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12.1. Spectra of shifts

Let S : `2(N,C)→ `2(N,C) be the right shift on `2(N,C), i.e.,

S((x1, x2, x3, . . .)) = (0, x1, x2, . . .) for all (xn)n∈N ∈ `2(N,C).

(a) Calculate the operator norm ‖S‖L(`2(N,C),`2(N,C)) and the spectral radius rS of S.

Solution: It holds for all x ∈ `2(N,C) that ‖Sx‖`2(N,C) = ‖x‖`2(N,C). It follows
for all n ∈ N, x ∈ `2(N,C) that ‖Snx‖`2(N,C) = ‖x‖`2(N,C). Thus, we obtain
‖Sn‖L(`2(N,C),`2(N,C)) = 1 for all n ∈ N. This implies that ‖S‖L(`2(N,C),`2(N,C)) = 1
and rS = 1.

(b) Determine the point spectrum σp(S), the continuous spectrum σc(S) and the
residual spectrum σr(S) of S.

Solution: For x = (xn)n∈N ∈ `2, λ ∈ C, the relation λx = Sx implies that λx1 = 0
and λxn+1 = xn for every n ∈ N. For λ 6= 0, this leads to x = 0. That is, σp(S) ⊆ {0}.
Since S is an isometry, S is injective and therefore, 0 /∈ σp(S). Hence, σp(S) = ∅.

Note that, for every λ ∈ C with |λ| < 1 it holds that x(λ) := (λn−1)n∈N ∈ `2(N,C)
(for λ = 0, x(λ) = e1 = (1, 0, 0, . . .)) and λxλ = S∗xλ. In particular, for every λ ∈ C
with |λ| < 1, the range of λ − S cannot be dense as ker(λ − S∗) 6= {0}. Thus,
{λ ∈ C | |λ| < 1} ⊆ σr(S) ∪ σp(S) = σr(S) (and we saw during the proof that
{λ ∈ C | |λ| < 1} ⊆ σp(S∗)). Moreover, since {λ ∈ C | |λ| < 1} ⊆ σ(S) ⊆ {λ ∈ C |
|λ| ≤ 1} and σ(S) is closed (as the resolvent set is open), we know at this stage that
σ(S) = {λ ∈ C | |λ| ≤ 1}.

For λ ∈ C with |λ| = 1, x ∈ ker(λ − S∗) implies that ‖S∗x‖`2(N,C) = ‖λx‖`2(N,C) =
‖x‖`2(N,C), i.e., x1 = 0. But this implies x2 = 0, x3 = 0 ... and inductively xn = 0 for
all n ∈ N. Hence, for every λ ∈ C with |λ| = 1, we have that ker(λ− S∗) = {0} (in
other words, {λ ∈ C | |λ| = 1}∩σp(S∗) = ∅) and, therefore, im(λ−S) is dense. Thus,
{λ ∈ C | |λ| = 1} ∩ σr(S) = ∅. Since we know already that σ(S) = {λ ∈ C | |λ| ≤ 1}
and σp(S) = ∅, it follows that {λ ∈ C | |λ| = 1} ⊆ σc(S).

To sum up, we found that

σp(S) = ∅, σc(S) = {λ ∈ C | |λ| = 1}, and σr(S) = {λ ∈ C | |λ| < 1}.

(c) Do the same for S∗, the left shift.

Solution: First, note that λ ∈ σ(S∗) if and only if λ ∈ σ(S). Hence, we obtain
from σ(S) = {λ ∈ C | |λ| ≤ 1} that σ(S∗) = {λ ∈ C | |λ| ≤ 1}. Moreover, having
already seen in the part (b) that σp(S∗) ⊇ {λ ∈ C | |λ| < 1} and that {λ ∈ C | |λ| =
1}∩σp(S∗) = ∅, we obtain that σp(S∗) = {λ ∈ C | |λ| < 1}. In addition, since for every
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λ ∈ σr(S∗) we would need to have λ ∈ σp(S), we see that σr(S∗) = ∅. Consequentially,
σc(S∗) = σ(S∗) \ (σp(S∗) ∪ σr(S∗)) = σ(S∗) \ σp(S∗) = {λ ∈ C | |λ| = 1}.

