12.1. Spectra of shifts

Let $S: \ell^{2}(\mathbb{N}, \mathbb{C}) \rightarrow \ell^{2}(\mathbb{N}, \mathbb{C})$ be the right shift on $\ell^{2}(\mathbb{N}, \mathbb{C})$, i.e.,

$$
S\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(0, x_{1}, x_{2}, \ldots\right) \quad \text { for all }\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}(\mathbb{N}, \mathbb{C}) .
$$

(a) Calculate the operator norm $\|S\|_{L\left(\ell^{2}(\mathbb{N}, \mathbb{C}), \ell^{2}(\mathbb{N}, \mathbb{C})\right)}$ and the spectral radius r_{S} of S.

Solution: It holds for all $x \in \ell^{2}(\mathbb{N}, \mathbb{C})$ that $\|S x\|_{\ell^{2}(\mathbb{N}, \mathbb{C})}=\|x\|_{\ell^{2}(\mathbb{N}, \mathbb{C})}$. It follows for all $n \in \mathbb{N}, x \in \ell^{2}(\mathbb{N}, \mathbb{C})$ that $\left\|S^{n} x\right\|_{\ell^{2}(\mathbb{N}, \mathbb{C})}=\|x\|_{\ell^{2}(\mathbb{N}, \mathbb{C})}$. Thus, we obtain $\left\|S^{n}\right\|_{L\left(\ell^{2}(\mathbb{N}, \mathbb{C}), \ell^{2}(\mathbb{N}, \mathbb{C})\right)}=1$ for all $n \in \mathbb{N}$. This implies that $\|S\|_{L\left(\ell^{2}(\mathbb{N}, \mathbb{C}), \ell^{2}(\mathbb{N}, \mathbb{C})\right)}=1$ and $r_{S}=1$.
(b) Determine the point spectrum $\sigma_{p}(S)$, the continuous spectrum $\sigma_{c}(S)$ and the residual spectrum $\sigma_{r}(S)$ of S.

Solution: For $x=\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{2}, \lambda \in \mathbb{C}$, the relation $\lambda x=S x$ implies that $\lambda x_{1}=0$ and $\lambda x_{n+1}=x_{n}$ for every $n \in \mathbb{N}$. For $\lambda \neq 0$, this leads to $x=0$. That is, $\sigma_{p}(S) \subseteq\{0\}$. Since S is an isometry, S is injective and therefore, $0 \notin \sigma_{p}(S)$. Hence, $\sigma_{p}(S)=\emptyset$.
Note that, for every $\lambda \in \mathbb{C}$ with $|\lambda|<1$ it holds that $x^{(\lambda)}:=\left(\lambda^{n-1}\right)_{n \in \mathbb{N}} \in \ell^{2}(\mathbb{N}, \mathbb{C})$ (for $\left.\lambda=0, x^{(\lambda)}=e_{1}=(1,0,0, \ldots)\right)$ and $\lambda x_{\lambda}=S^{*} x_{\lambda}$. In particular, for every $\lambda \in \mathbb{C}$ with $|\lambda|<1$, the range of $\lambda-S$ cannot be dense as $\operatorname{ker}\left(\bar{\lambda}-S^{*}\right) \neq\{0\}$. Thus, $\left\{\lambda \in \mathbb{C}||\lambda|<1\} \subseteq \sigma_{r}(S) \cup \sigma_{p}(S)=\sigma_{r}(S)\right.$ (and we saw during the proof that $\left\{\lambda \in \mathbb{C}||\lambda|<1\} \subseteq \sigma_{p}\left(S^{*}\right)\right)$. Moreover, since $\{\lambda \in \mathbb{C}||\lambda|<1\} \subseteq \sigma(S) \subseteq\{\lambda \in \mathbb{C} \mid$ $|\lambda| \leq 1\}$ and $\sigma(S)$ is closed (as the resolvent set is open), we know at this stage that $\sigma(S)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\}$.

For $\lambda \in \mathbb{C}$ with $|\lambda|=1, x \in \operatorname{ker}\left(\lambda-S^{*}\right)$ implies that $\left\|S^{*} x\right\|_{\ell^{2}(\mathbb{N}, \mathbb{C})}=\|\lambda x\|_{\ell^{2}(\mathbb{N}, \mathbb{C})}=$ $\|x\|_{\ell^{2}(\mathbb{N}, \mathbb{C})}$, i.e., $x_{1}=0$. But this implies $x_{2}=0, x_{3}=0 \ldots$ and inductively $x_{n}=0$ for all $n \in \mathbb{N}$. Hence, for every $\lambda \in \mathbb{C}$ with $|\lambda|=1$, we have that $\operatorname{ker}\left(\bar{\lambda}-S^{*}\right)=\{0\}$ (in other words, $\left\{\lambda \in \mathbb{C}||\lambda|=1\} \cap \sigma_{p}\left(S^{*}\right)=\emptyset\right)$ and, therefore, $\operatorname{im}(\lambda-S)$ is dense. Thus, $\left\{\lambda \in \mathbb{C}||\lambda|=1\} \cap \sigma_{r}(S)=\emptyset\right.$. Since we know already that $\sigma(S)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\}$ and $\sigma_{p}(S)=\emptyset$, it follows that $\left\{\lambda \in \mathbb{C}||\lambda|=1\} \subseteq \sigma_{c}(S)\right.$.
To sum up, we found that

$$
\sigma_{p}(S)=\emptyset, \quad \sigma_{c}(S)=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}, \quad \text { and } \quad \sigma_{r}(S)=\{\lambda \in \mathbb{C}| | \lambda \mid<1\} .
$$

(c) Do the same for S^{*}, the left shift.

