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13.1. Friedrich extension

Let (H, 〈·, ·〉H) be a K-Hilbert space (with K ∈ {R,C}) and let A : DA ⊆ H → H be
a densely defined linear operator satisfying that

• A is symmetric, i.e., ∀x, y ∈ DA : 〈Ax, y〉H = 〈x,Ay〉H and

• A is bounded below, i.e., there exists C ∈ R such that 〈Ax, x〉H ≥ C‖x‖2
H for all

x ∈ DA.

Our goal is to show that A possesses a self-adjoint extension B (i.e., A ⊆ B = B∗)
with 〈Bx, x〉H ≥ C‖x‖2

H for all x ∈ DB.

(a) Find λ ∈ R, ε ∈ (0,∞) so that a : DA×DA 3 (x, y) 7→ 〈Ax+λx, y〉H ∈ K defines
an inner product on DA which satisfies for all x ∈ DA that a(x, x) ≥ ε‖x‖2

H .

Solution: For any ε ∈ (0,∞) it holds with λ := ε− C that

a(x, x) = 〈Ax+ λx, x〉H ≥ C‖x‖2
H + (ε− C)‖x‖2

H = ε‖x‖2 for all x ∈ DA.

This demonstrates in particular non-negativity and positive-definiteness of a. More-
over, it holds for all x, y ∈ DA (by symmetry of A, the properties of 〈·, ·〉H , and λ ∈ R)
that

a(x, y) = 〈Ax+ λx, y〉H = 〈Ax, y〉H + λ〈x, y〉H = 〈x,Ay〉H + λ〈x, y〉H
= 〈Ay, x〉H + λ〈y, x〉H = 〈Ay, x〉H + λ〈y, x〉H = 〈Ay + λy, x〉H = a(y, x).

Furthermore, we clearly have for all µ ∈ K, x, y, z ∈ DA that a(µx + y, z) =
µa(x, z) + a(y, z).

(b) Consider the metric space (DA, dA) where dA(x, y) :=
√
a(x− y, x− y) for all

x, y ∈ DA with a as in (a). Let (K, dK , ι) be a completion of (DA, dA) (cp. Problem 3.3
(Completion of metric spaces)). Prove that there exists a unique vector space structure
on K so that ι is linear and the vector space operations K ×K 3 (x, y) 7→ x+ y ∈ K
and K×K 3 (µ, x) 7→ µx ∈ K are continuous (w.r.t. the obvious choices of topologies).
In addition, show that there even exists a unique scalar product 〈·, ·〉K : K ×K → K
such that for all x, y ∈ K it holds that dK(x, y) =

√
〈x− y, x− y〉K .

Solution: Note that, since ι shall be linear and the vector operations on K shall be
continuous, the only possible way to define the sum x∞ + y∞ and the product µx∞
for x∞, y∞ ∈ K and µ ∈ K, is via

x∞ + y∞ = lim
n→∞

ι(xn + yn) and µx∞ = lim
n→∞

ι(µxn),

where limits are to be understood w.r.t. (K, dK) and where (xn)n∈N, (yn)n∈N ⊆ DA

are such that lim supn→∞ dK(ι(xn), x∞) = 0 and lim supn→∞ dK(ι(yn), y∞) = 0.

last update: 29 December 2021 1/19



ETH Zürich
Autumn 2021

Functional Analysis I
Solution Holiday Problem Set

d-math
Prof. J. Teichmann

For this to be well-defined, it needs to be checked that these limits always exist
and coincide when using other sequences in ι(DA) converging to x∞ and y∞, re-
spectively. Indeed, if µ ∈ K and (xn)n∈N, (yn)n∈N ⊆ DA are sequences satisfying
lim supn→∞ dK(ι(xn), x∞) = 0 and lim supn→∞ dK(ι(yn), y∞) = 0, then

lim sup
N→∞

sup
m,n≥N

dK(ι(xn + yn), ι(xm + ym))

= lim sup
N→∞

sup
m,n≥N

dA(xn + yn, xm + ym)

≤ lim sup
N→∞

sup
m,n≥N

(dA(xn, xm) + dA(yn, ym)) = 0

as well as

lim sup
N→∞

sup
m,n≥N

dA(µxn, µxm) ≤ µ lim sup
N→∞

sup
m,n≥N

dA(xn, xm) = 0

i.e., (ι(xn + yn))n∈N and (ι(µxn))n∈N are Cauchy sequences in (K, dK). Moreover, for
sequences (x(1)

n )n∈N, (x(2)
n )n∈N, (y(1)

n )n∈N, (y(2)
n )n∈N ⊆ DA satisfying for i ∈ {1, 2} that

ι(x(i)
n )→ x∞ and ι(y(i)

n )→ y∞ in (K, dK) as n→∞, it holds that

lim sup
n→∞

dK(ι(x(1)
n + y(1)

n ), ι(x(2)
n + y(2)

n ))

= lim sup
n→∞

dA(x(1)
n + y(1)

n , x(2)
n + y(2)

n )

≤ lim sup
n→∞

(dA(x(1)
n , x(2)

n ) + dA(y(1)
n , y(2)

n )) = 0

and
lim sup
n→∞

dK(ι(µx(1)
n ), ι(µx(2)

n ))

= lim sup
n→∞

dA(µx(1)
n , µx(2)

n ) = µ lim sup
n→∞

dA(x(1)
n , x(2)

n ) = 0.

Similarly, for the scalar product, the only possible definition for x∞, y∞ ∈ K is

〈x∞, y∞〉K = lim
n→∞

a(xn, yn),

where (xn)n∈N, (yn)n∈N ⊆ DA are such that lim supn→∞ dK(ι(xn), x∞) = 0 and
lim supn→∞ dK(ι(yn), y∞) = 0. Again, for this to be well-defined, it needs to be checked
that these limits always exist and do not depend on the particular choice of approximat-
ing sequences in ι(DA). Indeed, for any x∞, y∞ ∈ K, and all (xn)n∈N, (yn)n∈N ⊆ DA

satisfying that ι(xn)→ x∞ and ι(yn)→ y∞ in (K, dK) as n→∞, we obtain that
lim sup
N→∞

sup
m,n≥N

|a(xn, yn)− a(xm, ym)|

≤ lim sup
N→∞

sup
m,n≥N

(
|a(xn, yn − ym)|+ |a(xn − xm, ym)|

)
≤ lim sup

N→∞
sup

m,n≥N

(
dA(xn, 0)dA(yn, ym) + dA(ym, 0)dA(xn, xm)

)
= 0,
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i.e., that (a(xn, yn))n∈N ⊆ K is a Cauchy sequence and the limit limn→∞ a(xn, yn) exists.
Moreover, whenever we have sequences (x(1)

n )n∈N, (x(2))n∈N, (y(1)
n )n∈N, (y(2))n∈N ⊆ DA

with ι(x(i)
n )→ x∞ and ι(y(i)

n )n∈N → y∞ in (K, dK) as n→∞ for i ∈ {1, 2}, it holds
that

lim sup
n→∞

|a(x(1)
n , y(1)

n )− a(x(2)
n , y(2)

n )|

≤ lim sup
n→∞

(
|a(x(1)

n , y(1)
n − y(2)

n )|+ |a(x(1)
n − x(2)

n , y(2)
n )|

)
≤ sup

m∈N

√
a(x(1)

m , x
(1)
m ) lim sup

n→∞

√
a(y(1)

n − y(2)
n , y

(1)
n − y(2)

n )

