H. Notation fi= 計, fij - 社,)--- $\frac{\partial g_{j\ell}}{\partial x^{i}} + \frac{\partial g_{i\ell}}{\partial x^{i}} - \frac{\partial g_{ij}}{\partial x^{\ell}} = \frac{\partial}{\partial x^{i}} \langle f_{j}, f_{\ell} \rangle + \frac{\partial}{\partial x^{i}} \langle f_{i}, f_{\ell} \rangle - \frac{\partial}{\partial x^{\ell}} \langle f_{i}, f_{j} \rangle$ $= \langle f_i, f_{ej} - f_{je} \rangle + \langle f_{j}, f_{ei} - f_{ie} \rangle + 2 \langle f_{e}, f_{ij} \rangle$ $= 2 \langle f_{\ell}, f_{ij} \rangle = 2 \langle f_{\ell}, \sum_{k} n_{ij}^{k} f_{k} \rangle$ = 2 Z Rij Sek x both side by She $\left(\frac{Z}{e} S_{eK}^{he} = S_{K}^{he} \right)$ and sum over eReplace $h \rightarrow k$

Case
$$M = 2$$
: Gauns indiction $E := g_{M}$, $F = g_{2A}$, $G = g_{22}$
Unishelfed symbols $\begin{pmatrix} \Gamma_{11}^{i} & \Gamma_{12}^{i} & \Gamma_{22}^{i} \\ \Gamma_{11}^{i} & \Gamma_{12}^{i} & \Gamma_{22}^{i} \end{pmatrix} = \frac{1}{2D} \begin{pmatrix} F & -F \\ -F & E \end{pmatrix} \begin{pmatrix} E_{1} & E_{2} & 2F_{2}-G_{1} \\ 2F_{1}-E_{2} & G_{1} & G_{2} \end{pmatrix}$
Defind 3.4 More modules submemfold, $C : I \longrightarrow M$ curve,
 $X: I \rightarrow M^{n}$ C^{1} tangent vector field on M dows C (i.e. $X(I) \in TM_{CH}$)
For all $I \in J$)
(oversion derivative: $D_{11} \times : I \rightarrow M^{n}$, $D_{11} \times (I) := X(I) \in TM_{CH}$)
for all $I \in J$)
 $X: s parallel along C = if $D_{11} \times (I) = 0$
for all $I \in I$, i.e. $X(I) \in TM_{CH}^{-1}$$

Remarks 1. (4) shows that
$$D_X$$
 is intrived
2. If X/Y are pondled along c, then $S_{C(4)}(X(4), Y(4))$ is
constant in t $\frac{1}{dt}g(X/Y) = g(D_X/Y) + g(X, D_A+Y) = 0$
[We call X a $\binom{K}{t}$ tangent reduct field on MCR if $X: M \rightarrow R^{M}$
 $X = (X', -X')$ Xi are $\binom{K}{t}$ functions from M to R^{M}
and $X(p) \in TMp$ of $p \in M$
 M this is why they are called langent!
XY tongent of on M then we define the covariant derivative
of K with respect to X at pet $\binom{K}{t} (0) = p$, $\binom{K}{t} (0) = Y(p)$

This defin is independent of cloice of c

$$X: M \rightarrow H^{n}$$
 by chain rule (on submeriford)
 $((X \circ c)(o)) = ((dX) p c(o)) = (dX p Y(p))^{T}$ (x)
Also if $X: V \rightarrow H^{n}$, $V \supset M$ open extends X
(i.e. $X|_{M} = X$)
then
similarly $D_{YX} = dX p Y(p)$
 $Augusta H^{n} H^{n}$
(i.e. $X|_{M} = X$)
 $Augusta H^{n} H^{n}$
 $Augusta H^{n} H^{n}$
(i) show this does not depend on the extension
 $X \circ f X$ employed

Siven any
$$h: [a,b] \rightarrow \mathbb{R}^{m}$$
 of day C^{2} such that
 $h(a) = h(b) = 0$
(ovriden $\widehat{C}(e,t) := \widehat{f}(\forall + \epsilon h)$ $\epsilon \in \mathbb{R}$ ($|\epsilon|$ small so that $\forall + \epsilon h \in U$).
Note that $\widehat{C}(e,a) = p$ and $\widehat{C}(e,b) = \widehat{F}$ $\forall \epsilon$ as above
so $\widehat{C}(e,t)$ is a "competitor" curve.
 $C(f)$ has minimal lengthst among curves pointing $p_{1}\widehat{F}$
 $=1$ $L(\widehat{C}(\epsilon, \cdot)) \gg L(c)$ $\forall \epsilon$ (Lith lel small)
 $=1$ $L(\widehat{C}(\epsilon, \cdot)) \gg L(c)$ $\forall \epsilon$ (Lith lel small)
 $=1$ $0 = \frac{A}{A\epsilon}\Big|_{\epsilon=0} = \frac{L(\overline{C}(\epsilon, \cdot))}{A\epsilon} = \frac{A}{A\epsilon}\Big|_{\epsilon=0} a$ $\sqrt{E(\epsilon, 1), \widehat{F}(\epsilon, 1), \widehat{F}(\epsilon, 1)}$ dt
 $= \int_{a}^{b} \frac{2\sqrt{2\epsilon}(\epsilon(0, 1), \widehat{c}(0, 1))}{2\sqrt{E(0, 1)}} dt$ $c_{1} = \frac{2}{3\epsilon}c$

$$= \int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{L}_{t}[0,t], \tilde{L}_{t}(t) \rangle dt |L_{t}(0,t)| = |C'(tt)| = 1$$

interpotion
by ports = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{L}_{t}(t) \rangle dt + [\frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{L}_{t}(t)]_{t=a}^{t+b}$
 $\int_{a}^{b} \langle \psi' + \tilde{L}(\Psi)|_{a}^{b} \rangle = -\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle = 0$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$
(with reped to variable = $-\int_{a}^{b} \langle \frac{\partial}{\partial t} \tilde{c}(0,t), \tilde{C}^{(1)}(1) \rangle$

We now define ponellel transport. We need the following Thm 3.6. MCRM submarifold, C:I-JM C1 came OEI, Xo eTM((0)) Junique parellel C' vector field X along c with X(o) = Xo Proof We may arme I compact and C(I)Cf(U) for a local purem. $f: U \neg f(U) \subset M$. Write $c = f \circ \mathcal{T}$ $\chi = \sum_{i=1}^{m} g_i \frac{\partial f}{\partial \chi_i} \circ \mathcal{T}$ (x)by Thm 3.5(4) & is parallel iff. (K=1,~~,m) This is a (linear) ODE with cent. coeff for S =1]! solin with X(0)=Xo (We then use it to define X via (*))

X is called punched homport of Xo along C
And (2 given bodone shows that has a curve c fram p to s
in M we perchad homport along c defines an isometry

$$(TMp, Sp) \longrightarrow (TMg, gp)$$

This isometry depends typically on the curve C joining P and f
Regionan.
 $f(t) = \hat{X}(y(t)) = \hat{X}(s)$
 $\hat{X}(t) = \hat{X}(y(t)) = \hat{X}(s)$