pf. Notation $f_{i}=\frac{\partial f}{\partial x^{i}}, f_{i j}=\frac{\partial t}{\partial x^{i} \partial x^{i}}$

$$
\begin{aligned}
& \frac{\partial g_{j e}}{\partial x^{i}}+\frac{\partial g_{i l}}{\partial x^{j}}-\frac{\partial g_{i j}}{\partial x^{2}}=\frac{\partial}{\partial x^{i}}\left\langle\underline{f_{j}} f_{\underline{l}}\right\rangle+\frac{\partial}{\partial x^{j}}\left\langle\left\langle f_{i}, f_{1}\right\rangle-\frac{\partial}{\partial x^{e}} \stackrel{f_{i}}{=} f_{i j}\right\rangle \\
& =\underbrace{\left\langle f_{i}, f_{e j}-f_{j e}\right\rangle}_{0}+\underbrace{\left\langle f_{j}, f_{i}-f_{i l}\right\rangle}_{0}+\underbrace{2\left\langle f_{f,}, f_{i j}\right\rangle}_{\text {fangect }} \\
& =2\left\langle f_{f}, f_{i j}^{\top}\right\rangle \stackrel{V}{=} 2\left(f_{f}, \sum_{k} \prod_{i j}^{k} f_{k}\right\rangle \\
& =2 \sum_{k} \prod_{i j}^{k} g_{e_{k}} x \text { both side by } g^{n e} \\
& \left(\sum_{l} \delta^{h e} \delta_{l k}=\delta_{k}^{h}\right) \quad \text { and } \quad \text { Rum over } l
\end{aligned}
$$

Case $m=2$: Gansil motation $E:=g_{11}, F=g_{21}, b=g_{22}$
Cusioffel symbols $\left(\begin{array}{lll}\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1} \\ \Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2}\end{array}\right)=\frac{1}{2 D}\left(\begin{array}{cc}G & -F \\ -F & E\end{array}\right)\left(\begin{array}{ccc}E_{1} & E_{2} & 2 F_{2}-G_{1} \\ 2 F_{1}-E_{2} & G_{1} & G_{2}\end{array}\right)$
Def'n 3.4 MCRn m-dim. submanfold, $C I \longrightarrow M$ carre, $X: I \rightarrow \mathbb{R}^{n} \quad C^{\prime}$ tangent vector field on M aloy C (i.e $\left.X(t) \in T M_{C H}\right)$ for all $t \in I)$
Covariant derivche: $\frac{D}{d t} X: I \rightarrow \mathbb{R}^{n}, \frac{D}{d t} X(t):=\dot{X}(t)^{T}$, "tangenticl
Orthogonel projection
X is parallel along c if $\frac{D}{d t} X(t)=0$ $R^{n} \rightarrow T M_{C t}$
for all $t \in I$, i.e $\dot{x}(t) \in M_{c(t)}^{+}$

Thm 3.5 M, C as above, $X, Y: I \longrightarrow \mathbb{R}^{n} \quad C^{1}$ tangent vecton field Then:

$$
\lambda: よ \longrightarrow \mathbb{R}
$$ along c.

(1) $\frac{D}{d t}(X+Y)=\frac{D}{d t} X+\frac{D}{d t} Y$
(2) $\frac{D}{d t}(\lambda X)=\left(\frac{d}{d t} \lambda\right) X+\lambda \frac{D}{d t} X$
(3) $\frac{d}{d t} g(X, Y)=g\left(\frac{D}{d t}, Y, Y\right)+g\left(X, \frac{p}{d t}, Y\right)$
(4) If $f: V \rightarrow f(U) \subset M$ is a locel paran.

$$
\gamma: I \rightarrow \cup C^{\prime} \text { s.t. } c=f \circ \gamma
$$

$$
\begin{array}{r}
\gamma: I \rightarrow U C^{\prime} \text { s.t. } c=1\left(\xi \rightarrow \mathbb{R}^{m} C^{1} \quad X(t)=f_{\gamma(t)}(\xi(t))=\sum_{i=1}^{m} \xi^{i}(t) \frac{\partial}{\partial x}(\gamma(t))\right. \\
\xi: I
\end{array}
$$

then $\frac{D}{d t} x=\sum_{i=1}^{m}\left[\xi^{k}+\sum_{i, j=1}^{m} \xi^{i} \dot{\gamma}^{j}\left(\Gamma_{i j}^{k} \circ \gamma\right)\right] \frac{g_{0}}{\partial x^{k}}{ }^{\circ} \gamma$
proof (1) and (2) shrajhtfoward fram def'n when $\varphi: \mathbb{R} \rightarrow \mathbb{R}^{n}$ we dende $\underline{\varphi}$ or $\underline{\varphi}^{\prime}$ (d4)
(3) $g(X, Y)^{\prime}=g(\dot{X}, Y)+g(X, \dot{Y})=g\left(\dot{X}^{\top}, Y\right)+g\left(X, \dot{Y}^{\top}\right)$