Solution: First, note that $\lambda \in \sigma\left(S^{*}\right)$ if and only if $\bar{\lambda} \in \sigma(S)$. Hence, we obtain from $\sigma(S)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\}$ that $\sigma\left(S^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid \leq 1\}$. Moreover, having already seen in the part (b) that $\sigma_{p}\left(S^{*}\right) \supseteq\{\lambda \in \mathbb{C}| | \lambda \mid<1\}$ and that $\{\lambda \in \mathbb{C}||\lambda|=$ $1\} \cap \sigma_{p}\left(S^{*}\right)=\emptyset$, we obtain that $\sigma_{p}\left(S^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<1\}$. In addition, since for every
$\lambda \in \sigma_{r}\left(S^{*}\right)$ we would need to have $\bar{\lambda} \in \sigma_{p}(S)$, we see that $\sigma_{r}\left(S^{*}\right)=\emptyset$. Consequentially, $\sigma_{c}\left(S^{*}\right)=\sigma\left(S^{*}\right) \backslash\left(\sigma_{p}\left(S^{*}\right) \cup \sigma_{r}\left(S^{*}\right)\right)=\sigma\left(S^{*}\right) \backslash \sigma_{p}\left(S^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}$.

To sum up:

$$
\sigma_{p}\left(S^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid<1\}, \quad \sigma_{c}\left(S^{*}\right)=\{\lambda \in \mathbb{C}| | \lambda \mid=1\}, \quad \text { and } \quad \sigma_{r}\left(S^{*}\right)=\emptyset .
$$

12.2. Fredholm's alternative (on Hilbert spaces)

Let H be a Hilbert space and let $K \in L(H)$ be a compact operator. Prove the following statements. (The goal of this exercise lies in (d) and (e) below.)
(a) $\operatorname{dim}(\operatorname{ker}(I-K))<\infty$.

Solution: Assume that $\operatorname{dim}(\operatorname{ker}(I-K))=\infty$. Then there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \operatorname{ker}(I-K)$ with $\left\langle x_{n}, x_{m}\right\rangle=\delta_{n m}$ for all $n, m \in \mathbb{N}$. In particular, $\left(x_{n}\right)_{n \in \mathbb{N}}$ does not have a converging subsequence. By compactness of K and by $x_{n}=K x_{n}$ for every $n \in \mathbb{N}$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ should have a converging subsequence, though.

Alternatively, restricting K to the closed (and therefore complete) subspace $\operatorname{ker}(I-K)$, we are in the situation of a Hilbert/Banach space on which the identity operator is a compact operator or, put differently, in which the closed unit ball is compact. This only ever happens in finite dimensions.
(b) $\operatorname{im}(I-K)$ is closed.

Solution: We claim that there exists $\gamma \in(0, \infty)$ so that $\|x\| \leq \gamma\|x-K x\|$ for all $x \in(\operatorname{ker}(I-K))^{\perp}$. Indeed, if this was not the case, then there would exist a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq(\operatorname{ker}(I-K))^{\perp}$ satisfying $1=\left\|x_{n}\right\|>n\left\|x_{n}-K x_{n}\right\|$ for all $n \in \mathbb{N}$. This would imply that $x_{n}-K x_{n} \rightarrow 0$ as $n \rightarrow \infty$. On the other hand, by compactness of K, we may assume (by passing to a subsequence, if necessary) that $K x_{n} \rightarrow y$ as $n \rightarrow \infty$ for some $y \in H$. Consequentially, we would have that $x_{n}=\left(x_{n}-K x_{n}\right)+K x_{n} \rightarrow 0+y=y$ as $n \rightarrow \infty$. Hence, we would obtain $y \in(\operatorname{ker}(I-K))^{\perp},\|y\|=\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=1$, and $K y=\lim _{n \rightarrow \infty} K x_{n}=y$. But this is not possible as $y \in(\operatorname{ker}(I-K))^{\perp}$ and $K y=y$ (i.e., $y \in \operatorname{ker}(I-K)$) would imply that $y=0$, contradicting $\|y\|=1$.

With $\gamma \in(0, \infty)$ so that $\|x\| \leq \gamma\|x-K x\|$ for all $x \in(\operatorname{ker}(I-K))^{\perp}$, we can now conclude that $\operatorname{im}(I-K)$ is closed: Let $\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq \operatorname{im}(I-K)$ be an arbitrary sequence converging to y_{∞} in H. Let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq H$ satisfy for all $n \in \mathbb{N}$ that $y_{n}=x_{n}-K x_{n}$. Denoting by $P \in L(H)$ the orthogonal projection onto the closed subspace $(\operatorname{ker}(I-K))^{\perp}$, we obtain that $\left(P x_{n}\right)_{n \in \mathbb{N}} \subseteq(\operatorname{ker}(I-K))^{\perp}$ (and therefore $\left.x_{n}-P x_{n} \in \operatorname{ker}(I-K)\right)$ so that $P x_{n}-K P x_{n}=x_{n}-K x_{n}=y_{n}$ for every $n \in \mathbb{N}$.

Prof. J. Teichmann

Now, we can use the previously obtained inequality to verify that $\left(P x_{n}\right)_{n \in \mathbb{N}} \subseteq H$ is a Cauchy sequence:

$$
\limsup _{N \rightarrow \infty} \sup _{m, n \geq N}\left\|P x_{n}-P x_{m}\right\| \leq \limsup _{N \rightarrow \infty} \sup _{m, n \geq N} \gamma\left\|y_{n}-y_{m}\right\|=0 .
$$

Thus, there exists a limit $x_{\infty} \in H$ of $\left(P x_{n}\right)_{n \in \mathbb{N}}$ and $x_{\infty}-K x_{\infty}=\lim _{n \rightarrow \infty}(I-K) P x_{n}=$ $\lim _{n \rightarrow \infty} y_{n}=y_{\infty}$, i.e., $y_{\infty} \in \operatorname{im}(I-K)$.
(c) $\operatorname{im}(I-K)=\left(\operatorname{ker}\left(I-K^{*}\right)\right)^{\perp}$.

Solution: This follows immediately from the fact that $\overline{\operatorname{im}(I-K)}=\left(\operatorname{ker}\left(I-K^{*}\right)\right)^{\perp}$ and the fact that $\operatorname{im}(I-K)$ is closed (cp. part (b)).
(d) $\operatorname{ker}(I-K)=\{0\}$ if and only if $\operatorname{im}(I-K)=H$.