+ sup
m∈N

√
a(y(2)

m , y
(2)
m ) lim sup

n→∞

√
a(x(1)

n − x(2)
n , x

(1)
n − x(2)

n ) = 0,

i.e., limn→∞ a(x(1)
n , y(1)

n ) = limn→∞ a(x(2)
n , y(2)

n ). Thus, there exists a map 〈·, ·〉K : K ×
K → K satisfying that

〈x∞, y∞〉K = lim
n→∞

a(xn, yn)

whenever lim supn→∞ dK(ι(xn), x∞) = 0 = lim supn→∞ dK(ι(yn), y∞). Moreover,
〈·, ·〉K clearly satisfies for all µ ∈ K, x, y, z ∈ K that

〈x, y〉K = 〈y, x〉K and 〈µx+ y, z〉K = µ〈x, z〉K + 〈y, z〉K .

In addition, it holds for all x∞ ∈ K with x∞ = limn→∞ ι(xn) in K and (xn)n∈N ⊆ DA

that

〈x∞, x∞〉K = lim
n→∞

a(xn, xn) ≥ 0

and equality on the right hand side would just imply that

dK(x∞, ι(0)) = lim
n→∞

dA(xn, 0) = lim
n→∞

√
a(xn, xn) = 0, i.e., x∞ = ι(0) = 0K .

Finally, note that for all x∞, y∞ ∈ K and (xn)n∈N, (yn)n∈N ⊆ DA with ι(xn) → x∞
and ι(yn)→ y∞ in K as n→∞, we get that

dK(x∞, y∞) = lim
n→∞

dK(ι(xn), ι(yn)) = lim
n→∞

dA(xn, yn)

= lim
n→∞

√
a(xn − yn, xn − yn) =

√
〈x∞ − y∞, x∞ − y∞〉K .

(c) With (K, dK , ι) being a completion of (DA, dA), equipped with the Hilbert space
structure (in particular, with the scalar product 〈·, ·〉K : K ×K → K) shown to exist

last update: 29 December 2021 3/19



ETH Zürich
Autumn 2021

Functional Analysis I
Solution Holiday Problem Set

d-math
Prof. J. Teichmann

in (b), argue that there exists an injective bounded linear map J : K → H satisfying
for all x ∈ DA, y ∈ K that

〈ι(x), y〉K = 〈Ax+ λx, Jy〉H .

Moreover, prove that J(K) ⊆ H can be written as

J(K) =
{
x∞ ∈ H | ∃(xn)n∈N ⊆ DA with lim sup

n→∞
‖xn − x∞‖H = 0 and

lim sup
N→∞

sup
m,n≥N

a(xn − xm, xn − xm) = 0
}
.

Solution: The linear map DA 3 x 7→ x ∈ H is 1√
ε
-Lipschitz according to (a):

√
ε‖x−y‖H ≤

√
a(x− y, x− y) = dA(x, y) = dK(x, y) = ‖x−y‖K for all x, y ∈ DA.

Using the universal property of completions of metric spaces (cf. Problem 3.3(a)), we
obtain that there exists a unique 1√

ε
-Lipschitz extension J : K → H satisfying that

J(ι(x)) = x for all x ∈ DA. Clearly, J is linear as

J(µx∞ + y∞) = lim
n→∞

J(µι(xn) + ι(yn)) = lim
n→∞

J(ι(µxn + yn)) = lim
n→∞

(µxn + yn)

= µ lim
n→∞

J(ι(xn)) + lim
n→∞

J(ι(yn)) = µJ(x∞) + J(y∞)

for all µ ∈ K, x∞, y∞ ∈ K and (xn)n∈N, (yn)n∈N ⊆ DA with lim supn→∞[‖ι(xn) −
x∞‖K + ‖ι(yn)− y∞‖K ] = 0.

Since for all x, y ∈ DA it holds that

〈ι(x), ι(y)〉K = a(x, y) = 〈Ax+ λx, y〉H ,= 〈Ax+ λx, J(ι(y))〉H .

we obtain by density of ι(DA) in K and by continuity of J that

〈ι(x), y〉K = 〈Ax+ λx, Jy〉H

for all x ∈ DA, y ∈ K.

Finally, observe that the characterization of J(K) follows from the fact that J is
continuous and injective and that the elements of K just correspond to equivalence
classes of Cauchy sequences w.r.t. (DA, a).

(d) Show that operator B : DB ⊆ H → H, defined by DB := im(JJ∗), B(JJ∗u) :=
u − λJJ∗u for all u ∈ H, is well-defined and a self-adjoint extension of A (i.e.,
DA ⊆ DB) with 〈Bx, x〉H ≥ C‖x‖2

H for all x ∈ DB.
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Solution: Since J : K → H is an injective bounded linear map with dense image (as
DA ⊆ J(K)), Problem 12.4 (Special construction of self-adjoint operators) ensures that
(JJ∗)−1 : im(JJ∗) ⊆ H → H is self-adjoint. Hence, B = (JJ∗)−1 − λ is well-defined
and also self-adjoint. Moreover, for all x ∈ DA, u ∈ H it holds that

〈Ax, JJ∗u〉H = 〈Ax+ λx, JJ∗u〉H − λ〈x, JJ∗u〉H = 〈ι(x), J∗u〉K − λ〈x, JJ∗u〉H
= 〈Jι(x), u〉H − λ〈x, JJ∗u〉H = 〈x, u− λJJ∗u〉H = 〈x,B(JJ∗u)〉H .

Hence, it holds for all x ∈ DA that x ∈ DB∗ = DB and Bx = B∗x = Ax. Moreover,
for all x ∈ DB, it holds that there exists w ∈ H with x = JJ∗w and

〈Bx, x〉H = 〈B(JJ∗w), JJ∗w〉H = 〈w − λJJ∗w, JJ∗w〉H
= ‖J∗w‖2

K − λ‖JJ∗w‖2
H ≥ ε‖JJ∗w‖2

H − λ‖JJ∗w‖2
H

= C‖JJ∗w‖2
H = C‖x‖2

H ,

where we used that λ = C − ε and that J is 1√
ε
-Lipschitz.

13.2. The Dirichlet-Laplace operator as a Friedrich extension

Let A : C∞c ((0, 1),R) ⊆ L2((0, 1),R)→ L2((0, 1),R) be defined by Af = −f ′′ for all
f ∈ C∞c ((0, 1),R). Our goal is to construct the Friedrich extension of A.