To sum up:

σp(S∗) = {λ ∈ C | |λ| < 1}, σc(S∗) = {λ ∈ C | |λ| = 1}, and σr(S∗) = ∅.

12.2. Fredholm’s alternative (on Hilbert spaces)

Let H be a Hilbert space and let K ∈ L(H) be a compact operator. Prove the
following statements. (The goal of this exercise lies in (d) and (e) below.)

(a) dim(ker(I −K)) <∞.

Solution: Assume that dim(ker(I − K)) = ∞. Then there exists a sequence
(xn)n∈N ⊆ ker(I −K) with 〈xn, xm〉 = δnm for all n,m ∈ N. In particular, (xn)n∈N
does not have a converging subsequence. By compactness of K and by xn = Kxn for
every n ∈ N, the sequence (xn)n∈N should have a converging subsequence, though.

Alternatively, restricting K to the closed (and therefore complete) subspace ker(I−K),
we are in the situation of a Hilbert/Banach space on which the identity operator is a
compact operator or, put differently, in which the closed unit ball is compact. This
only ever happens in finite dimensions.

(b) im(I −K) is closed.

Solution: We claim that there exists γ ∈ (0,∞) so that ‖x‖ ≤ γ‖x −Kx‖ for all
x ∈ (ker(I −K))⊥. Indeed, if this was not the case, then there would exist a sequence
(xn)n∈N ⊆ (ker(I−K))⊥ satisfying 1 = ‖xn‖ > n‖xn−Kxn‖ for all n ∈ N. This would
imply that xn −Kxn → 0 as n→∞. On the other hand, by compactness of K, we
may assume (by passing to a subsequence, if necessary) that Kxn → y as n→∞ for
some y ∈ H. Consequentially, we would have that xn = (xn−Kxn)+Kxn → 0+y = y
as n→∞. Hence, we would obtain y ∈ (ker(I −K))⊥, ‖y‖ = limn→∞‖xn‖ = 1, and
Ky = limn→∞Kxn = y. But this is not possible as y ∈ (ker(I −K))⊥ and Ky = y
(i.e., y ∈ ker(I −K)) would imply that y = 0, contradicting ‖y‖ = 1.

With γ ∈ (0,∞) so that ‖x‖ ≤ γ‖x − Kx‖ for all x ∈ (ker(I − K))⊥, we can
now conclude that im(I − K) is closed: Let (yn)n∈N ⊆ im(I − K) be an arbitrary
sequence converging to y∞ in H. Let (xn)n∈N ⊆ H satisfy for all n ∈ N that
yn = xn −Kxn. Denoting by P ∈ L(H) the orthogonal projection onto the closed
subspace (ker(I −K))⊥, we obtain that (Pxn)n∈N ⊆ (ker(I −K))⊥ (and therefore
xn − Pxn ∈ ker(I − K)) so that Pxn − KPxn = xn − Kxn = yn for every n ∈ N.
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Now, we can use the previously obtained inequality to verify that (Pxn)n∈N ⊆ H is a
Cauchy sequence:

lim sup
N→∞

sup
m,n≥N

‖Pxn − Pxm‖ ≤ lim sup
N→∞

sup
m,n≥N

γ‖yn − ym‖ = 0.

Thus, there exists a limit x∞ ∈ H of (Pxn)n∈N and x∞−Kx∞ = limn→∞(I−K)Pxn =
limn→∞ yn = y∞, i.e., y∞ ∈ im(I −K).

(c) im(I −K) = (ker(I −K∗))⊥.

Solution: This follows immediately from the fact that im(I −K) = (ker(I −K∗))⊥
and the fact that im(I −K) is closed (cp. part (b)).

(d) ker(I −K) = {0} if and only if im(I −K) = H.