Solution: " \Rightarrow)": Assume for a contradiction that $\operatorname{ker}(I-K)=\{0\}$ and $\operatorname{im}(I-K) \neq$ H. We first show by induction that $(I-K)^{k+1}(H) \subsetneq(I-K)^{k}(H)$ for every $k \in \mathbb{N}_{0}$. Indeed, for $k=0$, this is just the previous assumption. And if $k \in \mathbb{N}$ is such that $(I-K)^{k}(H) \subsetneq(I-K)^{k-1}(H)$ but $(I-K)^{k+1}(H)=(I-K)^{k}(H)$, then we obtain that $x_{0} \in(I-K)^{k-1}(H) \backslash(I-K)^{k}(H)$ gets mapped by $I-K$ to $(I-K) x_{0} \in(I-K)^{k}(H)=(I-K)^{k+1}(H)=(I-K)\left((I-K)^{k}(H)\right)$ so that there has to exist $x_{1} \in(I-K)^{k}(H)$ satisfying $(I-K) x_{0}=(I-K) x_{1}$. Hence, $0 \neq x_{0}-x_{1} \in \operatorname{ker}(I-K)$ (since $x_{0} \neq x_{1}$ as $x_{0} \notin(I-K)^{k}(H)$ while $x_{1} \in(I-K)^{k}(H)$), which contradicts that $I-K$ is injective.

Knowing that - under the assumption that $\operatorname{ker}(I-K)=\{0\}$ and $\operatorname{im}(I-K) \neq H$ - it has to hold for every $k \in \mathbb{N}_{0}$ that $(I-K)^{k+1}(H) \subsetneq(I-K)^{k}(H)$ and since $(I-K)^{k}(H)$ is closed for every $k \in \mathbb{N}$ by part (b), we can now choose a sequence $\left(x_{k}\right)_{k \in \mathbb{N}} \subseteq H$ such that $\left\|x_{k}\right\|=1$ and $x_{k} \in(I-K)^{k}(H) \cap\left((I-K)^{k+1}(H)\right)^{\perp}$ for every $k \in \mathbb{N}$. Moreover, note that for all $k, l \in \mathbb{N}$ with $k<l$ it holds that

$$
x_{k}-\left(K x_{k}-K x_{l}\right)=\underbrace{\left(x_{k}-K x_{k}\right)}_{\in(I-K)^{k+1}(H)}-\underbrace{\left(x_{l}-K x_{l}\right)}_{\in(I-K)^{l+1}(H)}+\underbrace{x_{l}}_{\in(I-K)^{l}(H)} \in(I-K)^{k+1}(H)
$$

i.e., $\left\|K x_{k}-K x_{l}\right\| \geq \operatorname{dist}\left(x_{k},(I-K)^{k+1}(H)\right)=\left\|x_{k}\right\|=1$ (since, sloppily speaking, $K x_{k}-K x_{l}$ has to cover at least the part of x_{k} perpendicular to $(I-K)^{k+1}(H)$). In particular, $\left(K x_{k}\right)_{k \in \mathbb{N}}$ does not have a converging subsequence, although $\left(x_{k}\right)_{k \in \mathbb{N}} \subseteq H$ is a bounded sequence and K is compact.
$"(\Leftarrow)$ ": $\operatorname{im}(I-K)=H$ implies that $\operatorname{ker}\left(I-K^{*}\right)=\{0\}$. By Schauder's theorem (cp. also Problem 11.2 (Schauder's theorem)) K^{*} is compact. The previous part of the proof hence implies that $\operatorname{im}\left(I-K^{*}\right)=H$. Hence, $\operatorname{ker}(I-K)=\{0\}$.
(e) $\operatorname{dim}(\operatorname{ker}(I-K))=\operatorname{dim}\left(\operatorname{ker}\left(I-K^{*}\right)\right)$.

Solution: Assume for a contradiction that $\operatorname{dim}(\operatorname{ker}(I-K))<\operatorname{dim}\left(\operatorname{ker}\left(I-K^{*}\right)\right)$. Since $\operatorname{ker}\left(I-K^{*}\right)=\operatorname{im}(I-K)^{\perp}$, we are assuming that $\operatorname{dim}(\operatorname{ker}(I-K))<\operatorname{dim}\left(\operatorname{im}(I-K)^{\perp}\right)$. Since $\operatorname{ker}(I-K)$ is finite-dimensional by part (a) and $\operatorname{dim}(\operatorname{ker}(I-K))<\operatorname{dim}(\operatorname{im}(I-$ $K)^{\perp}$), there exists an injective, but not surjective map $A_{0}: \operatorname{ker}(I-K) \rightarrow \operatorname{im}(I-K)^{\perp}$. Moreover, since $\operatorname{ker}(I-K)$ is finite-dimensional, A_{0} has finite rank and is therefore compact. Define $A: H \rightarrow \operatorname{im}(I-K)^{\perp}$ via $A(x+y)=A_{0} x$ for $x \in \operatorname{ker}(I-K)$, $y \in(\operatorname{ker}(I-K))^{\perp}$. Since A is a compact linear map, $K+A$ is also a linear map (from H to H). Note that $(I-K-A) x=0$ implies that $A x=(I-K) x \in$ $\operatorname{im}(I-K) \cap(\operatorname{im}(I-K))^{\perp}=\{0\}$, hence $x \in \operatorname{ker}(I-K) \cap \operatorname{ker}(A)=\operatorname{ker}\left(A_{0}\right)=\{0\}$. On the other hand, for every $x \in H$ it holds that $(I-K-A) x=(I-K) x-A x \in$ $\operatorname{im}(I-K) \oplus \operatorname{im}(A) \subsetneq \operatorname{im}(I-K) \oplus(\operatorname{im}(I-K))^{\perp}=H$ since $\operatorname{im}(A) \subsetneq(\operatorname{im}(I-K))^{\perp}$. Hence, we have $\operatorname{ker}(I-K-A)=\{0\}$ and $\operatorname{im}(I-K-A) \neq H$, contradicting part (d). This contradiction now shows $\operatorname{dim}(\operatorname{ker}(I-K)) \geq \operatorname{dim}\left(\operatorname{ker}\left(I-K^{*}\right)\right)$. Since K^{*} is, by Schauder's theorem, compact as well, we obtain by the above argument that $\operatorname{dim}\left(\operatorname{ker}\left(I-K^{*}\right)\right) \geq \operatorname{dim}(\operatorname{ker}(I-K))$.