(a) Prove that (C∞c ((0, 1),R), a) with a defined via a(u, v) =
∫

(0,1) u
′v′ dx for all

u, v ∈ C∞c ((0, 1),R) is an inner product space and prove that there exists c ∈ (0,∞)
such that for all u ∈ C∞c ((0, 1),R) it holds that

∫ 1
0 |u|2 dx ≤ c

∫ 1
0 |u′|2 dx.

Solution: Clearly, C∞c ((0, 1),R) (with the usual operations) is an R-vector space.
Moreover, it holds for all u, v, w ∈ C∞c ((0, 1),R), λ ∈ R that

a(λu+ v, w) = λa(u,w) + a(v, w), a(u, v) = a(v, u), and a(u, u) ≥ 0.

In addition, for every u ∈ C∞c ((0, 1),R) it holds due to the fundamental theorem of
calculus that

u(x) =
∫ x

0
u′(t) dt for all x ∈ (0, 1).

The Cauchy–Schwarz inequality hence implies for all u ∈ C∞c ((0, 1),R) that∫ 1

0
|u(x)|2 dx ≤

∫ 1

0

(∫ x

0
|u′(t)| dt

)2
dx ≤

∫ 1

0

∫ x

0
|u′(t)|2 dt

∫ x

0
1 dt dx

≤
∫ 1

0

∫ 1

0
|u′(t)|2 dt dx =

∫ 1

0
|u′(t)|2 dt.

In particular, for u ∈ C∞c ((0, 1),R), a(u, u) = 0 implies that ‖u‖L2((0,1),R) = 0, i.e.,
u ≡ 0. This completes the proof that a is an inner product.
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(b) Let K ⊆ L2((0, 1),R) be such that u ∈ K if and only if there exists a sequence
(fn)n∈N ⊆ C∞c ((0, 1),R) such that

• fn → u in L2((0, 1),R) as n→∞ and

• (f ′n)n∈N ⊆ L2((0, 1),R) is a Cauchy sequence.

Prove that, for every u ∈ K, there exists a unique w ∈ L2((0, 1),R) such that∫
(0,1)

wϕdx = −
∫

(0,1)
uϕ′ dx for all ϕ ∈ C∞c ((0, 1),R).

Afterwards, we shall always write w = u′ in such a situation (as w equals the classical
derivative in the case of smooth functions).

Solution: Let u ∈ K. Then there exists (fn)n∈N ⊆ C∞c ((0, 1),R) such that fn → u
in L2((0, 1),R) as n → ∞ and (f ′n)n∈N ⊆ L2((0, 1),R) is a Cauchy sequence. Since
L2((0, 1),R) is a Hilbert space, there exists w ∈ L2((0, 1),R) such that f ′n → w as
n→∞. Moreover, for all ϕ ∈ C∞c ((0, 1),R) it holds that∫

(0,1)
wϕdx = lim

n→∞

∫
(0,1)

f ′nϕdx = − lim
n→∞

∫
(0,1)

fnϕ
′ dx = −

∫
(0,1)

uϕ′ dx.

Finally, if (gn)n∈N ⊆ C∞c ((0, 1),R) is another sequence satisfying that gn → u in
L2((0, 1),R) as n→∞ and (g′n)n∈N ⊆ L2((0, 1),R) is a Cauchy sequence (with limit
v ∈ L2((0, 1),R)), then the previous considerations imply that∫

(0,1)
(w − v)ϕdx = 0 for all ϕ ∈ C∞c ((0, 1),R).

By the fundamental theorem of the calculus of variations (or by C∞c ((0, 1),R) being
dense in L2((0, 1),R)), w = v in L2((0, 1),R).

(c) Prove that 〈·, ·〉K : K ×K 3 (u, v) 7→
∫

(0,1) u
′v′ dx ∈ R defines a scalar product

on K and that (K, 〈·, ·〉K) is a completion of (C∞c ((0, 1),R), a).

Solution: For any sequence (fn)n∈N ⊆ C∞c ((0, 1),R) which is Cauchy w.r.t. a, part
(b) implies that (fn)n∈N and (f ′n)n∈N are Cauchy sequences in L2((0, 1),R). By part
(b) again, there exists u ∈ K such that fn → u and f ′n → u′ in L2((0, 1),R) as
n → ∞. Moreover, equivalent Cauchy sequences give rise to the same element of
K. Conversely, every element u ∈ K can be identified with an equivalence class of
Cauchy sequences w.r.t. a. Finally, for u, v ∈ K and (fn)n∈N, (gn)n∈N ⊆ C∞c ((0, 1),R)
with fn → u, f ′n → u′, gn → v and g′n → v′ in L2((0, 1),R) as n→∞, we obtain

〈u, v〉K =
∫

(0,1)
u′v′ dx = lim

n→∞

∫
(0,1)

f ′ng
′
n dx = lim

n→∞
a(fn, gn).
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(d) Prove that the Friedrich extension B as in Problem 13.1 (Friedrich extension)
is given as follows: u ∈ DB if and only if u ∈ K and there exists g ∈ L2((0, 1),R)
such that for all ϕ ∈ C∞c ((0, 1),R) it holds that

∫ 1
0 uϕ

′′ dx =
∫ 1

0 gϕ dx; in this case,
−g = Bu.

Solution: Note that it holds for all u, v ∈ C∞c ((0, 1),R) that

a(u, v) =
∫

(0,1)
u′v′ dx =

∫
(0,1)
−u′′v dx.

By (b), we may carry out the construction in 13.1 with λ = 0 and ε = 1 and
even identify K as well as J(K) (from 13.1) with K in the current context. With
these choices, J is just the embedding of K into L2((0, 1),R). Moreover, for every
f ∈ L2((0, 1),R), u = J∗f ∈ K is the unique element of K satisfying that

〈u, v〉K =
∫

(0,1)
u′v′ dx =

∫
(0,1)

fJv dx =
∫

(0,1)
fv dx for all v ∈ K

and equivalently, by density of C∞c ((0, 1),R),∫
(0,1)

u′ϕ′ dx =
∫

(0,1)
fJϕ dx =

∫
(0,1)

fϕ dx for all v ∈ C∞c ((0, 1),R).

Thus,∫
(0,1)

uϕ′′ dx = −
∫

(0,1)
u′ϕ′ dx =

∫
(0,1)
−fϕ dx for all ϕ ∈ C∞c ((0, 1),R).

Since it holds that JJ∗f = Ju = u in L2((0, 1),R), the above implies that u ∈ DB

and Bu = (JJ∗)−1u = f . And conversely, if u ∈ K and there exists g ∈ L2((0, 1),R)
such that

∫
(0,1) uϕ

′′ dx =
∫

(0,1) gϕ dx for all ϕ ∈ C∞c ((0, 1),R), then the above yields
that with JJ∗g = −u, i.e., u ∈ DB and Bu = −g.

(e) Prove that the embedding J : (K, ‖·‖K) 3 f 7→ f ∈ (L2(0, 1),R), ‖·‖L2) is com-
pact. In addition, prove that every element ofK has a unique continuous representative
and that this continuous representative extends uniquely to a continuous function on
[0, 1] vanishing on {0, 1}.