X, Y ore tangent \mathcal{A}

$$
\text { so }\left\{\begin{array}{l}
\langle v, X\rangle=\left\langle v^{T}, X\right\rangle \\
\langle v, Y\rangle=\left\langle v^{T}, Y\right\rangle
\end{array} \quad \forall v \in \mathbb{R}^{n}\right.
$$

(4) Dende $f_{i}=\frac{\partial f}{\partial x^{i}}, f_{i j}:=\frac{\partial^{2} f}{\partial x^{2} x^{i}}, x=\sum_{i=1}^{m} \xi^{i}\left(f_{i} \circ \gamma\right)$
$\frac{\text { Def'n of } \Gamma_{i j}^{k}}{m}=\xi^{i}(f \circ \gamma)+\xi^{i} \sum_{i}^{m} \dot{\gamma}^{m}\left(\Gamma_{i j}^{k} f_{k}\right) \circ \gamma$

$$
\left(f_{i j}(x)\right)^{\top}=: \sum_{k=1}^{m} \prod_{i j}^{k}(x) f_{k}(x)
$$ $j, k=1$

Summing over i, we condude (4)

Remarks 1 . (4) shows that $\frac{d}{d x} x$ is inthinece
2. If X, Y are pandelel along c, then $\delta_{C(t)}(X(t), Y(t))$ is

We call X a \xrightarrow{k} tampent reeds field on $M \subset R^{\circ}$ if $X: M \rightarrow R^{n}$ $X=\left(X^{1},-X^{n}\right) X^{i}$ are C^{k} functions from M to \mathbb{R}^{n} and $X(p) \in T M_{p} \forall p \in M$
$X Y$ tangent of on M then me define the covariant derivative of Y with respect to X at $p \in M$

$$
\begin{array}{ll}
\text { with resect to } X \text { at } p \in M & c:(-\varepsilon, \varepsilon) \rightarrow M \text { set. } \\
\left(D_{Y} X\right)(p):=\frac{D}{d t}(X \cdot d(0) \text { for any } & c(0)=p, c^{\prime}(0)=Y(p)
\end{array}
$$

This defy is independent of choice of c
$X: M \rightarrow \mathbb{R}^{n}$ by chain rule (or submerifud)

$$
\begin{align*}
& X: M \rightarrow \mathbb{R}^{n} \text { by chance } \tag{*}\\
& \left((X \circ c)^{\prime}(0)\right)^{\top}=\left((d X)_{p}^{\circ}(0)\right)^{\prime}=\left(d X_{p} Y^{\prime}(p)\right)^{\top}
\end{align*}
$$

Also if $\bar{X}: V_{\Lambda_{n}} \rightarrow \mathbb{R}^{n}, V D M$ open extends X

$$
\text { (ie. } \left.\left.x\right|_{M} \equiv X\right)
$$

then
similarly

$$
D_{Y} X=d \bar{X}_{p} \cdot Y(p)
$$

(*) shows this does not depend on the exterior X of X employed

In order to motivate covariant derivative we now give the proof of Thm 3.10 (see the statement in the nodes) but in a meticcted way.

What is the shatest curve joining p and q ?
To answer this: Calculus of Vonictions
Suppose that the shortest carne exist n and is smooth $\left(C^{2}\right)$ (one proven this later!)