Remark. The statement remains true in the Banach space setting. (The proof gets slightly more technical.) In particular, we just saw - as mentioned earlier - that the extra symmetry assumption on the kernel k in Problem 11.5 (Integral operators) was not really necessary.

12.3. Symmetry vs. self-adjointness

Let H be a \mathbb{C}-Hilbert space and let $A: D_{A} \subseteq H \rightarrow H$ be a densely defined symmetric linear operator. Prove that the following statements are equivalent:
(i) A is self-adjoint.
(ii) A is closed and $\operatorname{ker}\left(A^{*}+i\right)=\{0\}=\operatorname{ker}\left(A^{*}-i\right)$.
(iii) $\operatorname{im}(A+i)=H=\operatorname{im}(A-i)$.

Solution: $"(i) \Rightarrow(i i) "$: Since A^{*} is closed and $A=A^{*}$ by assumption, A is closed. Moreover, for every $x \in D_{A}$ it holds that (since $A=A^{*}$)

$$
\langle A x, x\rangle=\left\langle x, A^{*} x\right\rangle=\langle x, A x\rangle=\overline{\langle A x, x\rangle},
$$

i.e., $\langle A x, x\rangle \in \mathbb{R}$. On the other hand, it holds for every $x \in \operatorname{ker}\left(A^{*}+i\right)$ that

$$
i\|x\|^{2}=\langle x,-i x\rangle=\left\langle x, A^{*} x\right\rangle=\langle A x, x\rangle \in \mathbb{R}
$$

which results in $x=0$. Similarly do we obtain for every $x \in \operatorname{ker}\left(A^{*}-i\right)$ that $-i\|x\|^{2}=\langle A x, x\rangle \in \mathbb{R}$, which again implies that $x=0$.
" $(i i) \Rightarrow($ iii $)$ ": We show that $\operatorname{im}(A+i)$ is closed and dense. Let $\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq \operatorname{im}(A+i)$ be a sequence converging to $y_{\infty} \in H$ as $n \rightarrow \infty$ and let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq D_{A}$ satisfy $y_{n}=(A+i) x_{n}$ for every $n \in \mathbb{N}$. Then it holds for every $n \in \mathbb{N}$ that

$$
\begin{aligned}
\left\|y_{n}\right\|\left\|x_{n}\right\| & \geq\left|\left\langle y_{n}, x_{n}\right\rangle\right|=\left|\left\langle A x_{n}+i x_{n}, x_{n}\right\rangle\right|=\left|\left\langle A x_{n}, x_{n}\right\rangle+i\left\|x_{n}\right\|^{2}\right| \\
& =\sqrt{\left\langle A x_{n}, x_{n}\right\rangle^{2}+\left\|x_{n}\right\|^{4}} \geq\left\|x_{n}\right\|^{2} .
\end{aligned}
$$

It follows that $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq H$ is a Cauchy sequence and therefore converges to some limit $x_{\infty} \in H$. Since $y_{n}=A x_{n}+i x_{n} \rightarrow y_{\infty}$ as $n \rightarrow \infty$, it follows that $A x_{n}=$ $y_{n}-i x_{n} \rightarrow y_{\infty}-i x_{\infty}$ as $n \rightarrow \infty$. The assumption that A is closed now implies that $x_{\infty} \in D_{A}$ and $y_{\infty}-i x_{\infty}=A x_{\infty}$. Hence, $y_{\infty}=(A+i) x_{\infty} \in \operatorname{im}(A+i)$ and $\operatorname{im}(A+i)$ is closed. In an analogous way it can be shown that $\operatorname{im}(A-i)$ is closed and dense.
" $(i i i) \Rightarrow(i)$ ": Since A is symmetric, we know that $A \subseteq A^{*}$. It thus remains to show that $A^{*} \subseteq A$, i.e., that $D_{A^{*}} \subseteq D_{A}$ (and, of course, $A^{*} x=A x$ for every $x \in D_{A^{*}}$, but this is then clear). For this, let $x \in D_{A^{*}}$. Since $A+i$ is assumed to be surjective, there exists $z \in D_{A}$ such that $A^{*} x+i x=A z+i z$. Then it holds for all $y \in D_{A}$ that

$$
\langle x, A y-i y\rangle=\left\langle A^{*} x+i x, y\right\rangle=\langle A z+i z, y\rangle=\langle z, A y-i y\rangle .
$$

Moreover, since $\operatorname{im}(A-i)=H$, this implies that $x=z \in D_{A}$.

12.4. Special construction of self-adjoint operators

Let H and K be \mathbb{K}-Hilbert spaces (with $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$) and let $J \in L(K, H)$ be an injective operator with dense range.
(a) Prove that $J J^{*} \in L(H)$ is an injective operator with dense range.

Solution: For all $x \in \operatorname{ker}\left(J J^{*}\right)$ it holds that $\left\|J^{*} x\right\|_{K}^{2}=\left\langle J J^{*} x, x\right\rangle_{H}=0$. Hence, $\operatorname{ker}\left(J J^{*}\right) \subseteq \operatorname{ker}\left(J^{*}\right)=(\operatorname{im}(J))^{\perp}=\{0\}$ since J is assumed to have dense range. Moreover, for every $x \in \operatorname{im}\left(J J^{*}\right)^{\perp}$, it holds that $0=\left\langle J J^{*} x, x\right\rangle_{H}=\left\|J^{*} x\right\|_{K}^{2}$. That is, $\left(\operatorname{im}\left(J J^{*}\right)\right)^{\perp} \subseteq \operatorname{ker}\left(J^{*}\right)=\{0\}$. Thus, $\operatorname{im}\left(J J^{*}\right)$ lies dense in H.
(b) Prove that $S:=\left(J J^{*}\right)^{-1}$ (i.e., the operator $S: D_{S} \subseteq H \rightarrow H$, defined by $D_{S}=\operatorname{im}\left(J J^{*}\right)$ and $S\left(J J^{*} x\right)=x$ for all $\left.x \in H\right)$ is self-adjoint.