Solution: Let (un)n∈N ⊆ K be a bounded sequence. There exist, by (b), (fn)n∈N ⊆
C∞c ((0, 1),R) satisfying for all n ∈ N that

‖un − fn‖2
L2 + ‖u′n − f ′n‖2

L2 ≤
1
n2 .

By the fundamental theorem of calculus, it holds for all x1, x2 ∈ [0, 1] that

sup
n∈N
|fn(x1)− fn(x2)| = sup

n∈N

∣∣∣∣∫ x2

x1
f ′n(t) dt

∣∣∣∣ ≤ sup
n∈N
‖f ′n‖L2|x1 − x2|1/2.
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This (keeping in mind that limx↘0 fn(x) = 0 = limx↗1 fn(x) for every n ∈ N), implies
that the continuous extensions of the functions fn, n ∈ N, to [0, 1] are uniformly
bounded and equicontinuous on [0, 1]. The Arzéla–Ascoli theorem hence implies
that there exist a sequence (nk)k∈N ⊆ N with nk ↗ ∞ as k → ∞ and a function
f∞ ∈ C([0, 1],R) with f∞(0) = 0 = f∞(1) such that

lim sup
k→∞

[
sup
x∈(0,1)

|fnk
(x)− f∞(x)|

]
= 0.

Identifying f∞ slightly sloppily with its L2((0, 1),R)-equivalence class, we obtain that

lim sup
k→∞

‖unk
− f∞‖L2((0,1),R)

≤ lim sup
k→∞

‖unk
− fnk

‖L2((0,1),R) + lim sup
k→∞

‖fnk
− f∞‖L2((0,1),R)

≤ lim sup
k→∞

1
nk

+ lim sup
k→∞

‖fnk
− f∞‖L∞((0,1),R) = 0.

Finally, for every u ∈ K, there exists a sequence (fn)n∈N ⊆ C∞c ((0, 1),R) satisfying
that fn → u and f ′n → u′ in L2((0, 1),R) as n → ∞. In other words, fn → u in K
as n→∞. The same reasoning as above implies that there exists f∞ ∈ C([0, 1],R)
such that lim supn→∞ supx∈(0,1)|fn(x)− f∞(x)| = 0. Since fn → u in L2((0, 1),R), it
must hold that u = f∞ a.e.

Remark. Actually, we proved above that (K, ‖·‖K) embeds compactly into the space
(C([0, 1],R), ‖·‖sup) and if we had paid more attention, we could have proved that
(K, ‖·‖K) embeds continuously into the space of Hölder continuous functions with
exponent 1

2 and compactly into any Hölder space with exponent strictly less than 1
2 .

(f) Infer that B−1 : L2((0, 1),R)→ L2((0, 1),R) is a compact operator.

Solution: From the construction of the Friedrich extension we know that B−1 = JJ∗.
Since J is compact (by (e), JJ∗ is also compact.

(g) Determine the spectrum of B as well as an orthonormal basis of L2((0, 1),R)
consisting of eigenvectors of B (respectively of B−1).

Solution: From to the spectral theory of compact self-adjoint operators on Hilbert
spaces, we know that in this case σ(B−1) = σp(B−1) ∪ {0}. For f ∈ L2((0, 1),R), we
find u = B−1f as the unique element of K satisfying∫

(0,1)
u′v′ dx =

∫
(0,1)

fv dx for all v ∈ K.

Thus, u is an eigenvector of B−1 with eigenvalue µ ∈ R \ {0} if and only if

µ
∫

(0,1)
u′v′ dx =

∫
(0,1)

uv dx for all v ∈ K.
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By (e), we may and will from now on consider u as a continuous function on [0, 1]
vanishing on {0, 1}. Moreover, for all ϕ ∈ C∞c ((0, 1),R) it holds that

µ
∫

(0,1)
u′ϕ′ dx =

∫
(0,1)

u(x)ϕ(x) dx

=
∫

(0,1)
u(x)

∫ x

0
ϕ′(t) dt dx =

∫
(0,1)

∫ 1

t
u(x) dxϕ′(t) dt.

This implies that there exists c ∈ R such that µu′(t) = c+
∫ 1
t u(x) dx for a.e. t ∈ (0, 1).

Since the function (0, 1) 3 t 7→ c+
∫ 1
t u(x) dx is continuously differentiable (actually,

it extends to an element of C1([0, 1],R)), we obtain that u′ has a continuously
differentiable representative and u itself is therefore twice continuously differentiable
in the classical sense. Moreover, it holds for all ϕ ∈ C∞c ((0, 1),R) that

µ
∫

(0,1)
u′′ϕdx = −µ

∫
(0,1)

u′ϕ′ dx = −
∫

(0,1)
uϕ dx,

which implies that −µu′′(x) = u(x) for a.e. x ∈ (0, 1). Since we consider continuous
representatives whenever possible, this relation remains true for every x ∈ [0, 1]. Thus,
the eigenfunctions we are looking for are just classical (non-trivial) solutions of the
ODE boundary value problem

−µu′′(x) = u(x) for all x ∈ [0, 1],
u(0) = 0,
u(1) = 0.

It is well known that such a problem has non-trivial solutions if and only if µ = 1
k2π2

for some k ∈ N (in which case u(t) = α sin(kπt) for some α ∈ R). Hence, we obtain
that

σ(B−1) = σp(B−1) ∪ {0} =
{ 1
k2π2 | k ∈ N

}
∪ {0}

and

σ(B) = σp(B) = {k2π2 | k ∈ N}.

For every k ∈ N, there is a one-dimensional space of eigenvectors w.r.t. the eigenvalue
k2π2, spanned by (the normalized element) ek ∈ L2((0, 1),R) satisfying ek(t) =√

2 sin(kπt) for a.e. t ∈ (0, 1).

(h) Express B (and, especially, DB) and B−1 with the help of these eigenvalues and
eigenvectors. Can you find a way to define Bs for s ∈ (0,∞)?
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Solution: For all f ∈ L2((0, 1),R), it holds that

B−1f =
∞∑
n=1

1
n2π2 〈f, en〉L2((0,1),R)en =

∞∑
n=1

2
n2π2

∫
(0,1)

f(x) sin(nπx) dx sin(nπ·)

Since DB = im(B−1), we obtain the characterization

DB =
{
u =

∞∑
n=1

ûnen ∈ L2((0, 1),R) :
∞∑
n=1

n2π2ûnen ∈ L2((0, 1),R)
}

=
{
u =

∞∑
n=1

ûnen ∈ L2((0, 1),R) :
∞∑
n=1
|n2π2ûn|2 <∞

}

=
{
u =

∞∑
n=1

ûnen ∈ L2((0, 1),R) :
∞∑
n=1

n4|ûn|2 <∞
}

and

Bu =
∞∑
n=1

n2π2ûnen for all u =
∞∑
n=1

ûnen ∈ DB.