Solution: “(⇒)“: Assume for a contradiction that ker(I−K) = {0} and im(I−K) 6=
H. We first show by induction that (I − K)k+1(H) ( (I − K)k(H) for every
k ∈ N0. Indeed, for k = 0, this is just the previous assumption. And if k ∈ N
is such that (I − K)k(H) ( (I − K)k−1(H) but (I − K)k+1(H) = (I − K)k(H),
then we obtain that x0 ∈ (I − K)k−1(H) \ (I − K)k(H) gets mapped by I − K
to (I − K)x0 ∈ (I − K)k(H) = (I − K)k+1(H) = (I − K)((I − K)k(H)) so that
there has to exist x1 ∈ (I − K)k(H) satisfying (I − K)x0 = (I − K)x1. Hence,
0 6= x0−x1 ∈ ker(I−K) (since x0 6= x1 as x0 /∈ (I−K)k(H) while x1 ∈ (I−K)k(H)),
which contradicts that I −K is injective.

Knowing that – under the assumption that ker(I−K) = {0} and im(I−K) 6= H – it
has to hold for every k ∈ N0 that (I−K)k+1(H) ( (I−K)k(H) and since (I−K)k(H)
is closed for every k ∈ N by part (b), we can now choose a sequence (xk)k∈N ⊆ H such
that ‖xk‖ = 1 and xk ∈ (I −K)k(H) ∩ ((I −K)k+1(H))⊥ for every k ∈ N. Moreover,
note that for all k, l ∈ N with k < l it holds that

xk − (Kxk −Kxl) = (xk −Kxk)︸ ︷︷ ︸
∈(I−K)k+1(H)

− (xl −Kxl)︸ ︷︷ ︸
∈(I−K)l+1(H)

+ xl︸︷︷︸
∈(I−K)l(H)

∈ (I −K)k+1(H),

i.e., ‖Kxk −Kxl‖ ≥ dist(xk, (I −K)k+1(H)) = ‖xk‖ = 1 (since, sloppily speaking,
Kxk −Kxl has to cover at least the part of xk perpendicular to (I −K)k+1(H)). In
particular, (Kxk)k∈N does not have a converging subsequence, although (xk)k∈N ⊆ H
is a bounded sequence and K is compact.

“(⇐)“: im(I −K) = H implies that ker(I −K∗) = {0}. By Schauder’s theorem (cp.
also Problem 11.2 (Schauder’s theorem)) K∗ is compact. The previous part of the
proof hence implies that im(I −K∗) = H. Hence, ker(I −K) = {0}.
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(e) dim(ker(I −K)) = dim(ker(I −K∗)).

Solution: Assume for a contradiction that dim(ker(I−K)) < dim(ker(I−K∗)). Since
ker(I−K∗) = im(I−K)⊥, we are assuming that dim(ker(I−K)) < dim(im(I−K)⊥).
Since ker(I −K) is finite-dimensional by part (a) and dim(ker(I −K)) < dim(im(I −
K)⊥), there exists an injective, but not surjective map A0 : ker(I−K)→ im(I−K)⊥.
Moreover, since ker(I −K) is finite-dimensional, A0 has finite rank and is therefore
compact. Define A : H → im(I − K)⊥ via A(x + y) = A0x for x ∈ ker(I − K),
y ∈ (ker(I − K))⊥. Since A is a compact linear map, K + A is also a linear map
(from H to H). Note that (I − K − A)x = 0 implies that Ax = (I − K)x ∈
im(I −K) ∩ (im(I −K))⊥ = {0}, hence x ∈ ker(I −K) ∩ ker(A) = ker(A0) = {0}.
On the other hand, for every x ∈ H it holds that (I −K − A)x = (I −K)x− Ax ∈
im(I −K)⊕ im(A) ( im(I −K)⊕ (im(I −K))⊥ = H since im(A) ( (im(I −K))⊥.
Hence, we have ker(I −K − A) = {0} and im(I −K − A) 6= H, contradicting part
(d). This contradiction now shows dim(ker(I −K)) ≥ dim(ker(I −K∗)). Since K∗
is, by Schauder’s theorem, compact as well, we obtain by the above argument that
dim(ker(I −K∗)) ≥ dim(ker(I −K)).