Solution: First, we consider the case of $\mathbb{K}=\mathbb{C}$. We show that S is a densely defined symmetric operator satisfying $\operatorname{im}(S+i)=H=\operatorname{im}(S-i)$ (where we show density and closedness of $\operatorname{im}(S+i)$ and $\operatorname{im}(S-i)$ for the latter) and invoke Problem 12.3 (Symmetry vs. self-adjointness). For the symmetry of S, let $x_{1}, x_{2} \in D_{S}$ be
arbitrary. Necessarily, there exist $w_{1}, w_{2} \in H$ such that $x_{1}=J J^{*} w_{1}$ and $x_{2}=J J^{*} w_{2}$. Self-adjointness of $J J^{*} \in L(H)$ ensures that

$$
\left\langle S x_{1}, x_{2}\right\rangle_{H}=\left\langle w_{1}, J J^{*} w_{2}\right\rangle_{H}=\left\langle J J^{*} w_{1}, w_{2}\right\rangle_{H}=\left\langle x_{1}, S x_{2}\right\rangle_{H} .
$$

For the density of $\operatorname{im}(S+i)$, consider $x \in \operatorname{im}(S+i)^{\perp}$. Since $J J^{*} x \in D_{S}$, it thus holds that

$$
0=\left\langle(S+i) J J^{*} x, x\right\rangle_{H}=\|x\|_{H}^{2}+i\left\|J^{*} x\right\|_{K}^{2},
$$

showing that $x=0$. Hence, $\overline{\operatorname{im}(S+i)}=H$. Analogously, one can show that $\overline{\operatorname{im}(S-i)}=H$.

For the closedness of $\operatorname{im}(S+i)$, consider a sequence $\left(y_{n}\right)_{n \in \mathbb{N}} \subseteq \operatorname{im}(S+i)$ with limit y_{∞} and let $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq D_{S}$ be given by $y_{n}=S x_{n}+i x_{n}$ for every $n \in \mathbb{N}$. Since it holds for all $u \in D_{S}$ that

$$
\|(S+i) u\|_{H}\|u\|_{H} \geq\left|\langle S u+i u, u\rangle_{H}\right|=\left|i\left\|J^{*} S u\right\|_{K}^{2}+\|u\|_{H}^{2}\right| \geq\|u\|_{H}^{2},
$$

we infer that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in H. Therefore, $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to some $x_{\infty} \in H$ and $S x_{n}=y_{n}-i x_{n} \rightarrow y_{\infty}-i x_{\infty}$ as $n \rightarrow \infty$. Since $J J^{*}$ is continuous (and therefore closed), S is closed, and since S is closed, we conclude that $x_{\infty} \in D_{S}$ with $S x_{\infty}+i x_{\infty}=y_{\infty}$. Thus, $\operatorname{im}(S+i)$ is closed. It can be proved analogously that $\operatorname{im}(S-i)$ is closed.

Problem 12.3 (Symmetry vs. self-adjointness) now ensures that S - as a symmetric, densely defined (by part (a), we know that $D_{S}=\operatorname{im}\left(J J^{*}\right)$ is dense in H) operator with $\operatorname{im}(S+i)=H=\operatorname{im}(S-i)$ - is self-adjoint. Thus, the claim is proved in the case that $\mathbb{K}=\mathbb{C}$.

Next we consider the case that $\mathbb{K}=\mathbb{R}$. Let $\mathcal{H}:=H^{2}$ and $\mathcal{K}:=K^{2}$. By defining the vector operations as well as the scalar product on \mathcal{H} (and analogously on \mathcal{K}) via

$$
\begin{aligned}
\left(g_{1}, g_{2}\right)+_{\mathcal{H}}\left(h_{1}, h_{2}\right) & =\left(g_{1}+h_{1}, g_{2}+h_{2}\right), \\
\left(a_{1}+i a_{2}\right) \cdot \mathcal{H}\left(g_{1}, g_{2}\right) & =\left(a_{1} g_{1}-a_{2} g_{2}, a_{1} g_{2}+a_{2} g_{1}\right), \\
\left\langle\left(g_{1}, g_{2}\right),\left(h_{1}, h_{2}\right)\right\rangle_{\mathcal{H}} & =\left\langle g_{1}, h_{1}\right\rangle_{H}+\left\langle g_{2}, h_{2}\right\rangle_{H}+i\left(\left\langle g_{2}, h_{1}\right\rangle_{H}-\left\langle g_{1}, h_{2}\right\rangle_{H}\right),
\end{aligned}
$$

for all $a_{1}, a_{2} \in \mathbb{R}, g_{1}, g_{2}, h_{1}, h_{2} \in H$, we equip \mathcal{H} (and, analogously, \mathcal{K}) with a \mathbb{C} Hilbert space structure (why?). Moreover, H is isometrically embedded in \mathcal{H} via $(H \ni h \mapsto(h, 0) \in \mathcal{H})$ (and analogously K is isometrically embedded in \mathcal{K}).