For s ∈ (0,∞), it is reasonable to define

DBs =
{
u =

∞∑
n=1

ûnen ∈ L2((0, 1),R) :
∞∑
n=1
|n2sûn|2 <∞

}

as well as

Bu =
∞∑
n=1

n2sπ2sûnen for all u =
∞∑
n=1

ûnen ∈ DBs .

13.3. Spectral properties of generators of C0-semigroups

Let (X, ‖·‖X) be a Banach space and let T = (Tt)t∈[0,∞) ⊆ L(X) be a C0-semigroup,
that is,

• T0 = I,

• Tt+s = TtTs for all t, s ∈ [0,∞), and

• lim supt↘0 ‖Ttx− x‖X = 0 for all x ∈ X.

We know that there exist M ∈ [1,∞), ω ∈ R such that ‖Tt‖L(X) ≤ Meωt for all
t ∈ [0,∞). The generator of T is the operator A : DA ⊆ X → X defined by

DA :=
{
x ∈ X | lim

t↘0

Ttx− x
t

exists
}

and Ax := lim
t↘0

Ttx− x
t

for all x ∈ DA.
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(a) Prove for all t ∈ [0,∞), x ∈ DA that Ttx ∈ DA and ATtx = TtAx.

Solution: For all t ∈ [0,∞), x ∈ DA it holds that

lim sup
s↘0

∥∥∥∥TsTtx− Ttxt
− TtAx

∥∥∥∥
X

= lim sup
s↘0

∥∥∥∥Tt(Tsx− xt
− Ax

)∥∥∥∥
X

≤ ‖Tt‖L(X) lim sup
s↘0

∥∥∥∥Tsx− xt
− Ax

∥∥∥∥
X

= 0.

Hence, for all t ∈ [0,∞), x ∈ DA it holds that Ttx ∈ DA and ATtx = TtAx, as
claimed.

(b) Show for all t ∈ [0,∞), x ∈ X that
∫ t

0 Tsx ds ∈ DA and A(
∫ t

0 Tsx ds) = Ttx− x.

Solution: The claim clearly holds true for t = 0, x ∈ DA. For all t, h ∈ (0,∞),
x ∈ X it holds that

Th

∫ t

0
Tsx ds−

∫ t

0
Tsx ds =

∫ t+h

h
Tsx ds−

∫ t

0
Tsx ds =

∫ t+h

t
Tsx ds−

∫ h

0
Tsx ds.

Hence, for all t ∈ (0,∞), x ∈ X it holds that

lim sup
h↘0

∥∥∥∥1
h

[
Th

∫ t

0
Tsx ds−

∫ t

0
Tsx ds

]
− (Ttx− x)

∥∥∥∥
X

= lim sup
h↘0

∥∥∥∥∥1
h

∫ t+h

t
(Tsx− Ttx) ds− 1

h

∫ h

0
(Tsx− x) ds

∥∥∥∥∥
X

≤ lim sup
h↘0

1
h

∫ t+h

t
‖Tsx− Ttx‖X ds+ lim sup

h↘0

1
h

∫ h

0
‖Tsx− x‖X ds = 0,

i.e.,
∫ t

0 Tsx ds ∈ DA and A(
∫ t

0 Tsx ds) = Ttx− x.

(c) Show for all t ∈ [0,∞), x ∈ DA that
∫ t

0 TsAxds = A
∫ t

0 Tsx ds.

Solution: The claim is clearly true for t = 0, x ∈ DA. Fix now t ∈ (0,∞) and
x ∈ DA. Note that, by (a), it holds for all h ∈ (0, 1), s ∈ [0, t] that∥∥∥∥ThTsx− Tsxh

− ATsx
∥∥∥∥
X

=
∥∥∥∥Ts(Thx− xh

− Ax
)∥∥∥∥

X

≤ ‖Ts‖L(X)

∥∥∥∥Thx− xh
− Ax

∥∥∥∥
X

≤ sup
r∈[0,t]

(Meωr) sup
r∈(0,1)

∥∥∥∥Trx− xr
− Ax

∥∥∥∥
X
<∞.

Lebesgue’s dominated convergence theorem therefore assures that∫ t

0
TsAxds = lim

h↘0

∫ t

0
Ts
Thx− x

h
ds = lim

h↘0

1
h

∫ t+h

t
Tsx ds− lim

h↘0

1
h

∫ h

0
Tsx ds,= Ttx−x.

According to part (b), we obtain that
∫ t

0 TsAxds = A
∫ t

0 Tsx ds.
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(d) Prove for all x ∈ DA that the function u := ([0,∞) 3 t 7→ Ttx ∈ X) satisfies
that u ∈ C1([0,∞), (X, ‖·‖X))∩C([0,∞), (DA, ‖·‖DA

)) and that u′(t) = Au(t) for all
t ∈ [0,∞).

Solution: Fix x ∈ DA and u := ([0,∞) 3 t 7→ Ttx ∈ X). We know that u ∈
C([0,∞), (X, ‖·‖X)). By (a), we have that u ∈ C([0,∞), (DA, ‖·‖DA

)) since ATtx =
TtAx for all t ∈ [0,∞), x ∈ DA and ([0,∞) 3 t 7→ TtAx ∈ X) is continuous. For
differentiability, note that parts (b) and (c) show for all t, s ∈ [0,∞) that

Ttx− Tsx = (Ttx− x)− (Tsx− x) =
∫ t

0
TrAxdr −

∫ s

0
TrAxdr =

∫ t

s
TrAxdr.

This (and the fact that [0,∞) 3 t 7→ TtAx ∈ X is continuous) implies that u ∈
C1([0,∞), (X, ‖·‖X)) and that

u′(t) = TtAx for all t ∈ [0,∞).

Part (a) now yields that u′(t) = ATtx = Au(t) for every t ∈ [0,∞).

(e) Demonstrate that A is densely defined and closed.

Solution: To see that A is densely defined, note that it holds according to (b) for all
t ∈ (0,∞), x ∈ X that 1

t

∫ t
0 Tsx ds ∈ DA. Since

lim sup
t↘0

∥∥∥∥1
t

∫ t

0
Tsx ds− x

∥∥∥∥
X
≤ lim sup

t↘0

1
t

∫ t

0
‖Tsx− x‖X ds = 0 for all x ∈ X,

we conclude that DA is dense in X. To prove that A is closed, let (xn)n∈N ⊆ DA and
x∞, y∞ ∈ X such that xn → x∞ and Axn → y∞ in X as n→∞. By (b) and (c), it
holds that

Ttxn − xn =
∫ t

0
TsAxn ds for all n ∈ N, t ∈ (0,∞).

Since it holds for all t ∈ (0,∞) that

lim sup
n→∞

‖(Ttxn − xn)− (Ttx∞ − x∞)‖X ≤ lim sup
n→∞

(‖Ttxn − Ttx∞‖X + ‖xn − x∞‖X)

≤ lim sup
n→∞

(‖Tt‖L(X) + 1)‖xn − x∞‖X = 0

and

lim sup
n→∞

∥∥∥∥∫ t

0
TsAxn ds−

∫ t

0
Tsy∞ ds

∥∥∥∥
X
≤ lim sup

n→∞

∫ t

0
‖Ts‖L(X)‖Axn − y∞‖X ds

≤ t sup
s∈[0,t]

(Meωs) lim sup
n→∞

‖Axn − y∞‖X = 0,
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we obtain that

Ttx∞ − x∞ =
∫ t

0
Tsy∞ ds for all t ∈ (0,∞).

It follows, dividing by t and letting t↘ 0, that x∞ ∈ DA with Ax∞ = y∞. Thus, A
is a closed operator.