Remark. The statement remains true in the Banach space setting. (The proof gets
slightly more technical.) In particular, we just saw – as mentioned earlier – that the
extra symmetry assumption on the kernel k in Problem 11.5 (Integral operators) was
not really necessary.

12.3. Symmetry vs. self-adjointness

Let H be a C-Hilbert space and let A : DA ⊆ H → H be a densely defined symmetric
linear operator. Prove that the following statements are equivalent:

(i) A is self-adjoint.

(ii) A is closed and ker(A∗ + i) = {0} = ker(A∗ − i).

(iii) im(A+ i) = H = im(A− i).

Solution: ”(i)⇒ (ii)”: Since A∗ is closed and A = A∗ by assumption, A is closed.
Moreover, for every x ∈ DA it holds that (since A = A∗)

〈Ax, x〉 = 〈x,A∗x〉 = 〈x,Ax〉 = 〈Ax, x〉,

i.e., 〈Ax, x〉 ∈ R. On the other hand, it holds for every x ∈ ker(A∗ + i) that

i‖x‖2 = 〈x,−ix〉 = 〈x,A∗x〉 = 〈Ax, x〉 ∈ R,
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which results in x = 0. Similarly do we obtain for every x ∈ ker(A∗ − i) that
−i‖x‖2 = 〈Ax, x〉 ∈ R, which again implies that x = 0.

“(ii)⇒ (iii)“: We show that im(A+ i) is closed and dense. Let (yn)n∈N ⊆ im(A+ i)
be a sequence converging to y∞ ∈ H as n → ∞ and let (xn)n∈N ⊆ DA satisfy
yn = (A+ i)xn for every n ∈ N. Then it holds for every n ∈ N that

‖yn‖‖xn‖ ≥ |〈yn, xn〉| = |〈Axn + ixn, xn〉| = |〈Axn, xn〉+ i‖xn‖2|

=
√
〈Axn, xn〉2 + ‖xn‖4 ≥ ‖xn‖2.

It follows that (xn)n∈N ⊆ H is a Cauchy sequence and therefore converges to some
limit x∞ ∈ H. Since yn = Axn + ixn → y∞ as n → ∞, it follows that Axn =
yn − ixn → y∞ − ix∞ as n→∞. The assumption that A is closed now implies that
x∞ ∈ DA and y∞ − ix∞ = Ax∞. Hence, y∞ = (A+ i)x∞ ∈ im(A+ i) and im(A+ i)
is closed. In an analogous way it can be shown that im(A− i) is closed and dense.

“(iii)⇒ (i)“: Since A is symmetric, we know that A ⊆ A∗. It thus remains to show
that A∗ ⊆ A, i.e., that DA∗ ⊆ DA (and, of course, A∗x = Ax for every x ∈ DA∗ , but
this is then clear). For this, let x ∈ DA∗ . Since A + i is assumed to be surjective,
there exists z ∈ DA such that A∗x+ ix = Az + iz. Then it holds for all y ∈ DA that

〈x,Ay − iy〉 = 〈A∗x+ ix, y〉 = 〈Az + iz, y〉 = 〈z, Ay − iy〉.

Moreover, since im(A− i) = H, this implies that x = z ∈ DA.

12.4. Special construction of self-adjoint operators

Let H and K be K-Hilbert spaces (with K ∈ {R,C}) and let J ∈ L(K,H) be an
injective operator with dense range.

(a) Prove that JJ∗ ∈ L(H) is an injective operator with dense range.