Note that $\mathcal{J}: \mathcal{K} \rightarrow \mathcal{H}$, given by $\mathcal{J}(x, y)=(J x, J y)$ for all $x, y \in K$, is a bounded $(\mathbb{C}$-)linear map from \mathcal{K} to \mathcal{H}. Moreover, $\operatorname{im}(\mathcal{J})=\operatorname{im}(J) \times \operatorname{im}(J)$ is dense in \mathcal{H} and
$\operatorname{ker}(\mathcal{J})=\operatorname{ker}(J) \times \operatorname{ker}(J)=\left\{\left(0_{K}, 0_{K}\right)\right\}=\left\{0_{\mathcal{K}}\right\}$, i.e. \mathcal{J} is injective and has dense range. In addition, it holds for all $x_{1}, x_{2} \in K, y_{1}, y_{2} \in H$ that

$$
\begin{aligned}
\left\langle\mathcal{J}\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle_{\mathcal{H}} & =\left\langle\left(J x_{1}, J x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle_{\mathcal{H}} \\
& =\left\langle J x_{1}, y_{1}\right\rangle_{H}+\left\langle J x_{2}, y_{2}\right\rangle_{H}+i\left(\left\langle J x_{2}, y_{1}\right\rangle_{H}-\left\langle J x_{1}, y_{2}\right\rangle_{H}\right) \\
& =\left\langle x_{1}, J^{*} y_{1}\right\rangle_{K}+\left\langle x_{2}, J^{*} y_{2}\right\rangle_{K}+i\left(\left\langle x_{2}, J^{*} y_{1}\right\rangle_{K}-\left\langle x_{1}, J^{*} y_{2}\right\rangle_{K}\right) \\
& =\left\langle\left(x_{1}, x_{2}\right),\left(J^{*} y_{1}, J^{*} y_{2}\right)\right\rangle_{\mathcal{K}},
\end{aligned}
$$

i.e., $J^{*}\left(y_{1}, y_{2}\right)=\left(J^{*} y_{1}, J^{*} y_{2}\right)$ for all $y_{1}, y_{2} \in H$. We know from our considerations of the case of \mathbb{C}-Hilbert spaces that $\mathcal{S}:=\left(\mathcal{J} \mathcal{J}^{*}\right)^{-1}$ is self-adjoint. Since it holds for all $x, y \in H$ that $\mathcal{J} \mathcal{J}^{*}(x, y)=\mathcal{J}\left(J^{*} x, J^{*} y\right)=\left(J J^{*} x, J J^{*} y\right)$, we obtain that $D_{\mathcal{S}}=\operatorname{im}\left(\mathcal{J}^{*}\right)=\operatorname{im}\left(J J^{*}\right) \times \operatorname{im}\left(J J^{*}\right)=D_{S} \times D_{S}$ and that $\mathcal{S}(x, y)=(S x, S y)$ for all $x, y \in D_{S}$. This implies in particular that $D_{S^{*}} \times D_{S^{*}} \subseteq D_{\mathcal{S}^{*}}$. On the other hand, for every $\left(x_{1}, x_{2}\right) \in D_{\mathcal{S}^{*}}$, there exists $C \in[0, \infty)$ satisfying

$$
\left|\left\langle\mathcal{S}\left(y_{1}, y_{2}\right),\left(x_{1}, x_{2}\right)\right\rangle_{\mathcal{H}}\right| \leq C\left\|\left(y_{1}, y_{2}\right)\right\|_{\mathcal{H}} \quad \text { for all } y_{1}, y_{2} \in D_{S},
$$

which implies for all $z \in D_{S}$ that

$$
\begin{aligned}
& \left|\left\langle S z, x_{1}\right\rangle_{H}\right|=\left|\left\langle S(z, 0),\left(x_{1}, x_{2}\right)\right\rangle_{\mathcal{H}}\right| \leq C\|(z, 0)\|_{\mathcal{H}}=C\|z\|_{H}, \\
& \left|\left\langle S z, x_{2}\right\rangle_{H}\right|=\left|\left\langle S(0, z),\left(x_{1}, x_{2}\right)\right\rangle_{\mathcal{H}}\right| \leq C\|(0, z)\|_{\mathcal{H}}=C\|z\|_{H},
\end{aligned}
$$

which, in turn, results in $x_{1}, x_{2} \in D_{S^{*}}$. Thus, we have $D_{S^{*}} \times D_{S^{*}}=D_{\mathcal{S}^{*}}=D_{\mathcal{S}}=D_{S} \times$ D_{S}, i.e., $D_{S}=D_{S^{*}}$. Since it holds for all $x, y \in D_{S}$ that $\langle S x, y\rangle_{H}=\left\langle S x, J J^{*} S y\right\rangle_{H}=$ $\left\langle J J^{*} S x, S y\right\rangle_{H}=\langle x, S y\rangle_{H}$, we have finally arrived at $S^{*}=S$.

12.5. Heisenberg's Uncertainty Principle

Let $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ be a Hilbert space over \mathbb{C}. Let $D_{A}, D_{B} \subseteq H$ be dense subspaces and let $A: D_{A} \subseteq H \rightarrow H$ and $B: D_{B} \subseteq H \rightarrow H$ be symmetric linear operators. Assume that

$$
A\left(D_{A} \cap D_{B}\right) \subseteq D_{B} \quad \text { and } \quad B\left(D_{A} \cap D_{B}\right) \subseteq D_{A}
$$

and define the commutator of A and B as

$$
[A, B]: D_{[A, B]} \subseteq H \rightarrow H, \quad[A, B](x):=A(B x)-B(A x)
$$

where $D_{[A, B]}:=D_{A} \cap D_{B}$.
(a) Prove that

$$
\left|\langle x,[A, B] x\rangle_{H}\right| \leq 2\|A x\|_{H}\|B x\|_{H} \quad \text { for every } x \in D_{[A, B]} .
$$

Solution: Let $x \in D_{[A, B]}:=D_{A} \cap D_{B}$. Then, applying the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left|\langle x,[A, B] x\rangle_{H}\right| & \leq\left|\langle x, A(B x)\rangle_{H}\right|+\left|\langle x, B(A x)\rangle_{H}\right| \\
& =\left|\langle A x, B x\rangle_{H}\right|+\left|\langle B x, A x\rangle_{H}\right| \\
& \leq\|A x\|_{H}\|B x\|_{H}+\|B x\|_{H}\|A x\|_{H} \\
& =2\|A x\|_{H}\|B x\|_{H} .
\end{aligned}
$$