(f) Prove for all λ ∈ (ω,∞) that Rλ ∈ L(X), given by Rλx =
∫∞

0 e−λtTtx dt for all
x ∈ X, is well-defined and satisfies

• Rλ(λ− A)x = x for all x ∈ DA

• Rλx ∈ DA and (λ− A)Rλx = x for all x ∈ X.

Solution: Fix λ ∈ (ω,∞). For all x ∈ X, it holds that [0,∞) 3 t 7→ e−λtTtx ∈ X is
an exponentially decaying continuous function. Hence, we can for every x ∈ X make
sense of the integral

∫∞
0 e−λtTtx dt as∫ ∞

0
e−λtTtx dt = lim

τ→∞

∫ τ

0
e−λtTtx dt

(where we can construct
∫ τ

0 e
−λtTtx dt as Riemann integral – as we actually have

been doing the whole time in connection with C0-semigroups). You may view these
integrals as Lebesgue–Bochner integrals but since they coincide in our case with the
probably simpler Riemann integrals, an excursion into measure and integration theory
for vector valued functions is not really necessary for our purposes. Linearity of Rλ is
clear. For boundedness, note that

‖Rλx‖X ≤
∫ ∞

0
e−λt‖Ttx‖X dt ≤

∫ ∞
0

e−λtMeωt‖x‖X dt = M

λ− ω
‖x‖X for all x ∈ X.

This proves that Rλ ∈ L(X) with ‖Rλ‖L(X) ≤ M
λ−ω . Next, note that for all x ∈ X,

h ∈ (0,∞) it holds that

ThRλx−Rλx = Th lim
τ→∞

∫ τ

0
e−λtTtx dt− lim

τ→∞

∫ τ

0
e−λtTtx dt

= lim
τ→∞

∫ τ

0
e−λtTt+hx dt− lim

τ→∞

∫ τ

0
e−λtTtx dt

= lim
τ→∞

eλh
∫ τ+h

h
e−λtTtx dt− lim

τ→∞

∫ τ

0
e−λtTtx dt

= lim
τ→∞

eλh
∫ τ+h

0
e−λtTtx dt− eλh

∫ h

0
e−λtTtx dt− lim

τ→∞

∫ τ

0
e−λtTtx dt

= (eλh − 1)Rλx− eλh
∫ h

0
e−λtTtx dt.
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Dividing by h and letting h↘ 0, we obtain for all x ∈ X that Rλx ∈ DA and

ARλx = λRλx− x,

i.e., (λ − A)Rλx = x. On the other hand, for all x ∈ DA, we obtain – since
[0,∞) 3 t 7→ Ttx ∈ X is continuously differentiable with derivative given by [0,∞) 3
t 7→ TtAx ∈ X – via integration by parts that

RλAx = lim
τ→∞

∫ τ

0
e−λtTtAxdt

= lim
τ→∞

([
e−λtTtx

]t=τ
t=0
−
∫ τ

0
−λe−λtTtx dt

)
= −x+ λRλx,

i.e., Rλ(λx− Ax) = x.

(g) Conclude for all λ ∈ (ω,∞) that λ ∈ %(A), i.e., λ− A is continuously invertible,
with

‖(λ− A)−n‖L(X) ≤
M

(λ− ω)n for all n ∈ N.

Solution: We saw already in (f) that (ω,∞) ⊆ %(A) with Rλ = (λ− A)−1 for every
λ ∈ (ω,∞). It just remains to prove the claimed estimates. For this, we appeal to the
fact that %(A) 3 λ 7→ (λ−A)−1 ∈ L(X) is actually a smooth (even analytic) function
and that, by a general property of resolvents, for all n ∈ N, λ ∈ (ω,∞), it holds that

dn

dλn
Rλ = (−1)nn!Rn+1

λ .

By repeated application of Lebesgue’s dominated convergence theorem, we obtain for
every λ ∈ (ω,∞), n ∈ N, x ∈ X that∥∥∥∥∥ dndλn (Rλx)

∥∥∥∥∥
X

=
∥∥∥∥∫ ∞

0
(−t)ne−λtTtx dt

∥∥∥∥
X
≤M

∫ ∞
0

tne(ω−λ)t‖x‖X dt

= M‖x‖X
(λ− ω)n+1

∫ ∞
0

e−ssn ds = M‖x‖X
(λ− ω)n+1 Γ(n+ 1)

= M

(λ− ω)n+1n!‖x‖X .

Therefore, it holds for all n ∈ N that

‖Rn+1
λ ‖ ≤ M

(λ− ω)n+1 .

Since the estimate for Rλ itself was already achieved when checking the boundedness
of Rλ in part (f), we are done.

14/19 last update: 29 December 2021



d-math
Prof. J. Teichmann

Functional Analysis I
Solution Holiday Problem Set

ETH Zürich
Autumn 2021

Remark. The Hille–Yosida theorem, in fact, ensures that any densely defined closed
operator A on a Banach space X which satisfies for someM,ω ∈ R that (ω,∞) ⊆ %(A)
and ‖(λ − A)−n‖L(X) ≤ M

(λ−ω)n for all λ ∈ (ω,∞), n ∈ N, is the generator of a C0-
semigroup.

13.4. A heat semigroup

Let B : DB ⊆ L2((0, 1),R) → L2((0, 1),R) denote the self-adjoint extension of
A : C∞c ((0, 1),R) ⊆ L2((0, 1),R)→ L2((0, 1),R)), given by Af = −f ′′ for all f ∈ DA,
which we constructed in Problem 13.2 (The Dirichlet–Laplace operator as a Friedrich
extension). In this exercise we dwell on the spectral representation of B obtained in
part (h) of Problem 13.2 to construct the associated C0-semigroup.

(a) Prove that there exists a C0-semigroup (Tt)t∈[0,∞) ⊆ L(L2((0, 1),R)) whose
generator is −B.

Solution: From Problem 13.2, we know that there exists an orthonormal ba-
sis (en)n∈N ⊆ L2((0, 1),R) of L2((0, 1),R) such that, for every n ∈ N, en ∈ DB

and Ben = n2π2en. Moreover, by Problem 13.2(h), it holds that DB = {u =∑∞
n=1 ûnen ∈ L2((0, 1),R) : ∑∞n=1 n

4|ûn|2 < ∞}. Clearly, for every t ∈ [0,∞),
the map Tt : L2((0, 1),R) → L2((0, 1),R), defined by Ttu = ∑∞

n=1 e
−n2π2tûnen for

u = ∑∞
n=1 ûnen ∈ L2((0, 1),R), is a well-defined bounded linear map. It is readily

checked that T0 = I and that Tt+s = TtTs for all t, s ∈ [0,∞). Moreover, for every
u = ∑∞

n=1 ûnen ∈ L2((0, 1),R), it holds by Lebesgue’s dominated convergence theorem
that

lim sup
t↘0

‖Ttu− u‖2
L2((0,1),R) = lim sup

t↘0

[ ∞∑
n=1

(e−n2π2t − 1)2|ûn|2
]

= 0.