Solution: For all x ∈ ker(JJ∗) it holds that ‖J∗x‖2
K = 〈JJ∗x, x〉H = 0. Hence,

ker(JJ∗) ⊆ ker(J∗) = (im(J))⊥ = {0} since J is assumed to have dense range.
Moreover, for every x ∈ im(JJ∗)⊥, it holds that 0 = 〈JJ∗x, x〉H = ‖J∗x‖2

K . That is,
(im(JJ∗))⊥ ⊆ ker(J∗) = {0}. Thus, im(JJ∗) lies dense in H.

(b) Prove that S := (JJ∗)−1 (i.e., the operator S : DS ⊆ H → H, defined by
DS = im(JJ∗) and S(JJ∗x) = x for all x ∈ H) is self-adjoint.

Solution: First, we consider the case of K = C. We show that S is a densely
defined symmetric operator satisfying im(S + i) = H = im(S − i) (where we show
density and closedness of im(S + i) and im(S − i) for the latter) and invoke Problem
12.3 (Symmetry vs. self-adjointness). For the symmetry of S, let x1, x2 ∈ DS be
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arbitrary. Necessarily, there exist w1, w2 ∈ H such that x1 = JJ∗w1 and x2 = JJ∗w2.
Self-adjointness of JJ∗ ∈ L(H) ensures that

〈Sx1, x2〉H = 〈w1, JJ
∗w2〉H = 〈JJ∗w1, w2〉H = 〈x1, Sx2〉H .

For the density of im(S + i), consider x ∈ im(S + i)⊥. Since JJ∗x ∈ DS, it thus holds
that

0 = 〈(S + i)JJ∗x, x〉H = ‖x‖2
H + i‖J∗x‖2

K ,

showing that x = 0. Hence, im(S + i) = H. Analogously, one can show that
im(S − i) = H.

For the closedness of im(S + i), consider a sequence (yn)n∈N ⊆ im(S + i) with limit
y∞ and let (xn)n∈N ⊆ DS be given by yn = Sxn + ixn for every n ∈ N. Since it holds
for all u ∈ DS that

‖(S + i)u‖H‖u‖H ≥ |〈Su+ iu, u〉H | =
∣∣∣i‖J∗Su‖2

K + ‖u‖2
H

∣∣∣ ≥ ‖u‖2
H ,

we infer that (xn)n∈N is a Cauchy sequence in H. Therefore, (xn)n∈N converges to
some x∞ ∈ H and Sxn = yn − ixn → y∞ − ix∞ as n→∞. Since JJ∗ is continuous
(and therefore closed), S is closed, and since S is closed, we conclude that x∞ ∈ DS

with Sx∞ + ix∞ = y∞. Thus, im(S + i) is closed. It can be proved analogously that
im(S − i) is closed.

Problem 12.3 (Symmetry vs. self-adjointness) now ensures that S – as a symmetric,
densely defined (by part (a), we know that DS = im(JJ∗) is dense in H) operator
with im(S + i) = H = im(S − i) – is self-adjoint. Thus, the claim is proved in the
case that K = C.

Next we consider the case that K = R. Let H := H2 and K := K2. By defining the
vector operations as well as the scalar product on H (and analogously on K) via

(g1, g2) +H (h1, h2) = (g1 + h1, g2 + h2),
(a1 + ia2) ·H (g1, g2) = (a1g1 − a2g2, a1g2 + a2g1),
〈(g1, g2), (h1, h2)〉H = 〈g1, h1〉H + 〈g2, h2〉H + i(〈g2, h1〉H − 〈g1, h2〉H),

for all a1, a2 ∈ R, g1, g2, h1, h2 ∈ H, we equip H (and, analogously, K) with a C-
Hilbert space structure (why?). Moreover, H is isometrically embedded in H via
(H 3 h 7→ (h, 0) ∈ H) (and analogously K is isometrically embedded in K).