(b) Define now the standard deviation of A

$$
\varsigma(A, x):=\sqrt{\langle A x, A x\rangle_{H}-\langle x, A x\rangle_{H}^{2}}
$$

at each $x \in D_{A}$ with $\|x\|_{H}=1$. Verify that $\varsigma(A, x)$ is well-defined for every x (i.e. that the radicand is real and non-negative) and prove that for every $x \in D_{[A, B]}$ with $\|x\|_{H}=1$ there holds

$$
\left|\langle x,[A, B] x\rangle_{H}\right| \leq 2 \varsigma(A, x) \varsigma(B, x) .
$$

Solution: Since A is a symmetric operator, $\langle x, A x\rangle_{H}$ is real for every $x \in D_{A} \subseteq D_{A^{*}}$. Indeed,

$$
\langle x, A x\rangle_{H}=\left\langle A^{*} x, x\right\rangle_{H}=\langle A x, x\rangle_{H}=\overline{\langle x, A x\rangle}_{H}
$$

Moreover, for $x \in D_{A}$ with $\|x\|_{H}=1$, we have

$$
\langle x, A x\rangle_{H}^{2} \leq\|x\|_{H}^{2}\|A x\|_{H}^{2}=\langle A x, A x\rangle_{H}
$$

Therefore, the radicand in the definition of the standard deviation is a non-negative real number and $\varsigma(A, x)$ is well-defined. For any $\lambda, \mu \in \mathbb{R}$, the commutators $[A, B]$ and $[A-\lambda, B-\mu]$ agree:

$$
\begin{aligned}
{[A-\lambda, B-\mu] } & =(A-\lambda)(B-\mu)-(B-\mu)(A-\lambda) \\
& =A B-\mu A-\lambda B+\lambda \mu-B A+\lambda B+\mu A-\lambda \mu=[A, B]
\end{aligned}
$$

on $D_{[A-\lambda, B-\mu]}=D_{A-\lambda} \cap D_{B-\mu}=D_{A} \cap D_{B}=D_{[A, B]}$. Since A is symmetric and $\lambda \in \mathbb{R}$, the operator $\tilde{A}=A-\lambda$ is also symmetric on $D_{\tilde{A}}=D_{A}$. Moreover, for any $x \in D_{A}$,

$$
\begin{aligned}
\|\tilde{A} x\|_{H}^{2} & =\langle\tilde{A} x, \tilde{A} x\rangle_{H}=\langle A x-\lambda x, A x-\lambda x\rangle_{H} \\
& =\langle A x, A x\rangle_{H}-\lambda\langle x, A x\rangle_{H}-\lambda\langle A x, x\rangle_{H}+\lambda^{2}\langle x, x\rangle_{H} \\
& =\langle A x, A x\rangle_{H}-2 \lambda\langle x, A x\rangle_{H}+\lambda^{2}\langle x, x\rangle_{H} .
\end{aligned}
$$

We observe that if we choose $\lambda=\langle x, A x\rangle_{H} \in \mathbb{R}$ and if $\|x\|_{H}=1$, then

$$
\|\tilde{A} x\|_{H}^{2}=\langle A x, A x\rangle_{H}-\langle x, A x\rangle_{H}^{2}=\varsigma(A, x)^{2} .
$$

Now, let $x \in D_{[A, B]}=D_{A} \cap D_{B}$ with $\|x\|_{H}=1$ be arbitrary. Since the operators $\tilde{A}:=A-\langle x, A x\rangle_{H}$ and $\tilde{B}:=B-\langle x, B x\rangle_{H}$ are symmetric, part (a) applies and yields

$$
\left|\langle x,[A, B] x\rangle_{H}\right|=\left|\langle x,[\tilde{A}, \tilde{B}] x\rangle_{H}\right| \leq 2\|\tilde{A} x\|_{H}\|\tilde{B} x\|_{H}=2 \varsigma(A, x) \varsigma(B, x) .
$$

Remark. The possible states of a quantum mechanical system are given by elements $x \in H$ with $\|x\|_{H}=1$. Each observable is given by a symmetric linear operator $A: D_{A} \subseteq H \rightarrow H$. If the system is in state $x \in D_{A}$, we measure the observable A with uncertainty $\varsigma(A, x)$.
(c) Let $A: D_{A} \subseteq H \rightarrow H$ and $B: D_{B} \subseteq H \rightarrow H$ be as above. A, B is called Heisenberg pair if

$$
[A, B]=\left.i \operatorname{Id}\right|_{D_{[A, B]}} .
$$

Show that, if A, B is a Heisenberg pair with B continuous (and $D_{B}=H$), then A cannot be continuous.

Solution: Suppose, $B \in L(H)$ and $A: D_{A} \subseteq H \rightarrow H$ satisfy

$$
[A, B]=\left.i \operatorname{Id}\right|_{D_{[A, B]}} .
$$

By assumption, $D_{[A, B]}=D_{A} \cap H=D_{A}$ and $B\left(D_{A}\right) \subseteq D_{A}$. In particular, for any $n \in \mathbb{N}$ the inclusion $B^{n}\left(D_{A}\right) \subseteq D_{A}$ is satisfied, which is necessary to define $\left[A, B^{n}\right]$. We prove $\left[A, B^{n}\right] x=n i B^{n-1} x$ for every $n \in \mathbb{N}, x \in D_{A}$ by induction. For $n=1$, the claim holds by assumption. Suppose, it is true for some $n \in \mathbb{N}$. Then it holds for every $x \in D_{A}$ that

$$
\begin{aligned}
{\left[A, B^{n+1}\right] x } & =A B^{n+1} x-B^{n+1} A x \\
& =\left(A B^{n}-B^{n} A+B^{n} A\right) B x-B^{n+1} A x \\
& =\left(\left[A, B^{n}\right]+B^{n} A\right) B x-B^{n+1} A x \\
& =n i B^{n-1} B x+B^{n} A B x-B^{n+1} A x \\
& =n i B^{n} x+B^{n}[A, B] x=n i B^{n} x+i B^{n} x=(n+1) i B^{n} .
\end{aligned}
$$