Thus, (Tt)t∈[0,∞) is a C0-semigroup on L2((0, 1),R). For this, observe that, if u =∑∞
n=1 ûnen ∈ L2((0, 1),R) lies in DB, then it holds for all t ∈ (0, 1), n ∈ N that∣∣∣∣∣e−n

2π2t − 1
t

+ n2π2
∣∣∣∣∣ = 1

t

∫ t

0
n2π2(1− e−n2π2s) ds ≤ n2π2

so that Lebesgue’s dominated convergence theorem implies that

lim sup
t↘0

∥∥∥∥Ttu− ut
+Bu

∥∥∥∥2

L2((0,1),R)
= lim sup

t↘0

 ∞∑
n=1

∣∣∣∣∣e−n
2π2t − 1
t

+ n2π2
∣∣∣∣∣
2 = 0.

Hence, if we denote by G the generator of (Tt)t∈[0,∞), we have that G is an extension
of −B, i.e., DB ⊆ DG and Gx = −Bx for all x ∈ DB. On the other hand, if
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u = ∑∞
n=1 ûnen ∈ L2((0, 1),R) lies in DG, then it holds for every n ∈ N that

〈Gu, en〉L2((0,1),R) = lim
t↘0

〈
Ttu− u

t
, en

〉
L2((0,1),R)

= lim
t↘0

e−n
2π2
t− 1
t

= −n2π2.

In particular, since ∑∞n=1|〈Gu, en〉L2((0,1),R)|2 < ∞ for every u ∈ DG, we infer that
DG ⊆ DB. This completes the proof that −B is the generator of the C0-semigroup
(Tt)t∈[0,∞) ⊆ L2((0, 1),R).

(b) Prove for all t ∈ (0,∞), f ∈ L2((0, 1),R) that

• Ttf ∈ C∞([0, 1],R) in the sense that there is a (necessarily unique) element of
C∞([0, 1],R) in the L2-equivalence class Ttf and

• (Ttf)(0) = 0 = (Ttf)(1) in the sense that the unique element of C∞([0, 1],R) in
the L2-equivalence class Ttf takes on the value 0 on {0, 1}.

Solution: Let t ∈ (0,∞) and f = ∑∞
n=1 f̂nen ∈ L2((0, 1),R) be arbitrary but

fixed. For every N ∈ N, let us define the function FN : [0, 1] → R by FN(x) :=√
2∑N

n=1 e
−n2π2tf̂n sin(nπx) for every x ∈ [0, 1]. Clearly, for every N ∈ N, it holds

that the L2-equivalence class∑N
n=1 e

−n2π2tf̂nen contains a smooth representative which
vanishes on {0, 1}, namely the function FN . For all m ∈ N0, N ∈ N, we have

F
(m)
N (x) =

√
2

N∑
n=1

(nπ)me−n2π2tf̂n sin(m)(nπx) for all x ∈ [0, 1],

where (·)(m) shall be used to denote the mth derivative. From the fact that for all
m ∈ N0 it holds that

lim sup
N→∞

[
sup
M≥N

∥∥∥F (m)
M − F (m)

N

∥∥∥
C([0,1],R)

]

= lim sup
N→∞

 sup
M≥N

sup
x∈[0,1]

∣∣∣∣∣√2
M∑

n=N+1
(nπ)me−n2π2tf̂n sin(m)(nπx)

∣∣∣∣∣


≤
√

2 lim sup
N→∞

 sup
M≥N

M∑
n=N+1

(nπ)me−n2π2t|f̂n|


≤
√

2
( ∞∑
n=1

(nπ)2me−2n2π2t

)1/2

︸ ︷︷ ︸
<∞ (due to t>0)

lim sup
N→∞

 sup
M≥N

M∑
n=N+1

|f̂n|2
1/2

︸ ︷︷ ︸
=0

= 0,

we can infer that there exist functions (Gm)m∈N0 ⊆ C([0, 1],R) satisfying

lim sup
N→∞

[
sup
x∈[0,1]

|(∂xFN)(x)−Gm(x)|
]

= 0.
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(Note that G0(0) = 0 = G0(1) since FN(0) = 0 = FN(1) for every N ∈ N.) The
fundamental theorem of calculus and continuity of integrals under uniform convergence
allow to show for every m ∈ N that Gm = G

(m)
0 , i.e., that Gm is the mth derivative

of G0. Moreover, from the fact that FN converges uniformly to G0 on [0, 1], we can
infer that FN (strictly speaking, the corresponding L2((0, 1),R)-equivalence class)
converges to G0 (its L2((0, 1),R)-equivalence class) in L2((0, 1),R) as N →∞. That
is, G0 = f a.e. and G0 ∈ C∞([0, 1],R) with G0(0) = 0 = G0(1).

(c) Prove for all x ∈ (0, 1), f ∈ L2((0, 1),R) that (0,∞) 3 t 7→ (Ttf)(x) ∈ R is
smooth (where we identify Ttf ∈ L2((0, 1),R)) for t ∈ (0,∞), f ∈ L2((0, 1),R) with
its continuous representative, which exists according to (b)) so that (Ttf)(x) is defined
for every x ∈ (0, 1).

Solution: Let x ∈ (0, 1) and f = ∑∞
n=1 f̂nen ∈ L2((0, 1),R) be arbitrary but

fixed. For every N ∈ N, let us define the function FN : (0,∞) → R by FN(t) :=√
2∑N

n=1 e
−n2π2tf̂n sin(nπx) for every t ∈ (0,∞). Clearly, for every N ∈ N, it holds

that FN ∈ C∞((0, 1),R). Moreover, for all m ∈ N0, N ∈ N, it holds

F
(m)
N (t) =

√
2

N∑
n=1

(−n2π2)me−n2π2tf̂n sin(nπx) for all t ∈ (0,∞).

For every ε ∈ (0, 1), m ∈ N0 it holds that

lim sup
N→∞

[
sup
M≥N

∥∥∥F (m)
M − F (m)

N

∥∥∥
C([ε, 1

ε
],R)

]

= lim sup
N→∞

 sup
M≥N

sup
t∈[ε, 1

ε
]

∣∣∣∣∣√2
M∑

n=N+1
(−n2π2)me−n2π2tf̂n sin(nπx)

∣∣∣∣∣


≤
√

2 lim sup
N→∞

 sup
M≥N

M∑
n=N+1

(nπ)2me−n
2π2ε|f̂n|


≤
√

2
( ∞∑
n=1

(nπ)4me−2n2π2ε

)1/2

︸ ︷︷ ︸
<∞ (due to t>0)

lim sup
N→∞

 sup
M≥N

M∑
n=N+1

|f̂n|2
1/2

︸ ︷︷ ︸
=0

= 0.

