Let F = {Tf | f ∈ C(K,R), ‖f‖C(K,R) ≤ 1} ⊆ C(K,R). Then, clearly,

sup
g∈F
‖g‖C(K,R) ≤ ‖T‖L(C(K,R),C(K,R)) ≤ |K|‖k‖C(K×K,R) <∞,

that is, F ⊆ C(K,R) is bounded. For the application of the Arzéla–Ascoli theorem
to be justified, it remains to show that F is equi-continuous. For this, note that
k is uniformly continuous on the compact set K × K and therefore, there exists
δ : (0,∞) → (0,∞) such that for all ε ∈ (0,∞), (x1, y1), (x2, y2) ∈ K × K with
‖x1 − x2‖Rm + ‖y1 − y2‖Rm < δε it holds that ‖k(x1, y1) − k(x2, y2)‖Rm < ε. Hence,
for all n ∈ N, ε ∈ (0,∞), x1, x2 ∈ K with ‖x1 − x2‖Rm < δε, we have that

sup
g∈F
|g(x1)− g(x2)| = sup

f∈C(K,R),‖f‖C(K,R)≤1
|(Tf)(x1)− (Tf)(x2)|

≤ sup
f∈C(K,R),‖f‖C(K,R)≤1

∫
K
|k(x1, y)− k(x2, y)||f(y)| dy

≤ ε|K|.

This establishes the equi-continuity of F . Combining this with the previously proved
boundedness of F and the Arzéla–Ascoli theorem, we obtain that F ⊆ C(K,R) is
compact, i.e., T is a compact operator.
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(c) If k(x, y) = k(y, x) for all x, y ∈ K, prove that the operator A : C(K,R) →
C(K,R), defined by Af = f − Tf for every f ∈ C(K,R) is surjective if and only if it
is injective.

Solution: By the fact that im(I − T ) is closed as T is compact, the closed range
theorem ensures that A = I − T is surjective if and only if ker(A∗) = {0}, that is, if
and only if A∗ is injective. By the Riesz–Markov–Kakutani representation theorem,
we can (and will) identify (C(K,R))∗ with the spaceM(K) of finite signed regular
Borel measures on K. Also we will sloppily consider A∗ and T ∗ as maps fromM(K)
toM(K). This being said, note that for all µ ∈M(K), f ∈ C(K,R) it holds that

〈T ∗µ, f〉 = 〈µ, Tf〉 =
∫
K

(Tf)(x) dµ(x) =
∫
K

∫
K
k(x, y)f(y) dy dµ(x)

=
∫
K
f(y)

∫
K
k(x, y) dµ(x) dy,

where the last term can be interpreted as the integration of f against the signed
measure with density K 3 x 7→

∫
K k(y, x) dµ(y) ∈ R w.r.t. the Lebesgue measure on

K. In other words, for every µ ∈M(K) and every Borel-measurable set A ⊆ K, it
holds that

(T ∗ν)(A) =
∫
A

∫
K
k(y, x) dµ(y) dx

For every µ ∈ ker(A∗), it therefore has to hold that µ has a density h w.r.t. the
Lebesgue measure on K and for a.e. x ∈ K, it holds that

h(x) =
∫
K
k(y, x) dµ(y) =

∫
K
k(y, x)h(y) dy.

Now, by similar arguments as in part (a), the term on the right hand side is
continuous w.r.t. x. Hence, we may assume that h is continuous and satisfies
h(x) =

∫
K k(y, x)h(y) dy for every x ∈ K. With the additional assumption that

k(y, x) = k(x, y) for all x, y ∈ K, we obtain that surjectivity of A is equivalent to the
equation h = Kh having only the trivial solution, that is, to the injectivity of A.

Remark. In both 11.5.(c) and 11.6.(c), the symmetry assumption on k is not really
necessary. Riesz–Schauder theory ensures that dim(ker(I −T )) = dim(ker(I −T ∗)) =
codim(im(I − T )) = codim(im(I − T ∗)).

11.7. A dual statement

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be Banach spaces and let T : D(T ) ⊆ X → Y be a densely
defined closed linear operator. Prove that the following properties are equivalent:
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(i) T ∗ is surjective.

(ii) There exists C ∈ [0,∞) such that ‖u‖X ≤ C‖Tu‖Y for all u ∈ D(T ).

(iii) T is injective and has closed range.

Solution: “(i)⇒ (ii)“: Since T is a closed linear operator and im(T ∗) = X∗ is closed,
Banach’s closed range theorem ensures that ker(T )⊥ = X∗, i.e., ker(T ) = {0}. Hence,
T−1 : Y → X is a well-defined closed operator. By the closed range theorem, T−1 is
continuous. Hence, there exists C ∈ [0,∞) such that for every u ∈ D(T ) it holds that
‖u‖X = ‖T−1Tu‖X ≤ C‖Tu‖Y .

“(ii)⇒ (iii)“: From ‖u‖X ≤ C‖Tu‖Y for all u ∈ D(T ) it follows for every u ∈ ker(T )
immediately that u = 0 so that T is injective. Moreover, let (yn)n∈N ⊆ im(T ) and
y∞ ∈ Y satisfy lim supn→∞‖yn − y∞‖Y = 0. Then there exist (un)n∈N ⊆ D(T )
such that yn = Tun for every n ∈ N. The fact that (yn)n∈N is Cauchy together
with the assumed inequality implies that (un)n∈N is a Cauchy sequence in X. Since
(X, ‖·‖X) is complete, there exists u∞ ∈ X so that un → u∞ as n → ∞. Since
T is closed, un → u∞ and Tun → y∞ as n → ∞, it follows that u∞ ∈ D(T ) and
y∞ = Tu∞ ∈ im(T ). Thus, im(T ) is closed.

“(iii) ⇒ (i)“: Since im(T ) is closed and T is a closed operator, Banach’s closed
range theorem implies that im(T ∗) = (ker(T ))⊥. Since T is in addition injective,
im(T ∗) = X∗, i.e., T ∗ is surjective.
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