$$
C:[a, b] \longrightarrow M \quad((a)=p
$$

$c(b)=q$

Around woos. $\left|C^{\prime}\right|=1$ (reparavetrite by are length)
suppose for simplicity p, q belong to the $f(U) \quad f$ local paran.
Let $\gamma:[a, b] \rightarrow U^{\mathbb{R}^{m}}$ st $c=$ for
given any $h:[a, b) \rightarrow \mathbb{R}^{m}$ of class C^{2} such thet

$$
h(a)=h(b)=0
$$

cosider $\bar{C}(\varepsilon, t):=f(\gamma+\varepsilon h) \quad \varepsilon \in \mathbb{R} \quad(|\varepsilon|$ smell so thet $\gamma+\varepsilon h \in U)$
Note thet $\bar{c}(\varepsilon, a)=p$ and $\bar{c}(\varepsilon, b)=f \quad \forall \varepsilon$ as above so $\bar{c}(\varepsilon, t)$ is a "competito "curve.
$C(f)$ has mininal lenght among curver poining p, q

$$
\begin{aligned}
& \Rightarrow \quad L(\bar{C}(\varepsilon,-)) \geqslant L(c) \quad \forall \varepsilon \text { (hith }|\varepsilon| \text { suen }) \\
& \Rightarrow 0=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} L\left(\bar{c}(\varepsilon,-1)=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} \int_{a}^{b} \sqrt{\langle\bar{q}(\varepsilon, t), \bar{q}(\varepsilon, t)} d t\right. \\
& =\int_{a}^{b} \frac{2\left\langle\frac{\partial}{\partial \varepsilon_{c}}(0, t), \bar{c}_{t}(0, t)\right\rangle}{2 \sqrt{\left.\overline{\bar{q}}[0, t), \bar{q}_{f}(0, t)\right\rangle}} d t \\
& c_{t}=\frac{\partial}{\partial t} c
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{a}^{b}\left\langle\frac{\partial}{\partial \xi} \bar{\tau}_{t}(0, t), c_{t}^{\prime}(t)\right\rangle d t\left|c_{t}(0, t)\right|=\left|c^{\prime}(t)\right|=1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\int_{a}^{b} \varphi^{\prime} \psi=-\int_{a}^{b} \varphi \psi^{\prime}+[\varphi \psi]_{a}^{s}}{\text { (with nepect to vaiable }}=-\int_{a}^{b}\left\{\frac{\partial}{\partial \varepsilon} \tau(0, t), c^{\prime \prime}(t)\right\rangle \\
& +!) \\
& \text { as we rany g we } \\
& \text { can generate ann sangentreda teld } \\
& \text { (romishing on pand q) }
\end{aligned}
$$

The integed will be $=0 \mathrm{~kg}$ if and ouly if $c^{\prime \prime}(t)$ is tangent $\forall t \in[a, b]$

We now define paneled hausport. We need the following Thu 3.6. $M C \mathbb{R}^{n}$ rubmeijeld, $C: I \rightarrow M C^{1}$ carve $0 \in I, \quad X_{0} \in+M_{C(0)} \Rightarrow$ unique parallel $C l$ rector field X along c with $X(0)=X_{0}$
proof We may anne I connect and $c(I) \subset f(U)$ for a loced pram. $f: U \neg f(u) C M$. unite $c=f \circ \gamma \quad x=\sum_{i=1}^{m} \xi i \frac{\partial f}{\partial x^{i}} \circ \gamma$ by Tim 3.S(4) ξ is panel iff.

$$
\xi^{k}+\sum_{i j=1}^{m} \xi^{i} \dot{\gamma}^{j}\left(\prod_{i j}^{k}, \gamma\right)=0 \quad(k=1, \ldots, m)
$$

This is a (linear) ODE with cont. coff for ξ $\Rightarrow \exists$! solis with $X(0)=X_{0}$ (we then use it to define X wa $(*)$)
X is called pandlel hangpert of X_{0} along c Runke given bofore shows that for a curve c fram p to f in M the penenel temport along C defines on isonethy

$$
\left(T \mu_{p}, s_{p}\right) \longrightarrow\left(T \mu_{q}, g_{p}\right)
$$

This isensty depends typicelly on the curve C joing p and f Reparan.

$$
\begin{array}{ll}
c / l^{M} \tilde{c} & x(t)=\tilde{X}(\varphi(t))=\tilde{x}(s) \\
\tilde{L} & \left(\frac{d}{d t} X\right)^{\top}=\left(\frac{d}{d s} \tilde{x}(\varphi(t))\right)^{\top} \dot{\varphi}(t) \\
\frac{D}{d t} x(t)=\frac{D}{d s} \tilde{x}(\varphi(t)) \underbrace{l}_{\frac{\dot{\varphi}}{4(t)}}
\end{array}
$$

So, X parnallel alous $c \Leftrightarrow \not \subset$ is porethel alang \widetilde{c}