From this, we can infer (in a similar fashion as in (b)) that FN converges locally
uniformly to the function (0,∞) 3 t 7→ ∑∞

n=1
√

2e−n2π2tf̂n sin(nπx) ∈ R, that the
latter is smooth and that its derivatives emerge as a locally uniform limits of the
derivatives of FN .

(d) Prove for all f ∈ L2((0, 1),R) that u : (0,∞) × [0, 1] → R, given by u(t, x) =
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(Ttf)(x) ∈ R for all t ∈ (0,∞), x ∈ [0, 1], satisfies that
(∂tu)(t, x) = (∂2

xu)(t, x), for all t ∈ (0,∞), x ∈ (0, 1),
u(t, 0) = 0, for all t ∈ (0,∞),
u(t, 1) = 0, for all t ∈ (0,∞),

lim supt↘0 ‖u(t, ·)− f‖L2 = 0.

Solution: By part (b), we know already that u(t, 0) = 0 = u(t, 1) for t ∈ (0,∞).
By part (a), we know that lim supt↘0‖u(t, ·)− f‖L2((0,1),R) = 0. Moreover, u(t, x) =∑∞
n=1 e

−n2π2tf̂n
√

2 sin(nπx) for all (t, x) ∈ (0,∞) × [0, 1]. Also, we know from (b)
and (c), that [0, 1] 3 x 7→ u(t, x) ∈ R belongs to C∞([0, 1],R) for all t ∈ (0,∞)
and that (0,∞) 3 t 7→ u(t, x) ∈ R belongs to C∞((0,∞),R) for all x ∈ (0, 1). This
time, we finally consider u as a function of t and x, but the overall philosophy stays
the same. Defining, for every N ∈ N, the function UN : (0,∞) × [0, 1] → R via
UN (t, x) = ∑N

n=1 e
−n2π2tf̂n

√
2 sin(nπx) for all (t, x) ∈ (0,∞)× [0, 1], we have for every

N ∈ N that UN ∈ C∞((0,∞)× [0, 1],R) with

(∂kx∂mt UN)(t, x) =
√

2
N∑
n=1

(−n2π2)me−n2π2tf̂n(nπ)k sin(k)(nπx)

for all k,m ∈ N0, t ∈ (0,∞), x ∈ (0, 1). (Here, we denoted by sin(k) the kth derivative
of the sine function, which is one of ± sin or ± cos.) For all m, k ∈ N0 and every
ε ∈ (0,∞), it holds that

lim sup
N→∞

sup
M≥N

‖(∂kx∂mt UM)(t, x)− (∂kx∂mt UN)(t, x)‖C([ε, 1
ε

]×[0,1],R)

= lim sup
N→∞

 sup
M≥N

sup
(t,x)∈[ε, 1

ε
]×[0,1]

∥∥∥∥∥√2
M∑

n=N+1
(−n2π2)me−n2π2tf̂n(nπ)k sin(k)(nπx)

∥∥∥∥∥


≤ lim sup
N→∞

 sup
M≥N

√2
M∑

n=N+1
(nπ)2m+ke−n

2π2ε|f̂n|


≤ lim sup

N→∞
sup
M≥N

2
M∑

n=N+1
(nπ)4m+2ke−2n2π2ε

1/2 M∑
n=N+1

|f̂n|2
1/2

≤
(

2
∞∑
n=1

(nπ)4m+2ke−2n2π2ε

)1/2

︸ ︷︷ ︸
<∞ (by ε>0)

lim sup
N→∞

sup
M≥N

 M∑
n=N+1

|f̂n|2
1/2

︸ ︷︷ ︸
=0

= 0.

Hence, there exist functions (Vm,k)(m,k)∈N0×N0 ⊆ C((0,∞)× [0, 1],R) satisfying for all
k,m ∈ N, ε ∈ (0, 1) that

lim sup
N→∞

‖Vm,k − (∂mt ∂kxUN)‖C([ε, 1
ε

]×[0,1],R) = 0.
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Leveraging the fundamental theorem of calculus, we obtain that Vm,k = ∂mt ∂
k
xV0,0 for

all m, k ∈ N0. Also, it easily follows that V0,0 = u. Moreover, we have that

(∂tu)(t, x) =
√

2
∞∑
n=1
−n2π2e−n

2π2tf̂n sin(nπx) for all (t, x) ∈ (0,∞)× [0, 1]

and

(∂2
xu)(t, x) =

√
2
∞∑
n=1
−n2π2e−n

2π2tf̂n sin(nπx) for all (t, x) ∈ (0,∞)× [0, 1],

which proves that (∂tu)(t, x) = (∂2
xu)(t, x) for all (t, x) ∈ (0,∞)× [0, 1].

(e) Finally, prove for all f ∈ L2((0, 1),R), v ∈ C∞((0,∞)× [0, 1],R) satisfying
(∂tv)(t, x) = (∂2

xv)(t, x) for all t ∈ (0,∞), x ∈ (0, 1),
v(t, 0) = 0 for all t ∈ (0,∞),
v(t, 1) = 0 for all t ∈ (0,∞),

lim supt↘0 ‖v(t, ·)− f‖L2 = 0,

that v(t, x) = (Ttf)(x) for all (t, x) ∈ (0,∞)× [0, 1].

Solution: Let w : (0,∞)× [0, 1]→ R be defined by w(t, x) = u(t, x)− v(t, x) for all
(t, x) ∈ (0,∞)× [0, 1], where we reuse the function u introduced in part (d). Since,
by part (d) and by assumption, u, v ∈ C∞((0,∞) × [0, 1],R), it follows that also
w ∈ C∞((0,∞)×[0, 1],R). Therefore, the function (0,∞) 3 t 7→

∫
(0,1)|w(t, x)|2 dx ∈ R

is differentiable and it holds for all t ∈ (0,∞) that

1
2
d

dt

[∫
(0,1)
|w(t, x)|2 dx

]
=
∫

(0,1)
(∂tw)(t, x)w(t, x) dx

=
∫

(0,1)
(∂2
xw)(t, x)w(t, x) dx

= −
∫

(0,1)
|(∂xw)(t, x)|2 dx ≤ 0.

This monotonicity property and the assumption on the initial conditions, it follows
for all t ∈ (0,∞) that∫

(0,1)
|w(t, x)|2 dx ≤ lim sup

s↘0

∫
(0,1)
|w(s, x)|2 dx

= lim sup
s↘0

‖u(s, ·)− f + f − v(s, ·)‖2
L2

≤ 2 lim sup
s↘0

‖u(s, ·)− f‖2
L2 + 2 lim sup

s↘0
‖f − v(s, ·)‖2

L2 = 0.

Since w is continuous, this implies that w(t, x) = 0 (i.e., v(t, x) = u(t, x)) for all
(t, x) ∈ (0,∞)× [0, 1].
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