Note that J : K → H, given by J (x, y) = (Jx, Jy) for all x, y ∈ K, is a bounded
(C-)linear map from K to H. Moreover, im(J ) = im(J)× im(J) is dense in H and
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ker(J ) = ker(J) × ker(J) = {(0K , 0K)} = {0K}, i.e. J is injective and has dense
range. In addition, it holds for all x1, x2 ∈ K, y1, y2 ∈ H that

〈J (x1, x2), (y1, y2)〉H = 〈(Jx1, Jx2), (y1, y2)〉H
= 〈Jx1, y1〉H + 〈Jx2, y2〉H + i(〈Jx2, y1〉H − 〈Jx1, y2〉H)
= 〈x1, J

∗y1〉K + 〈x2, J
∗y2〉K + i(〈x2, J

∗y1〉K − 〈x1, J
∗y2〉K)

= 〈(x1, x2), (J∗y1, J
∗y2)〉K,

i.e., J∗(y1, y2) = (J∗y1, J
∗y2) for all y1, y2 ∈ H. We know from our considerations

of the case of C-Hilbert spaces that S := (JJ ∗)−1 is self-adjoint. Since it holds
for all x, y ∈ H that JJ ∗(x, y) = J (J∗x, J∗y) = (JJ∗x, JJ∗y), we obtain that
DS = im(JJ ∗) = im(JJ∗)× im(JJ∗) = DS ×DS and that S(x, y) = (Sx, Sy) for all
x, y ∈ DS. This implies in particular that DS∗ ×DS∗ ⊆ DS∗ . On the other hand, for
every (x1, x2) ∈ DS∗ , there exists C ∈ [0,∞) satisfying

|〈S(y1, y2), (x1, x2)〉H| ≤ C‖(y1, y2)‖H for all y1, y2 ∈ DS,

which implies for all z ∈ DS that

|〈Sz, x1〉H | = |〈S(z, 0), (x1, x2)〉H| ≤ C‖(z, 0)‖H = C‖z‖H ,
|〈Sz, x2〉H | = |〈S(0, z), (x1, x2)〉H| ≤ C‖(0, z)‖H = C‖z‖H ,

which, in turn, results in x1, x2 ∈ DS∗ . Thus, we have DS∗×DS∗ = DS∗ = DS = DS×
DS, i.e., DS = DS∗ . Since it holds for all x, y ∈ DS that 〈Sx, y〉H = 〈Sx, JJ∗Sy〉H =
〈JJ∗Sx, Sy〉H = 〈x, Sy〉H , we have finally arrived at S∗ = S.

12.5. Heisenberg’s Uncertainty Principle

Let (H, 〈·, ·〉H) be a Hilbert space over C. Let DA, DB ⊆ H be dense subspaces and
let A : DA ⊆ H → H and B : DB ⊆ H → H be symmetric linear operators. Assume
that

A(DA ∩DB) ⊆ DB and B(DA ∩DB) ⊆ DA,

and define the commutator of A and B as

[A,B] : D[A,B] ⊆ H → H, [A,B](x) := A(Bx)−B(Ax),

where D[A,B] := DA ∩DB.

(a) Prove that∣∣∣〈x, [A,B]x〉H
∣∣∣ ≤ 2‖Ax‖H‖Bx‖H for every x ∈ D[A,B].
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Solution: Let x ∈ D[A,B] := DA ∩ DB. Then, applying the Cauchy–Schwarz
inequality,∣∣∣〈x, [A,B]x〉H

∣∣∣ ≤ ∣∣∣〈x,A(Bx)〉H
∣∣∣+ ∣∣∣〈x,B(Ax)〉H

∣∣∣
=
∣∣∣〈Ax,Bx〉H ∣∣∣+ ∣∣∣〈Bx,Ax〉H ∣∣∣

≤ ‖Ax‖H‖Bx‖H + ‖Bx‖H‖Ax‖H
= 2‖Ax‖H‖Bx‖H .

(b) Define now the standard deviation of A

ς(A, x) :=
√
〈Ax,Ax〉H − 〈x,Ax〉2H

at each x ∈ DA with ‖x‖H = 1. Verify that ς(A, x) is well-defined for every x (i.e.
that the radicand is real and non-negative) and prove that for every x ∈ D[A,B] with
‖x‖H = 1 there holds∣∣∣〈x, [A,B]x〉H

∣∣∣ ≤ 2ς(A, x) ς(B, x).