A consequence is that B cannot be nilpotent: If $B^{n}=0$ for some $n \in \mathbb{N}$, then $B^{n-1} x=\frac{1}{n i}\left[A, B^{n}\right] x=0$ for all $x \in D_{A}$, i.e., $B^{n-1}=0$, which iterates to $B=0$ in
contradiction to $[A, B] \neq\left. 0\right|_{D_{A}}$. Suppose by contradiction that A has finite operator norm $\|A\|$. Then, we can assume w.l.o.g. that $D_{A}=H$ and

$$
n\left\|B^{n-1}\right\|=\left\|\left[A, B^{n}\right]\right\| \leq\left\|A B^{n}\right\|+\left\|B^{n} A\right\| \leq 2\|A\|\left\|B^{n-1}\right\|\|B\| .
$$

Since $\left\|B^{n-1}\right\| \neq 0$, we obtain $2\|A\| \geq \frac{n}{\|B\|}>0$ for every $n \in \mathbb{N}$, thus $\|A\|$ cannot be finite and the contradiction is reached.
(d) Consider the Hilbert space $\left(H,\langle\cdot, \cdot\rangle_{H}\right)=\left(L^{2}([0,1], \mathbb{C}),\langle\cdot, \cdot\rangle_{L^{2}}\right)$ and the subspace

$$
C_{0}^{1}([0,1], \mathbb{C}):=\left\{f \in C^{1}([0,1], \mathbb{C}) \mid f(0)=0=f(1)\right\}
$$

Recall that $C_{0}^{1}([0,1], \mathbb{C}) \subseteq L^{2}([0,1], \mathbb{C})$ is a dense subspace. The operators

$$
\begin{aligned}
P: C_{0}^{1}([0,1], \mathbb{C}) & \rightarrow L^{2}([0,1], \mathbb{C}), & Q: L^{2}([0,1], \mathbb{C}) & \rightarrow L^{2}([0,1], \mathbb{C}) \\
f(s) & \mapsto i f^{\prime}(s) & f(s) & \mapsto s f(s)
\end{aligned}
$$

correspond to the observables momentum and position. Check that P and Q are well-defined, symmetric operators. Check that $[P, Q]: C_{0}^{1}([0,1], \mathbb{C}) \rightarrow L^{2}([0,1], \mathbb{C})$ is well-defined.

Show that P and Q form a Heisenberg pair and conclude that the uncertainty principle holds: for every $f \in C_{0}^{1}([0,1], \mathbb{C})$ with $\|f\|_{L^{2}([0,1], \mathbb{C})}=1$ there holds

$$
\varsigma(P, f) \varsigma(Q, f) \geq \frac{1}{2} .
$$

Thus we conclude: The more precisely the momentum of some particle is known, the less precisely its position can be known, and vice versa.

Solution: If $f \in C^{1}([0,1], \mathbb{C})$, then f^{\prime} is bounded and in particular $f^{\prime} \in L^{2}([0,1], \mathbb{C})$. Therefore, the linear operators

$$
\begin{aligned}
P: C_{0}^{1}([0,1], \mathbb{C}) & \rightarrow L^{2}([0,1], \mathbb{C}), & Q: L^{2}([0,1], \mathbb{C}) & \rightarrow L^{2}([0,1], \mathbb{C}) \\
f(s) & \mapsto i f^{\prime}(s) & f(s) & \mapsto s f(s)
\end{aligned}
$$

are indeed well-defined. They are also symmetric. For Q this follows immediately from $[0,1] \subseteq \mathbb{R}$. Indeed, for all $f, g \in D_{Q}=L^{2}([0,1], \mathbb{C})$ it holds that

$$
\langle Q f, g\rangle_{L^{2}}=\int_{0}^{1} s f(s) \overline{g(s)} d s=\int_{0}^{1} f(s) \overline{s g(s)} d s=\langle f, Q g\rangle_{L^{2}} .
$$

For P, symmetry follows via integration by parts. Indeed, given any $f, g \in D_{P}=$ $C_{0}^{1}([0,1], \mathbb{C})$, we have

$$
\langle P f, g\rangle_{L^{2}}=\int_{0}^{1} i f^{\prime}(s) \bar{g}(s) d s=-\int_{0}^{1} i f(s) \bar{g}^{\prime}(s) d s=\int_{0}^{1} f(s) \overline{i g^{\prime}(s)} d s=\langle f, P g\rangle_{L^{2}} .
$$

When integrating by parts, the boundary terms vanish due to $f(0)=0=f(1)$. Hence, $P: C_{0}^{1}([0,1] ; \mathbb{C}) \rightarrow L^{2}([0,1] ; \mathbb{C})$ is symmetric (but not self-adjoint! see Beispiel 6.6.1). Next, we verify that the commutator $[P, Q]$ is well-defined. Since $D_{Q}=L^{2}([0,1], \mathbb{C})$ is the whole space, the only thing to check is that $Q f: s \mapsto s f(s)$ is in $D_{P}=C_{0}^{1}([0,1], \mathbb{C})$ whenever $f \in C_{0}^{1}([0,1], \mathbb{C})$. But this follows from the product rule. Moreover,

$$
([P, Q] f)(s)=(P(Q f))(s)-(Q(P f))(s)=i f(s)+i s f^{\prime}(s)-s i f^{\prime}(s)=i f(s)
$$

for almost every $s \in[0,1]$ which proves that P, Q is a Heisenberg pair. By part (b),

$$
\forall f \in C_{0}^{1},\|f\|_{L^{2}}=1: \quad \varsigma(P, f) \varsigma(Q, f) \geq \frac{1}{2}\left|\langle f,[P, Q] f\rangle_{L^{2}}\right|=\frac{1}{2}\left|\langle f, i f\rangle_{L^{2}}\right|=\frac{1}{2}
$$