Solution: Since A is a symmetric operator, 〈x,Ax〉H is real for every x ∈ DA ⊆ DA∗ .
Indeed,

〈x,Ax〉H = 〈A∗x, x〉H = 〈Ax, x〉H = 〈x,Ax〉H .

Moreover, for x ∈ DA with ‖x‖H = 1, we have

〈x,Ax〉2H ≤ ‖x‖2
H‖Ax‖2

H = 〈Ax,Ax〉H .

Therefore, the radicand in the definition of the standard deviation is a non-negative
real number and ς(A, x) is well-defined. For any λ, µ ∈ R, the commutators [A,B]
and [A− λ,B − µ] agree:

[A− λ,B − µ] = (A− λ)(B − µ)− (B − µ)(A− λ)
= AB − µA− λB + λµ−BA+ λB + µA− λµ = [A,B]

on D[A−λ,B−µ] = DA−λ∩DB−µ = DA∩DB = D[A,B]. Since A is symmetric and λ ∈ R,
the operator Ã = A− λ is also symmetric on DÃ = DA. Moreover, for any x ∈ DA,

‖Ãx‖2
H = 〈Ãx, Ãx〉H = 〈Ax− λx,Ax− λx〉H

= 〈Ax,Ax〉H − λ〈x,Ax〉H − λ〈Ax, x〉H + λ2〈x, x〉H
= 〈Ax,Ax〉H − 2λ〈x,Ax〉H + λ2〈x, x〉H .
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We observe that if we choose λ = 〈x,Ax〉H ∈ R and if ‖x‖H = 1, then

‖Ãx‖2
H = 〈Ax,Ax〉H − 〈x,Ax〉2H = ς(A, x)2.

Now, let x ∈ D[A,B] = DA ∩ DB with ‖x‖H = 1 be arbitrary. Since the operators
Ã := A−〈x,Ax〉H and B̃ := B−〈x,Bx〉H are symmetric, part (a) applies and yields∣∣∣〈x, [A,B]x〉H

∣∣∣ =
∣∣∣〈x, [Ã, B̃]x〉H

∣∣∣ ≤ 2‖Ãx‖H‖B̃x‖H = 2ς(A, x) ς(B, x).

Remark. The possible states of a quantum mechanical system are given by elements
x ∈ H with ‖x‖H = 1. Each observable is given by a symmetric linear operator
A : DA ⊆ H → H. If the system is in state x ∈ DA, we measure the observable A
with uncertainty ς(A, x).

(c) Let A : DA ⊆ H → H and B : DB ⊆ H → H be as above. A,B is called
Heisenberg pair if

[A,B] = i Id |D[A,B] .

Show that, if A,B is a Heisenberg pair with B continuous (and DB = H), then A
cannot be continuous.

Solution: Suppose, B ∈ L(H) and A : DA ⊆ H → H satisfy

[A,B] = i Id |D[A,B] .

By assumption, D[A,B] = DA ∩ H = DA and B(DA) ⊆ DA. In particular, for any
n ∈ N the inclusion Bn(DA) ⊆ DA is satisfied, which is necessary to define [A,Bn].
We prove [A,Bn]x = niBn−1x for every n ∈ N, x ∈ DA by induction. For n = 1, the
claim holds by assumption. Suppose, it is true for some n ∈ N. Then it holds for
every x ∈ DA that

[A,Bn+1]x = ABn+1x−Bn+1Ax

=
(
ABn −BnA+BnA

)
Bx−Bn+1Ax

=
(
[A,Bn] +BnA

)
Bx−Bn+1Ax

= niBn−1Bx+BnABx−Bn+1Ax

= niBnx+Bn[A,B]x = niBnx+ iBnx = (n+ 1)iBn.

A consequence is that B cannot be nilpotent: If Bn = 0 for some n ∈ N, then
Bn−1x = 1

ni
[A,Bn]x = 0 for all x ∈ DA, i.e., Bn−1 = 0, which iterates to B = 0 in
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contradiction to [A,B] 6= 0|DA
. Suppose by contradiction that A has finite operator

norm ‖A‖. Then, we can assume w.l.o.g. that DA = H and

n‖Bn−1‖ = ‖[A,Bn]‖ ≤ ‖ABn‖+ ‖BnA‖ ≤ 2‖A‖‖Bn−1‖‖B‖.

Since ‖Bn−1‖ 6= 0, we obtain 2‖A‖ ≥ n
‖B‖ > 0 for every n ∈ N, thus ‖A‖ cannot be

finite and the contradiction is reached.

(d) Consider the Hilbert space (H, 〈·, ·〉H) =
(
L2([0, 1],C), 〈·, ·〉L2

)
and the subspace

C1
0([0, 1],C) := {f ∈ C1([0, 1],C) | f(0) = 0 = f(1)}.

Recall that C1
0([0, 1],C) ⊆ L2([0, 1],C) is a dense subspace. The operators

P : C1
0([0, 1],C)→ L2([0, 1],C), Q : L2([0, 1],C)→ L2([0, 1],C)

f(s) 7→ if ′(s) f(s) 7→ sf(s)

correspond to the observables momentum and position. Check that P and Q are
well-defined, symmetric operators. Check that [P,Q] : C1

0([0, 1],C)→ L2([0, 1],C) is
well-defined.

Show that P and Q form a Heisenberg pair and conclude that the uncertainty principle
holds: for every f ∈ C1

0([0, 1],C) with ‖f‖L2([0,1],C) = 1 there holds

ς(P, f) ς(Q, f) ≥ 1
2 .

Thus we conclude: The more precisely the momentum of some particle is known, the
less precisely its position can be known, and vice versa.

Solution: If f ∈ C1([0, 1],C), then f ′ is bounded and in particular f ′ ∈ L2([0, 1],C).
Therefore, the linear operators

P : C1
0([0, 1],C)→ L2([0, 1],C), Q : L2([0, 1],C)→ L2([0, 1],C)

f(s) 7→ if ′(s) f(s) 7→ sf(s)

are indeed well-defined. They are also symmetric. For Q this follows immediately
from [0, 1] ⊆ R. Indeed, for all f, g ∈ DQ = L2([0, 1],C) it holds that

〈Qf, g〉L2 =
∫ 1

0
sf(s)g(s) ds =

∫ 1

0
f(s)sg(s) ds = 〈f,Qg〉L2 .

For P , symmetry follows via integration by parts. Indeed, given any f, g ∈ DP =
C1

0([0, 1],C), we have

〈Pf, g〉L2 =
∫ 1

0
if ′(s)g(s) ds = −

∫ 1

0
if(s)g′(s) ds =

∫ 1

0
f(s)ig′(s) ds = 〈f, Pg〉L2 .
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When integrating by parts, the boundary terms vanish due to f(0) = 0 = f(1). Hence,
P : C1

0 ([0, 1];C)→ L2([0, 1];C) is symmetric (but not self-adjoint! see Beispiel 6.6.1).

Next, we verify that the commutator [P,Q] is well-defined. Since DQ = L2([0, 1],C) is
the whole space, the only thing to check is that Qf : s 7→ sf(s) is in DP = C1

0 ([0, 1],C)
whenever f ∈ C1

0([0, 1],C). But this follows from the product rule. Moreover,

([P,Q]f)(s) = (P (Qf))(s)− (Q(Pf))(s) = if(s) + isf ′(s)− sif ′(s) = if(s)

for almost every s ∈ [0, 1] which proves that P,Q is a Heisenberg pair. By part (b),

∀f ∈ C1
0 , ‖f‖L2 = 1 : ς(P, f) ς(Q, f) ≥ 1

2

∣∣∣〈f, [P,Q]f〉L2

∣∣∣ = 1
2

∣∣∣〈f, if〉L2

∣∣∣ = 1
2 .
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